skip to main content


Title: Arthropods of the great indoors: characterizing diversity inside urban and suburban homes

Although humans and arthropods have been living and evolving together for all of our history, we know very little about the arthropods we share our homes with apart from major pest groups. Here we surveyed, for the first time, the complete arthropod fauna of the indoor biome in 50 houses (located in and around Raleigh, North Carolina, USA). We discovered high diversity, with a conservative estimate range of 32–211 morphospecies, and 24–128 distinct arthropod families per house. The majority of this indoor diversity (73%) was made up of true flies (Diptera), spiders (Araneae), beetles (Coleoptera), and wasps and kin (Hymenoptera, especially ants: Formicidae). Much of the arthropod diversity within houses did not consist of synanthropic species, but instead included arthropods that were filtered from the surrounding landscape. As such, common pest species were found less frequently than benign species. Some of the most frequently found arthropods in houses, such as gall midges (Cecidomyiidae) and book lice (Liposcelididae), are unfamiliar to the general public despite their ubiquity. These findings present a new understanding of the diversity, prevalence, and distribution of the arthropods in our daily lives. Considering their impact as household pests, disease vectors, generators of allergens, and facilitators of the indoor microbiome, advancing our knowledge of the ecology and evolution of arthropods in homes has major economic and human health implications.

 
more » « less
NSF-PAR ID:
10013178
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
PeerJ
Date Published:
Journal Name:
PeerJ
Volume:
4
ISSN:
2167-8359
Page Range / eLocation ID:
e1582
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The diversity of primary producers strongly affects the structure and diversity of species assemblages at other trophic levels. However, limited knowledge exists of how plant diversity effects at small spatial scales propagate to consumer communities at larger spatial scales. We assessed arthropod community β and γ‐diversity in response to experimentally manipulated plant community richness in two long‐term grassland biodiversity experiments (Jena, Germany and Cedar Creek, USA) replicated over two years. We calculated arthropod species turnover among all plot combinations (β‐diversity), and accumulated number of arthropod species occurring on (1) all pairwise plot combinations and (2) 40 randomly selected six‐plot combinations (γ‐diversity). The components of arthropod diversity were tested against two measures of plant diversity, namely average plant α‐diversity () and the average difference in plant α‐diversity between plots (ΔPSR). Whereas points to the overall importance of plant α‐diversity for arthropod community turnover and diversity on a larger scale, ΔPSR represents the role of habitat heterogeneity. We demonstrate that arthropod γ‐diversity is supported by high, homogeneous plant α‐diversity, despite lower arthropod β‐diversity among high‐ compared to low‐diversity plant communities. We also show that, in six‐plot combinations, average plant α‐diversity has a positive influence on arthropod γ‐diversity only when homogeneity in plant α‐diversity is also high. Varying heterogeneity in six‐plot combinations showed that combinations consisting solely of plots with an intermediate level of plant α‐diversity support a higher number of arthropod species compared to combinations that contain a mix of high‐ and low‐diversity plots. In fact, equal levels of arthropod diversity were found for six‐plot combinations with only intermediate or high plant α‐diversity, due to saturating benefits of local and larger‐scale plant diversity for higher trophic levels. Our results, alongside those of recent observational studies, strongly suggest that maintaining high α‐diversity in plant communities is important for conserving multiple components of arthropod diversity. As arthropods carry out a range of essential ecosystem functions, such as pollination and natural pest‐control, our findings provide crucial insight for effective planning of human‐dominated landscapes to maximize both ecological and economic benefits in grassland systems.

     
    more » « less
  2. Abstract

    Birds increase crop yields via consumption of pests in some contexts but disrupt pest control via intraguild predation in others. Landscape complexity acts as an inconsistent mediator, sometimes increasing, decreasing, or not impacting pest control. Here, we examined how landscape context and seasonal variation mediate the impact of birds on arthropod pests and natural enemies, leaf damage, and yields of broccoli (Brassica oleracea) on highly diversified farms that spanned the USA west coast. Our study had two complementary components: a bird exclusion experiment and molecular diet analysis of 357 fecal samples collected from the most commonly captured bird species that also foraged in Brassica fields—American Goldfinch (Spinus tristis), American Robin (Turdus migratorius), Savannah Sparrow (Passerculus sandwichensis), Song Sparrow (Melospiza melodia), and White-crowned Sparrow (Zonotrichia leucophrys). Bird access yielded higher, rather than lower, numbers of pest aphids and increased their parasitism, while no other arthropods examined were consistently impacted. Independent of bird presence, percent natural cover in the landscape sometimes increased and sometimes decreased densities of arthropods in the mid-growth period, with diminishing impacts in the late-growth period. Herbivore feeding damage to broccoli leaves decreased with increasing amounts of natural land cover and in the late-growth period. Molecular diet analysis revealed that Brassica pests and predatory arthropods were relatively uncommon prey for birds. Landscape context did not alter the prey items found in bird diets. Altogether, our bird-exclusion experiment and molecular diet analysis suggested that birds have relatively modest impacts on the arthropods associated with broccoli plantings. More broadly, the limited support in our study for net natural pest control services suggests that financial incentives may be required to encourage the adoption of bird-friendly farming practices in certain cropping systems.

