gp78: a Multifaceted Ubiquitin Ligase that Integrates a Unique Protein Degradation Pathway from the Endoplasmic Reticulum

Zhiliang Chen^{1,2}, Shaojun Du³, and Shengyun Fang^{1,2}*

¹Center for Biomedical Engineering and Technology, ² Department of Physiology, ³ Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America

Abstract: The endoplasmic reticulum (ER) is the site for maturation of proteins destined for the secretory pathway. Failure in maturation leads to production of misfolded proteins that are eliminated through the ER-associated degradation (ERAD) pathway. ERAD is a complex process that includes misfolded protein recognition, retrotranslocation to the cytosol, ubiquitination and proteasomal degradation. gp78 is an E3 ubiquitin ligase that integrates these ERAD steps by nucleating a unique degradation machine, which uses the p97/VCP-Npl4 complex for retrotranslocation instead of the well-known p97/VCP-Ufd1-Npl4 complex. A growing list of substrates have been identified for gp78, which highlights the importance of gp78-mediated ERAD in essential physiological pathways and pathological processes.

Keywords: ubiquitination, retrotranslocation/dislocation, E3 ubiquitin ligase, gp78, Hrd1, p97/VCP, proteasome, endoplasmic reticulum, and ER-associated degradation

INTRODUCTION

Proteins destined for the secretory pathway are synthesized in the endoplasmic reticulum (ER) and then transported to their final functional destinations. Proper folding of newly synthesized polypeptides is required for transport and is achieved by enzymes that modify proteins and molecular chaperones that maintain polypeptide solubility and promote folding [1, 2]. The conformations of proteins are constantly monitored by the ER quality control (EROC) system. Proteins that fail to achieve their native conformations are retained in the ER and eliminated by ER-associated degradation (ERAD) [3]. Thus, ERAD is a protective mechanism to prevent accumulation of misfolded proteins in the ER, and thereby safeguards the secretory pathway. When accumulation of misfolded proteins overwhelms the degradation capacity of ERAD, the unfolded protein response (UPR) is activated to restore ER homeostasis by limiting further loading of proteins to the ER, enhancing protein folding and elevating ERAD activity [4]. Prolonged UPR, however, triggers apoptosis, which has been implicated in the pathophysiology of many diseases, such as neurodegenerative diseases, cancer, cardiovascular diseases, muscle wasting and diabetes [5,

Misfolded ER proteins localize either fully (luminal proteins) or partially (membrane proteins) in the lumen of the ER, but their degradation occurs in the cytosol by the proteasomes. Thus, retrotranslocation or dislocation of these misfolded ER proteins to the cytosol is an absolute requirement for their elimination [7, 8]. Moreover, retrotranslocation is intimately associated with recognition of misfolded proteins on the luminal side of the ER and ubiquitination and protea-

somal targeting on the cytosolic side [3, 9]. It is well established that ER membrane-associated ubiquitin ligase complexes coordinate substrate recognition, retrotranslocation, ubiquitination and degradation during ERAD [10, 11]. gp78 is one of the ubiquitin ligases playing such a role [12]. Moreover, gp78 is unique among all known ERAD ubiquitin ligases in that it has multiple conserved domains that interact directly with components of both ubiquitination and retrotranslocation complexes. In this review, we will summarize the structure and function of gp78, and its importance in both physiological and pathological processes.

GP78-MEDIATED UBIQUITINATION

Ubiquitination is a process during which proteins are modified with a single ubiquitin or a chain of ubiquitin monomers. It occurs through a cascading action of E1 ubiquitin-activating enzyme, E2 ubiquitin-conjugating enzyme and then E3 ubiquitin ligase [13] (Fig. 1A). The complexity of ubiquitination is reflected by having two E1s, dozens of E2s and over a thousand E3s in mammalian cells. Moreover, ubiquitination can generate nine topologically different polymeric ubiquitin chains linked through one of the seven Lys residues (K6, K11, K27, K29, K33, K48, and K63), the amino terminus or a mixture of Lys residues of ubiquitin [14, 15]. Each E3 can interact with and ubiquitinate one or several substrate proteins, and by working with different E2s, each E3 can assemble different polyubiquitin chains on its substrates. In other words, E2 determines the linkage of polyubiquitination while E3 dictates substrate specificity [15, 16]. A number of proteins containing ubiquitin-binding domains (UBDs), such as the ubiquitin-interacting motif (UIM) and ubiquitin-associated (UBA) domains, recognize conjugated ubiquitin or polyubiquitin chains along with the downstream effector proteins of signaling pathways or degradation machinery. Through these interactions UBD-containing proteins transmit ubiquitin-dependent signals to the desired bio-

