skip to main content


Search for: All records

Creators/Authors contains: dogand*

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available October 2, 2024
  2. Abstract

    Archaeologists have explored a wide range of topics regarding archaeological stone tools and their connection to past human lifeways through experimentation. Controlled experimentation systematically quantifies the empirical relationships among different flaking variables under a controlled and reproducible setting. This approach offers a platform to generate and test hypotheses about the technological decisions of past knappers from the perspective of basic flaking mechanics. Over the past decade, Harold Dibble and colleagues conducted a set of controlled flaking experiments to better understand flake variability using mechanical flaking apparatuses and standardized cores. Results of their studies underscore the dominant impact of exterior platform angle and platform depth on flake size and shape and have led to the synthesis of a flake formation model, namely the EPA-PD model. However, the results also illustrate the complexity of the flake formation process through the influence of other parameters such as core surface morphology and force application. Here we review the work of Dibble and colleagues on controlled flaking experiments by summarizing their findings to date. Our goal is to synthesize what was learned about flake variability from these controlled experiments to better understand the flake formation process. With this paper, we are including all of the data produced by these prior experiments and an explanation of the data in the Supplementary Information.

     
    more » « less
  3. Abstract Five nearly identical fragments of specialized bone tools, interpreted as lissoirs (French for “smoothers”), have been found at two Middle Paleolithic sites in southwest France. The finds span three separate archaeological deposits, suggesting continuity in the behavior of late Neandertals. Using standard morphological assessments, we determined that the lissoirs were produced on ribs of medium-sized ungulates. However, since these bones are highly fragmented and anthropogenically modified, species determinations were challenging. Also, conservative curation policy recommends minimizing destructive sampling of rare, fragile, or small artifacts for molecular identification methods. To better understand raw material selection for these five lissoirs , we reassess their taxonomy using a non-destructive ZooMS methodology based on triboelectric capture of collagen. We sampled four storage containers and obtained identifiable MALDI-TOF MS collagen fingerprints, all indicative of the same taxonomic clade, which includes aurochs and bison ( Bos sp. and Bison sp.). The fifth specimen, which was stored in a plastic bag, provided no useful MALDI-TOF MS spectra. We show that the choice of large bovid ribs in an archaeological layer dominated by reindeer ( Rangifer tarandus ) demonstrates strategic selection by these Neandertals. Furthermore, our results highlight the value of a promising technique for the non-destructive analysis of bone artifacts. 
    more » « less
  4. Abstract

    The fossil record suggests that at least two major human dispersals occurred across the Eurasian steppe during the Late Pleistocene. Neanderthals and Modern Humans moved eastward into Central Asia, a region intermittently occupied by the enigmatic Denisovans. Genetic data indicates that the Denisovans interbred with Neanderthals near the Altai Mountains (South Siberia) but where and when they metH. sapiensis yet to be determined. Here we present archaeological evidence that document the timing and environmental context of a third long-distance population movement in Central Asia, during a temperate climatic event around 45,000 years ago. The early occurrence of the Initial Upper Palaeolithic, a techno-complex whose sudden appearance coincides with the first occurrence ofH. sapiensin the Eurasian steppes, establishes an essential archaeological link between the Siberian Altai and Northwestern China . Such connection between regions provides empirical ground to discuss contacts between local and exogenous populations in Central and Northeast Asia during the Late Pleistocene.