     
    more » « less
  3. Landscape diversity is one of the key drivers for maintaining ecosystem services in agricultural production by providing vital habitats and alternative food sources for beneficial insects and pollinators within the agricultural landscapes. The landscape structure, land uses, and diversity differ between geographic locations. However, how the changes of landscape structure and land use diversity affect the arthropod diversity in a geographic area is poorly understood. Here, we tested the impact of landscape diversity on the rice locations in Bangladesh. Results ranged from highly diversified to very highly diversified in Chattogram (>7.9), to highly diversified (0.590.79) in Satkhira and moderately (0.390.59) to less diversified (0.190.39) in Patuakhali. These significant different landscape diversities influenced the arthropod diversity in rice fields. Arthropod species diversity increases with the increase in the Land Use Mix (LUM) index. The maximum tillering stage of rice growth harbored higher abundance and species diversity in rice fields. Moreover, we found that vegetation is the most important factor influencing the abundance of arthropods. Extensive agriculture and forest contributed substantially to predicting arthropod richness. Meanwhile, barren land and high-density residential land as well as intensive agriculture had large impact on species diversity. This study indicates that landscape diversity plays a vital role in shaping the species diversity in rice fields, providing guidelines for the conservation of arthropod diversity, maximizing natural pest control ecosystem service and more secure crop production itself. 
    more » « less
  4. Abstract

    Habitat fragmentation resulting in habitat loss and increased isolation is a dominant driver of global species declines. Habitat isolation and connectivity vary across scales, and understanding how connectivity affects biodiversity can be challenging because the relevant scale depends on the taxa involved. A multiscale analysis can provide insight in biodiversity patterns across spatial scale when information on dispersal ability is not available, in particular for community‐level studies focusing on multiple taxa. In this study, we examine the relationship between arthropod diversity, patch area, and connectivity using a multiscale approach. We make use of a natural experiment on Hawai‘i Island, where historic volcanic activity has transformed contiguous native forests to lava matrix and discrete forest patches. This landscape of patches has persisted for 150 yr, and we selected 10,000 ha consisting of 863 patches to analyze landscape connectivity using a graph theory approach. We collected arthropod samples fromMetrosideros polymorpha tree canopies in 34 forest patches during multiple years. We analyzed the relationship of arthropod diversity with area, as well as with connectivity across increasing scales, or dispersal threshold distances. In contrast to well‐established ecological theory as well as prior work on birds and fungi in this system, we did not find support for a canonical species–area relationship. Next, we calculated connectivity across spatial scales and found lower Shannon diversity with higher connectivity at small scales, but no effect at increased dispersal threshold distances. We examined the landscape structure and found all habitat patches connected into three subnetworks at a 350 m threshold distance. All patches were connected at 700 m threshold distance, indicating structural dispersal limitation only at small scales. Our findings suggest that canopy arthropods are not dispersal limited at scales shown to impact both soil fungi and birds in this system. Instead, Hawaiian canopy arthropods may perceive the landscape as a connected area where discrete forest patches and the early‐successional matrix contribute resources that vary spatially with regard to habitat quality. We argue for the utility of multiscale approaches, and the importance of examining maintenance of biodiversity in fragmented landscapes that persist for hundreds of years.

     
    more » « less
  5. Abstract

    Understanding factors that drive biodiversity distributions is central in ecology and critical to conservation. Elevational gradients are useful for studying the effects of climate on biodiversity but it can be difficult to disentangle climate effects from resource differences among habitat types. Here we compare elevational patterns and influences of environmental variables on ground-dwelling arthropods in open- and forested-habitats. We examine these comparisons in three arthropod functional groups (detritivores, predators, and herbivores) and two taxonomic groups (beetles and arachnids). We sampled twelve sites spanning 1,132 m elevation and four life zones, collecting 4,834 individual ground arthropods identified to 123 taxa. Elevation was a strong predicator for arthropod composition, however, patterns differed among functional and taxonomic groups and individual species between open- and forested-habitats. Beetles, arachnids, and predators decreased with elevation in open habitats but increased in forests showing a significant interaction between habitat type and elevation. Detritivores and herbivores showed no elevational patterns. We found 11 arthropod taxa with linear elevational patterns, seven that peaked in abundance at high elevations, and four taxa at low elevations. We also found eight taxa with parabolic elevational patterns that peaked in abundance at mid-elevations. We found that vegetation composition and productivity had stronger explanatory power for arthropod composition in forested habitats, while ground cover was a stronger predictor in open habitats. Temperature and precipitation were important in both habitats. Our findings demonstrate that relationships between animal diversity and elevation can be mediated by habitat type, suggesting that physiological restraints and resource limitations work differently between habitat types.

     
    more » « less