^{*}Address correspondence to this author at the ¹Center for Biomedical Engineering and Technology, ²Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, USA; Tel: 410-706-2220; E-mail: sfang@umaryland.edu

logical function or proteasomal degradation [17, 18]. The nine topologically distinct polymeric ubiquitin chains achieve a remarkably diverse range functions in ubiquitin signaling, such as protein degradation, apoptosis, signal transduction, gene transcription, DNA repair, cell cycle progression, immune responses, virus budding, protein trafficking, and receptor and channel endocytosis [15-17]. Many of these functions control the life and death of cells. Accordingly, aberrant ubiquitination has been widely associated with development of malignancies, diabetes, cardiovascular diseases, inflammatory disorders and many neurodegenerative diseases [19, 20]. gp78 exemplifies the importance of E3 ubiquitin ligases in physiology and pathology.

gp78 is a polytypic RING (really interesting new gene) finger protein and is localized in the ER [12]. It contains five predicted transmembrane domains followed by a RING finger, an oligomerization site (OS), a coupling of ubiquitin to ER degradation (Cue) domain, a Ube2g2-binding region (G2BR) and a p97/VCP-interacting motif (VIM) [12, 21-23] (Fig. 2). The RING finger defines a family of E3 ubiquitin ligases [24], which led to the identification of gp78 as an E3 ubiquitin ligase acting in the ERAD pathway [25]. Although the function of RING finger is to bind to ubiquitin-charged E2 to facilitate transfer of ubiquitin to a substrate, gp78 also binds Ube2g2 through G2BR in addition to its RING finger [12, 21]. It has been shown that its E3 activity requires the coordinated action of the RING finger, Cue domain, OS and G2BR. Mechanistically, binding to G2BR leads to conformational changes in Ube2g2 that affect ubiquitin loading and significantly enhance the affinity of Ube2g2 to the RING finger [26]. This unique dual binding mode of Ube2g2 to gp78 optimizes the efficiency of gp78-mediated ubiquitination of misfolded ER proteins. The mechanism by which gp78 cooperates with Ube2g2 to assemble polyubiquitin chains has been elegantly demonstrated [27] (Fig. 1B). gp78/Ube2g2-mediated polyubiquitination involves preassembly of K48 polyubiquitin chains at the catalytic cysteine of Ube2g2. The extension of Ube2g2-anchored polyubiquitin chains is achieved by an aminolysis-based transfer reaction between two Ube2ge molecules that each carries a ubiquitin moiety on its active cysteine. gp78 oligomerization mediated by its OS leads to simultaneous binding of multiple Ube2g2 molecules in close proximity, which allows ubiquitin moieties to be transferred between neighboring Ube2g2s to form active site-linked polyubiquitin chains. These polyubiquitin chains are then transferred en bloc to substrate proteins [22].

gp78 appears to represent an example of convergent evolution with functions of both yeast ERAD E3 Hrd1p and its cofactor Cuelp found within a single molecule. Hrdlp is a polytypic RING finger E3 and Cue1p is a type III transmembrane protein [28-30]. Cue1p contains a Cue domain and a Ubc7p-binding region (U7BR) that is functionally analogous to G2BR [31]. Ubc7p is the yeast homolog of Ube2g2 and also interacts with the RING finger of Hrd1p [32]. Association of U7BR with Ubc7p activates the RING fingerdependent E3 activity of Hrd1p, and allows polyubiquitination of substrates [31]. Like Ube2g2, Ubc7p also assembles polyubiquitin chains at its active site and ubiquitinates substrates by en bloc transferring [33].

