skip to main content


Search for: ophthalmology

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    We present our continuous efforts from a modeling and numerical viewpoint to develop a powerful and flexible mathematical and computational framework called Ocular Mathematical Virtual Simulator (OMVS). The OMVS aims to solve problems arising in biomechanics and hemodynamics within the human eye. We discuss our contribution towards improving the reliability and reproducibility of computational studies by performing a thorough validation of the numerical predictions against experimental data. The OMVS proved capable of simulating complex multiphysics and multiscale scenarios motivated by the study of glaucoma. Furthermore, its modular design allows the continuous integration of new models and methods as the research moves forward, and supports the utilization of the OMVS as a promising non‐invasive clinical investigation tool for personalized research in ophthalmology.

     
    more » « less
  2. Optical coherence tomography (OCT) has stimulated a wide range of medical image-based diagnosis and treatment in fields such as cardiology and ophthalmology. Such applications can be further facilitated by deep learning-based super-resolution technology, which improves the capability of resolving morphological structures. However, existing deep learning-based method only focuses on spatial distribution and disregards frequency fidelity in image reconstruction, leading to a frequency bias. To overcome this limitation, we propose a frequency-aware super-resolution framework that integrates three critical frequency-based modules (i.e., frequency transformation, frequency skip connection, and frequency alignment) and frequency-based loss function into a conditional generative adversarial network (cGAN). We conducted a large-scale quantitative study from an existing coronary OCT dataset to demonstrate the superiority of our proposed framework over existing deep learning frameworks. In addition, we confirmed the generalizability of our framework by applying it to fish corneal images and rat retinal images, demonstrating its capability to super-resolve morphological details in eye imaging.

     
    more » « less
  3. Abstract

    Micro/nanodevices have been widely applied for the real-time monitoring of intracellular activities and the delivery of exogenous substances in the past few years. This review focuses on miniaturized micro/nanodevices for assessment and treatment in stomatology and ophthalmology. We first summarize the recent progress in this field by examining the available materials and fabrication techniques, device design principles, mechanisms, and biosafety aspects of micro/nanodevices. Following a discussion of biochemical sensing technology from the cellular level to the tissue level for disease assessment, we then summarize the use of microneedles and other micro/nanodevices in the treatment of oral and ocular diseases and conditions, including oral cancer, eye wrinkles, keratitis, and infections. Along with the identified key challenges, this review concludes with future directions as a small fraction of vast opportunities, calling for joint efforts between clinicians and engineers with diverse backgrounds to help facilitate the rapid development of this burgeoning field in stomatology and ophthalmology.

     
    more » « less
  4. Optical coherence tomography (OCT) and scanning laser ophthalmoscopy (SLO) are imaging technologies invented in the 1980s that have revolutionized the field ofin vivoretinal diagnostics and are now commonly used in ophthalmology clinics as well as in vision science research. Adaptive optics (AO) technology enables high-fidelity correction of ocular aberrations, resulting in improved resolution and sensitivity for both SLO and OCT systems. The potential of gathering multi-modal cellular-resolution information in a single instrument is of great interest to the ophthalmic imaging community. Although similar instruments have been developed for imaging the human retina, developing such a system for mice will benefit basic science research and should help with further dissemination of AO technology. Here, we present our work integrating OCT into an existing mouse retinal AO-SLO system, resulting in a multi-modal AO-enhanced imaging system of the living mouse eye. The new system allows either independent or simultaneous data acquisition of AO-SLO and AO-OCT, depending on the requirements of specific scientific experiments. The system allows a data acquisition speed of 200 kHz A-scans/pixel rate for OCT and SLO, respectively. It offers ∼6 µm axial resolution for AO-OCT and a ∼1 µm lateral resolution for AO-SLO-OCT imaging.

     
    more » « less
  5. Optical coherence tomography (OCT) has seen widespread success as anin vivoclinical diagnostic 3D imaging modality, impacting areas including ophthalmology, cardiology, and gastroenterology. Despite its many advantages, such as high sensitivity, speed, and depth penetration, OCT suffers from several shortcomings that ultimately limit its utility as a 3D microscopy tool, such as its pervasive coherent speckle noise and poor lateral resolution required to maintain millimeter-scale imaging depths. Here, we present 3D optical coherence refraction tomography (OCRT), a computational extension of OCT that synthesizes an incoherent contrast mechanism by combining multiple OCT volumes, acquired across two rotation axes, to form a resolution-enhanced, speckle-reduced, refraction-corrected 3D reconstruction. Our label-free computational 3D microscope features a novel optical design incorporating a parabolic mirror to enable the capture of 5D plenoptic datasets, consisting of millimetric 3D fields of view over up to±<#comment/>75∘<#comment/>without moving the sample. We demonstrate that 3D OCRT reveals 3D features unobserved by conventional OCT in fruit fly, zebrafish, and mouse samples.

     
    more » « less
  6. Panayiotou, Chrysanthos ; Pedrotti, Leno (Ed.)
    Therapeutic Applications of Lasers was created to provide a fundamental background for technicians on the theory of laser-tissue interactions, optical delivery systems, and to describe common applications of lasers in different fields of medicine. Numerous medical fields have been impacted by the use of lasers, including cosmetic dermatology, ophthalmology, gynecology, urology, dentistry, neurosurgery, and others. Lasers are used for thermal coagulation as well as ablation and vaporization of soft and hard tissues. 
    more » « less
  7. Panayiotou, Chrysanthos ; Pedrotti, Leno (Ed.)
    Therapeutic Applications of Lasers was created to provide a fundamental background for technicians on the theory of laser-tissue interactions, optical delivery systems, and to describe common applications of lasers in different fields of medicine. Numerous medical fields have been impacted by the use of lasers, including cosmetic dermatology, ophthalmology, gynecology, urology, dentistry, neurosurgery, and others. Lasers are used for thermal coagulation as well as ablation and vaporization of soft and hard tissues. 
    more » « less
  8. Panayiotou, Chrysanthos ; Pedrotti, Leno (Ed.)
    Lasers in Medicine and Surgery was created to provide a fundamental background for technicians on the theory of laser-tissue interactions, describe commonly used lasers in medicine and optical delivery systems, as well as accessories frequently used with lasers. Numerous medical fields have been impacted by the use of lasers, including cosmetic dermatology, ophthalmology, dentistry, urology, and others. Lasers are used for thermal coagulation of tissues as well as ablation and vaporization of both soft and hard tissues. 
    more » « less