     
    more » « less
  5. We develop a projected Nesterov’s proximal-gradient (PNPG) approach for sparse signal reconstruction that combines adaptive step size with Nesterov’s momentum acceleration. The objective function that we wish to minimize is the sum of a convex differentiable data-fidelity (negative log-likelihood (NLL)) term and a convex regularization term. We apply sparse signal regularization where the signal belongs to a closed convex set within the closure of the domain of the NLL; the convex-set constraint facilitates flexible NLL domains and accurate signal recovery. Signal sparsity is imposed using the ℓ₁-norm penalty on the signal’s linear transform coefficients. The PNPG approach employs a projected Nesterov’s acceleration step with restart and a duality-based inner iteration to compute the proximal mapping. We propose an adaptive step-size selection scheme to obtain a good local majorizing function of the NLL and reduce the time spent backtracking. Thanks to step-size adaptation, PNPG converges faster than the methods that do not adjust to the local curvature of the NLL. We present an integrated derivation of the momentum acceleration and proofs of O(k⁻²) objective function convergence rate and convergence of the iterates, which account for adaptive step size, inexactness of the iterative proximal mapping, and the convex-set constraint. The tuning of PNPG is largely application independent. Tomographic and compressed-sensing reconstruction experiments with Poisson generalized linear and Gaussian linear measurement models demonstrate the performance of the proposed approach. 
    more » « less
  6. Consider reconstructing a signal x by minimizing a weighted sum of a convex differentiable negative log-likelihood (NLL) (data-fidelity) term and a convex regularization term that imposes a convex-set constraint on x and enforces its sparsity using ℓ1-norm analysis regularization.We compute upper bounds on the regularization tuning constant beyond which the regularization term overwhelmingly dominates the NLL term so that the set of minimum points of the objective function does not change. Necessary and sufficient conditions for irrelevance of sparse signal regularization and a condition for the existence of finite upper bounds are established. We formulate an optimization problem for finding these bounds when the regularization term can be globally minimized by a feasible x and also develop an alternating direction method of multipliers (ADMM) type method for their computation. Simulation examples show that the derived and empirical bounds match. 
    more » « less
  7. We develop a sparse image reconstruction method for Poisson-distributed polychromatic X-ray computed tomography (CT) measurements under the blind scenario where the material of the inspected object and the incident energy spectrum are unknown. We employ our mass-attenuation spectrum parameterization of the noiseless measurements for single-material objects and express the mass-attenuation spectrum as a linear combination of B-spline basis functions of order one. A block coordinate-descent algorithm is developed for constrained minimization of a penalized Poisson negative log-likelihood (NLL) cost function, where constraints and penalty terms ensure nonnegativity of the spline coefficients and nonnegativity and sparsity of the density-map image; the image sparsity is imposed using a convex total-variation (TV) norm penalty term. This algorithm alternates between a Nesterov’s proximal-gradient (NPG) step for estimating the density-map image and a limited-memory Broyden-Fletcher-Goldfarb-Shanno with box constraints (L-BFGS-B) step for estimating the incident-spectrum parameters. We establish conditions for biconvexity of the penalized NLL objective function, which, if satisfied, ensures monotonicity of the NPG-BFGS iteration. We also show that the penalized NLL objective satisfies the Kurdyka-Łojasiewicz property, which is important for establishing local convergence of block-coordinate descent schemes in biconvex optimization problems. Simulation examples demonstrate the performance of the proposed scheme. 
    more » « less
  8. We develop a framework for reconstructing images that are sparse in an appropriate transform domain from polychromatic computed tomography (CT) measurements under the blind scenario where the material of the inspected object and incident-energy spectrum are unknown. Assuming that the object that we wish to reconstruct consists of a single material, we obtain a parsimonious measurement-model parameterization by changing the integral variable from photon energy to mass attenuation, which allows us to combine the variations brought by the unknown incident spectrum and mass attenuation into a single unknown mass-attenuation spectrum function; the resulting measurement equation has the Laplace-integral form. The mass-attenuation spectrum is then expanded into basis functions using B splines of order one. We consider a Poisson noise model and establish conditions for biconvexity of the corresponding negative log-likelihood (NLL) function with respect to the density-map and mass-attenuation spectrum parameters. We derive a block-coordinate descent algorithm for constrained minimization of a penalized NLL objective function, where penalty terms ensure nonnegativity of the mass-attenuation spline coefficients and nonnegativity and gradient-map sparsity of the density-map image, imposed using a convex total-variation (TV) norm; the resulting objective function is biconvex. This algorithm alternates between a Nesterov’s proximal-gradient (NPG) step and a limited-memory Broyden-Fletcher-Goldfarb-Shanno with box constraints (L-BFGS-B) iteration for updating the image and mass-attenuation spectrum parameters, respectively. We prove the Kurdyka-Łojasiewicz property of the objective function, which is important for establishing local convergence of block-coordinate descent schemes in biconvex optimization problems. Our framework applies to other NLLs and signal-sparsity penalties, such as lognormal NLL and ℓ₁ norm of 2D discrete wavelet transform (DWT) image coefficients. Numerical experiments with simulated and real X-ray CT data demonstrate the performance of the proposed scheme. 
    more » « less
  9. We develop a projected Nesterov’s proximal-gradient (PNPG) scheme for reconstructing sparse signals from compressive Poisson-distributed measurements with the mean signal intensity that follows an affine model with known intercept. The objective function to be minimized is a sum of convex data fidelity (negative log-likelihood (NLL)) and regularization terms. We apply sparse signal regularization where the signal belongs to a nonempty closed convex set within the domain of the NLL and signal sparsity is imposed using total-variation (TV) penalty. We present analytical upper bounds on the regularization tuning constant. The proposed PNPG method employs projected Nesterov’s acceleration step, function restart, and an adaptive step-size selection scheme that aims at obtaining a good local majorizing function of the NLL and reducing the time spent backtracking. We establish O(k⁻²) convergence of the PNPG method with step-size backtracking only and no restart. Numerical examples demonstrate the performance of the PNPG method. 
    more » « less