In addition to functioning as an E3, gp78 was reported to function as a polyubiquitin chain assembly factor (E4) to catalyze polyubiquitination of CFTRΔF508 [34]. In this case, another RING finger protein RMA1 acts as an E3 to ubiquitinate CFTRΔF508. gp78 then recognizes the ubiquitin that is already conjugated to CFTRΔF508 via its Cue domain and catalyzes polyubiquitination of CFTRΔF508. Whether this E4 function of gp78 is specific for CFTRΔF508 or general to all its substrates remains to be explored.

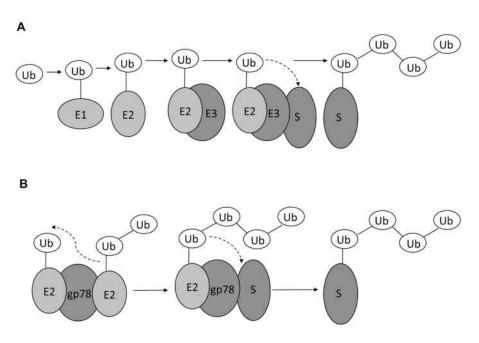


Fig. (1). (A) Schematic representation of RING finger E3 ubiquitin ligase-catalyzed ubiquitination. S: substrate protein. (B) gp78/Ube2g2mediated substrate (S) ubiquitination. From the left: two E2s (Ube2g2s) preassemble a K48 ubiquitin chain on their active cysteines by aminolysis; the preassembled ubiquitin chain on the catalytic cysteine of the Ube2g2 is transferred to a substrate.

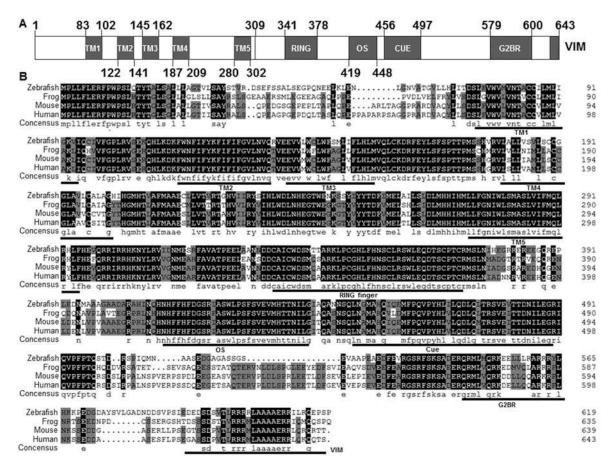


Fig. (2). (A) Diagram of the domain structure of human gp78. (B) Sequence alignment of gp78 from different species. Multiple sequence alignment was performed using DNAMAN. Conserved cytosolic domains are underlined. The TMs are predicted using TMHMM-2.0.

GP78 DIRECTLY LINKS UBIQUITINATION TO RETROTRANSLOCATION

The general scheme of ERAD has been well established. ERAD substrates are first recognized and delivered to the membrane-anchored E3 ubiquitin ligase complexes by ER luminal chaperones and lectins followed by retrotranslocation, ubiquitination and proteasomal degradation [3]. In budding yeast, two complexes, one composed of the Hrd1p ubiquitin ligase degrades substrates with lesions exposed to the ER lumen or transmembrane, namely ERAD-L and ERAD-M, whereas the other composed of Doa10p ubiquitin ligase disposes of substrates with lesions on the cytosolic side of the ER, namely ERAD-C [35, 36]. These ERAD complexes are essentially conserved in mammalian cells, but the three ERAD pathways described in yeast are not well defined in mammalian cells, which is especially true for gp78-mediated ERAD.

gp78 has been reported to degrade all types of substrates, for example, the luminal substrate, the Z variant of α -1-antitrypsin (ATZ), the membrane substrate HMG-CoA reductase, and the cytosolic substrate mutant SOD1 (see Table 1 for a list of substrates for gp78). How luminal substrates, such as ATZ, are targeted to gp78 is not known. As ATZ is a glycosylated substrate, mannose-trimming factors, such as ER Mannosidase I (ER ManI) or one or more ER degradation-enhancing-mannosidase-like proteins (EDEMs) [37,

