skip to main content


Title: Color Crafting: Automating the Construction of Designer Quality Color Ramps
Visualizations often encode numeric data using sequential and diverging color ramps. Effective ramps use colors that are sufficiently discriminable, align well with the data, and are aesthetically pleasing. Designers rely on years of experience to create high-quality color ramps. However, it is challenging for novice visualization developers that lack this experience to craft effective ramps as most guidelines for constructing ramps are loosely defined qualitative heuristics that are often difficult to apply. Our goal is to enable visualization developers to readily create effective color encodings using a single seed color. We do this using an algorithmic approach that models designer practices by analyzing patterns in the structure of designer-crafted color ramps. We construct these models from a corpus of 222 expert-designed color ramps, and use the results to automatically generate ramps that mimic designer practices. We evaluate our approach through an empirical study comparing the outputs of our approach with designer-crafted color ramps. Our models produce ramps that support accurate and aesthetically pleasing visualizations at least as well as designer ramps and that outperform conventional mathematical approaches.  more » « less
Award ID(s):
1657599
NSF-PAR ID:
10111569
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
IEEE Transactions on Visualization and Computer Graphics
ISSN:
1077-2626
Page Range / eLocation ID:
1 to 1
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Educators can leverage a variety of process models to scaffold students from beginning designer practices to practices aligned with more experienced designers. The Center for Socially Engaged Design at the University of Michigan developed a Socially Engaged Design (SED) Process Model to explicitly emphasize important aspects of design that are often underemphasized or not included in commonly-used design process model visualizations, including, for example, designers embracing the limitations of their own perspective and acknowledging the power they hold, the benefits of integrating contextual considerations, and the use of prototypes throughout a design process rather than as single phase in a design process. To better understand the role of design process models, broadly, and the perceived value of process models that emphasize the importance of people and context in design work, specifically, we investigated upper-level mechanical engineering students' perceptions of this SED Process Model’s visualization. Our findings from this initial exploratory study showed both variability and several consistent themes in participants’ perceptions, for example, there were several interpretations of relationships between different aspects of the model, iteration in design was salient to all participants, and while this SED Process Model’s visualization does have recommendations, several participants noted it does not specify exactly how to achieve those recommendations. Understanding engineering students’ perceptions of this SED Process Model’s visualization can help us (1) iterate on the process model’s visualization and (2) better understand how to leverage multiple process model visualizations in engineering curricula. 
    more » « less
  2. Scatterplots commonly use multiple visual channels to encode multivariate datasets. Such visualizations often use size, shape, and color as these dimensions are considered separable--dimensions represented by one channel do not significantly interfere with viewers' abilities to perceive data in another. However, recent work shows the size of marks significantly impacts color difference perceptions, leading to broader questions about the separability of these channels. In this paper, we present a series of crowdsourced experiments measuring how mark shape, size, and color influence data interpretation in multiclass scatterplots. Our results indicate that mark shape significantly influences color and size perception, and that separability among these channels functions asymmetrically: shape more strongly influences size and color perceptions in scatterplots than size and color influence shape. Models constructed from the resulting data can help designers anticipate viewer perceptions to build more effective visualizations. 
    more » « less
  3. Abstract

    Earth system models synthesize the science of interactions amongst multiple biophysical and, increasingly, human processes across a wide range of scales. Ecohydrologic models are a subset of earth system models that focus particularly on the complex interactions between ecosystem processes and the storage and flux of water. Ecohydrologic models often focus at scales where direct observations occur: plots, hillslopes, streams, and watersheds, as well as where land and resource management decisions are implemented. These models complement field‐based and data‐driven science by combining theory, empirical relationships derived from observation and new data to create virtual laboratories. Ecohydrologic models are tools that managers can use to ask “what if” questions and domain scientists can use to explore the implications of new theory or measurements. Recent decades have seen substantial advances in ecohydrologic models, building on both new domain science and advances in software engineering and data availability. The increasing sophistication of ecohydrologic models however, presents a barrier to their widespread use and credibility. Their complexity, often encoding 100s of relationships, means that they are effectively “black boxes,” at least for most users, sometimes even to the teams of researchers that contribute to their design. This opacity complicates the interpretation of model results. For models to effectively advance our understanding of how plants and water interact, we must improve how we visualize not only model outputs, but also the underlying theories that are encoded within the models. In this paper, we outline a framework for increasing the usefulness of ecohydrologic models through better visualization. We outline four complementary approaches, ranging from simple best practices that leverage existing technologies, to ideas that would engage novel software engineering and cutting edge human–computer interface design. Our goal is to open the ecohydrologic model black box in ways that will engage multiple audiences, from novices to model developers, and support learning, new discovery, and environmental problem solving.

     
    more » « less
  4. Facility with foundational practices in computer science (CS) is increasingly recognized as critical for the 21st century workforce. Developing this capacity and broadening participation in CS disciplines will require learning experiences that can engage a larger and more diverse student population (Margolis et al., 2008). One promising approach involves including CS concepts and practices in required subjects like science. Yet, research on the scalability of educational innovations consistently demonstrates that their successful uptake in formal classrooms depends on teachers’ perceived alignment of the innovations with their goals and expectations for student learning, as well as with the specific needs of their school context and culture (Blumenfeld et al., 2000; Penuel et al., 2007; Bernstein et al., 2016). Research is nascent, however, about how exactly to achieve this alignment and thereby position integrated instructional models for uptake at scale. To contribute to this understanding, we are developing and studying two units for core middle school science classrooms, known as Coding Science Internships. The units are designed to support broader participation in CS, with a particular emphasis on females, by expanding students’ perception of the nature and value of coding. CS and science learning are integrated through a simulated internship model, in which students, as interns, apply science knowledge and use computer programming as a tool to address real-world problems. In one unit, students gain first-hand experience with sequences, loops, and conditionals as they program and debug an interactive scientific model of a coral reef ecosystem under threat. The second unit engages students in learning concepts related to data analysis and visualization, abstraction, and modularity as they code data visualizations using real EPA air quality data. A core goal for both units is to provide students experience with some of the increasingly prevalent ways that computer science is integrated into the work of scientists. 
    more » « less
  5. null (Ed.)
    Curves play a fundamental role across computer graphics, physical simulation, and mathematical visualization, yet most tools for curve design do nothing to prevent crossings or self-intersections. This paper develops efficient algorithms for (self-)repulsion of plane and space curves that are well-suited to problems in computational design. Our starting point is the so-called tangent-point energy, which provides an infinite barrier to self-intersection. In contrast to local collision detection strategies used in, e.g., physical simulation, this energy considers interactions between all pairs of points, and is hence useful for global shape optimization: local minima tend to be aesthetically pleasing, physically valid, and nicely distributed in space. A reformulation of gradient descent, based on a Sobolev-Slobodeckij inner product enables us to make rapid progress toward local minima---independent of curve resolution. We also develop a hierarchical multigrid scheme that significantly reduces the per-step cost of optimization. The energy is easily integrated with a variety of constraints and penalties (e.g., inextensibility, or obstacle avoidance), which we use for applications including curve packing, knot untangling, graph embedding, non-crossing spline interpolation, flow visualization, and robotic path planning. 
    more » « less