38], must be involved in ATZ degradation mediated by gp78. BiP/grp78 and the ER lectin OS-9, whose function is to target substrates to the Hrd1 complexes, are associated with gp78 (Zhong, Y and Fang, S, unpublished data), suggesting that they may target substrates to the gp78 complex as well. In contrast, XTP3-B, another ER lectin for substrate targeting, does not associate with gp78, and thus is unlikely to function with gp78 [39]. gp78 appears to recognize membrane substrates via different adaptor proteins, such as Derlin1, insig-1 and SPFH1/SPFH2 that recruit CFTRΔF508, HMG-CoA reductase and possibly inositol 1,4,5trisphosphate (IP(3)) receptors, respectively [40-45]. We do not know whether the transmembrane domains of gp78 directly recognize substrates. As expected, gp78 recognizes its cytosolic substrates, such as mutant huntingtin (htt) and SOD1 using its cytosolic tail [46, 47]. Therefore, the function of gp78 is not confined to any particular ERAD pathway as defined in yeast.

After delivery to the gp78 complex (Table 2), luminal and probably some membrane substrates require retrotranslocation in order to be ubiquitinated. This is determined by the topology of gp78. As in all known ERAD E3s, the E3-active domain-the RING finger of gp78 is localized on the cytosolic surface of the ER [48]. Retrotranslocation enables access of luminal substrates to the E3 activity for ubiquitination. Recent studies suggest that cytosolic exposure of luminal substrates is promoted by a cooperative action of im-

Table 1. List of Identified Substrates for gp78

Substrate	E3 ubiquitin ligase(s)	Comments (substrate)	References
ApoB-100	gp78	A key protein component of LDL	[61, 81-83]
HMG-CoA reductase	gp78	A rate-limiting enzyme in cholesterol biosynthesis	[43, 84-86]
Insig1	gp78	Regulator of cholesterol synthesis	[43, 87]
CYP3A and CYPE21	gp78 and CHIP	Liver cytochrome P450 enzymes	[90, 91]
KAI1	gp78	Tumor metastasis suppressor	[98, 99]
CFTR∆F508	gp78, CHIP, Fbs1 and RMA1	The most common mutation in cystic fibrosis transmembrane conductance regulator (CFTR) causing cystic fibrosis	[34, 40, 102]
Mutant huntingtin	gp78 and Hrd1	The Huntington's disease protein	[46, 103]
Mutant neuroserpin	gp78 and Hrd1	A mutant serine protease inhibitor causing familial encephalopathy with neuroserpin inclusion bodies	[104]
Mutant SOD1	gp78	A mutant antioxidant enzyme causing familial amyotrophic lateral sclerosis	[47]
Ataxin-3	gp78	A mutant deubiquitinating enzyme causing Machado–Joseph disease/spinocerebellar ataxia type 3	[47]
ATZ	gp78	Z variant of α -1-antitrypsin (ATZ) causing deficiency in circulating α -1-antitrypsin	[72]
Cholera toxin (CT)	gp78 and Hrd1?	The virulence factor produced by <i>Vibrio cholera</i> requires retrotranslocation to exert its cytotoxicity	[111]

Table 2. Proteins in the gp78 Complex

Protein	Yeast Homolog	Validated	Direct vs. Indirect interaction with gp78	Function	References
gp78	Hrd1p	Yes	Direct, via OS	gp78 oligomerization required for gp78 E3 activity	[22]
Ube2g2	Ubc7p	Yes	Direct, with G2BR	Cognate E2 for gp78	[12]
Derlin1	Der1p	Yes	Unknown	Substrate recruitment	[51, 54]
p97/VCP	Cdc48p	Yes	Direct, with VIM	Retrotranslocation of substrates	[58]
Ufd1	Ufd1p	Yes	Direct	Cofactor for gp78 E3 activity towards HMG-CoA reductase	[86]
Npl4	Npl4p	Yes	Unknown	Forms a complex with p97/VCP in gp78-mediated ERAD	[62, 63, 77]
PNGase mHR23B	Png1p Rad23p	Yes	Indirect, via p97/VCP	ERAD substrate-processing factors	[70, 71]
Erasin	Ubx2p	Yes	Indirect, via p97/VCP and ubiquilin	Involved in recruiting p97/VCP and ubiquilin to ERAD complex	[56]
Ubiquilin	Dsk2p	Yes	Indirect, via p97/VCP	Binds the proteasome and delivers the misfolded protein to proteasome	[56]
Bag6	Unavailable	Yes	Unknown	Associates with gp78, maintains polypeptide solubility and may escort substrates to the proteasome	[73]
UbxD8	Unavailable	Yes	Unknown	Unknown	[57]
Herp	Usa1p	Yes	Unknown	Unknown	[55]
SPFH2	Unavailable	Yes	Unknown	Unknown	[44]
TMUB1	Unavailable	Yes	Unknown	Bridges SPFH2 to gp78 in ER membrane	[44]
VIMP	Unavailable	Yes	Unknown	Recruits p97/VCP to ER membrane	[52]

Fig. (3). A simplified view of gp78 and Hrd1-mediated ERAD pathways and their regulation by SVIP. Right: gp78 recruits p97/VCP-Npl4(N) to the cytosolic surface of the ER for coupling ubiquitination with retrotranslocation to enhance ERAD; middle: SVIP(S) is anchored to the membrane via myristoylation and sequesters Derlin1, p97/VCP and probably Npl4(N) away from gp78 leading to inhibition of ERAD; left: p97/VCP-Ufd1(U)-Npl4(N) complex is recruited to the Hrd1 complex to couple ubiquitination with retrotranslocation. SVIP may inhibit Hrd1-mediated ERAD by sequestering p97/VCP, Npl4 and Derlin1 away from Hrd1.

portin β and RanGDP [48], although the underlying mechanism is not known. Following ubiquitination, the cytosolic AAA ATPase (ATPase associated with various cellular activities) p97/VCP/Cdc48 and its cofactors Ufd1 and Npl4 are recruited to the cytosolic surface of the ER to extract polyubiquitinated substrates into the cytosol through hydrolysis of ATP [8, 49] (Fig. 3). The role of these cofactors is to enhance the binding of p97/VCP with the polyubiquitinated substrates [50]. The polyubiquitin chain conjugated to the substrates provides a handle for the p97/VCP complex to pull the substrate from the ER. How p97/VCP along with Ufd1 and Npl4 are recruited to the ER remains unclear. Evidence suggests that the recruitment may be a concerted effort of several proteins in the ERAD complex. For example, p97/VCP/Cdc48 interacts with Hrd1, another wellestablished polytypic ERAD E3, and also several other proteins that interact with Hrd1, including Derlin1-3, VIMP, Erasin, UbxD8 and Herp [51-57]. Although we do not know whether these multiple interactions lead to recruitment of the p97/VCP-Ufd1-Npl4 complex, functional studies in both yeast and mammalian cells have shown that the p97/VCP/Cdc48-Ufd1-Npl4 complex is required for degradation of Hrd1 substrates [8, 49].

The gp78 complex contains similar membrane components to those of the Hrd1 complex. Therefore, proteins in the gp78 complex also make multiple contacts with p97/VCP. Evidence suggests that the gp78-p97/VCP interaction is most critical for coupling ubiquitination with retrotranslocation [58]. gp78 contains a p97/VCP-interacting motif (VIM) near its C-terminus [23]. The VIM has a high affinity towards p97/VCP and is sufficient to recruit p97/VCP to the ER surface [23, 59]. Deletion of the VIM from gp78 stabilizes CD3δ, a well-established gp78 substrate. Moreover, the stabilized CD3δ is highly ubiquitinated, suggesting that loss of VIM in gp78 fails to recruit p97/VCP, which in turn fails to extract ubiquitinated CD3δ [58]. VIM of gp78 interacts with the ND1 domain of p97/VCP that is also the binding site for Ufd1 [23]. In addition, Ufd1 bridges the in-

teraction of the Ufd1-Npl4 dimer with p97/VCP [60]. Consistently, gp78 and the Ufd1-Npl4 dimer form mutually exclusive complexes with p97/VCP [23, 61]. Therefore, it is unlikely that gp78 can recruit p97/VCP along with the Ufd1-Npl4 dimer. Functional studies indeed show that gp78mediated ERAD is independent of Ufd1, but surprisingly, requires Npl4 [23, 62]. Nevertheless, the interaction between gp78 and p97/VCP enhances p97/VCP-polyubiquitin binding [58], suggesting that Npl4 and the Cue domain of gp78 may play an analogous role to that of the Ufd1-Npl4 dimer. This Ufd1-independent retrotranslocation has recently been demonstrated for the human cytomegalovirus protein US2mediated degradation of MHC class I heavy chain from the ER [63]. Reminiscent of ERAD, yeast Cdc48 is recruited to stressed mitochondria, retrotranslocates ubiquitinated proteins from the outer mitochondria membrane and delivers ubiquitinated proteins to the proteasome for degradation [64]. Interestingly, Cdc48 is recruited to mitochondria by the VIM of Vms1. Moreover, Vms1 recruits Cdc48-Npl4 complex to retrotranslocate proteins independent of Ufd1. Moreover, Vms1 does not directly interact with Npl4. The Vms1-Npl4 interaction is bridged by Cdc48 [64]. The mammalian homolog of Vms1, ANKZF1, although not evaluated, is likely to play the same role [61, 64]. Since gp78-mediated ERAD requires p97/VCP and Npl4 independent of Ufd1 and gp78 contains a VIM, we predict that gp78 recruits p97/VCP-Npl4 to the ER during ERAD (Fig. 3).

Retrotranslocation is thought to occur through a proteinaceous channel. Although the identity of this channel remains elusive, it must be associated with the E3 ubiquitin ligase complexes and formed by transmembrane proteins. Previous studies suggest that the sec61 translocon may also serve as a channel for retrotranslocation during ERAD [65]. Other transmembrane proteins, such as Derlins, gp78 and Hrd1 have been suggested to be part of the retrotranslocation channel [66, 67]. The yeast homolog of Hrd1, Hrd1p, has indeed been shown to be the retrotranslocation channel in yeast [68]. It is not known, however, whether Hrd1 plays the

embryonic fibroblasts of Hrd1 homozygous knockout mice (Syvn^{-/-}) [78]. An interesting question is what determines when and to what extent gp78 is regulated by autoubiquitination or Hrd1.

same role. Although Derlin1 was considered as the best candidate channel protein, recent studies indicate that Derlin1 is a rhomboid pseudoprotease that is unlikely to function as a retrotranslocation channel [69]. gp78 contains five transmembrane domains and can form large oligomers. It is tempting to speculate that its oligomerization may form the retrotranslocation channel.

It is known that at least some glycosylated substrates are degraded through the gp78-mediated pathway. Removal of glycans from substrates is an essential step required for degradation by the proteasomes. Indeed, gp78 is associated, via p97/VCP, with the peptide N-glycanase (PNGase), a cytosolic enzyme that deglycosylates misfolded glycoproteins, and mHR23B, a ubiquitin chaperone that delivers polyubiquitinated substrates to the proteasomes [70, 71]. Another important issue is how cells maintain the solubility of retrotranslocated substrates before they reach the proteasomes. Previous studies suggest that gp78 appears to play such a role [72]. It is now known that gp78 associates with a multiprotein complex comprising Bag6, Ubl4A and Trc35, which chaperones retrotranslocated polypeptides en route to the proteasome. Bag6 contains a chaperone-like activity capable of maintaining an aggregation-prone substrate in an unfolded yet soluble state [73].

REGULATION OF GP78-MEDIATED ERAD

The function of gp78 in ERAD is subject to a multilayered regulation. The levels of gp78 expression is subject to regulation. ERAD prevents protein accumulation through elimination of misfolded proteins from the ER. When misfolded proteins fail to be removed efficiently by ERAD, accumulation of them will result in ER stress, which activates UPR. UPR upregulates transcription of ERAD components including E3 ubiquitin ligases [74]. We have demonstrated that tunicamycin-induced UPR increases the expression of gp78 mRNA (Chen, Z, Du, S and Fang, S, unpublished data). In addition, acute ER stress enhances ERAD by stabilizing the gp78 protein [75]. This is achieved by suppressing gp78 autoubiquitination. Autoubiquitination of gp78 targets itself for degradation by the proteasomes. Inhibition of E3 autoubiquitination may be a general mechanism by which cells rapidly respond to acute accumulation of misfolded proteins in the ER. Hrd1 exhibits the same response to that of gp78. This posttranslational response to boost ERAD activity is not limited to E3 ubiquitin ligases. For example, it has been reported that UPR boosts glycoprotein ERAD by suppressing the proteolytic downregulation of ER ManI. Stabilization of ER ManI protein enhances mannose processing, thereby facilitating ERAD [76]. Thus, UPR enhances gp78-mediated ERAD at both the transcriptional and posttranslational levels.

The crosstalk between E3 ubiquitin ligases has been shown to be involved in regulation of the ubiquitination activity of gp78 during ERAD [77, 78]. gp78 is a substrate for the Hrd1 ubiquitin ligase [77, 78]. Autoubiquitination of gp78 requires its functional RING finger while the ubiquitination of gp78 by Hrd1 is solely dependent on the RING finger activity of Hrd1 but not on that of gp78 [78]. The regulation of gp78 by Hrd1 is underscored by the observation that gp78 is stabilized in Hrd1 knockdown cells and

The function of gp78 is also regulated at the step of retrotranslocation. This regulation is mediated by the small VCP/p97-interacting protein (SVIP) [79]. SVIP does not have a transmembrane domain and is localized to the ER membrane through myristoylation. SVIP contains a wellconserved VIM that competes with gp78 for binding to p97/VCP, leading to interruption of the gp78-p97/VCP interaction. Moreover, SVIP in fact sequesters p97/VCP and Derlin1 away from gp78. Derlin1 is a substrate-recruiting protein for gp78. As expected, SVIP also inhibits the ubiquitination of the gp78 substrate, CD3δ. Thus, dependent on the relative levels of gp78 and SVIP, p97/VCP and Derlin1 can either form an ERAD-inhibitory complex with SVIP or an ERAD-active complex with gp78. Therefore, SVIP regulates gp78-mediated ERAD by regulating the assembly of the gp78-Derlin1-p97/VCP complex. This regulation might not be limited to gp78-mediated ERAD, since p97/VCP is probably a converging point for all ERAD pathways (Fig. 3).

In addition to its role in ERAD, SVIP is also a regulator of the autophagy pathway. As an ERAD inhibitor, SVIP facilitates autophagy by promoting LC3 lipidation, enhancing p62 expression, sequestration of polyubiquitinated proteins to autophagosomes and increasing starvation-induced degradation of LC3II and p62 proteins [80]. The opposite roles of SVIP in ERAD and autophagy may be important mechanisms by which cells handle ER stress. It was shown that ER stress causes an early downregulation of the SVIP protein, and prolonged ER stress markedly increases SVIP protein levels. We speculate that when SVIP is downregulated, gp78 is upregulated, which leads to increases in ERAD activity. Prolonged ER stress causes a significant accumulation and aggregation of misfolded proteins in the ER, and ERAD is not expected to be effective under these conditions. Thus, prolonged ER stress upregulates SVIP to enhance autophagic removal of aggregated proteins from the ER. Therefore, SVIP may be a switch from ERAD to autophagy during the course of ER stress.

REGULATION OF PHYSIOLOGICAL FUNCTIONS BY GP78-MEDIATED ERAD

Increasing evidence indicates that gp78-mediated ERAD plays an important role in the regulation of physiological processes. Apolipoprotein B-100 (ApoB-100), an essential protein for the assembly and secretion of very low-density lipoproteins (VLDL) from the liver, is the first physiological substrate identified for gp78 [81, 82] (Table 1). ApoB-100 is degraded by ERAD when lipid availability limits the assembly of VLDL [82]. This is part of the quality control mechanism that eliminates orphan subunits of protein complexes. gp78 and p97/VCP have been implicated in the proteasomal degradation of ApoB-100 [81-83]. Overexpression of gp78 is sufficient to increase ubiquitination and proteasomal degradation of ApoB-100, with reduced secretion of ApoB-100 in HepG2 cells [81]. By contrast, knockdown of gp78 expression decreased ApoB-100 ubiquitination and retrotranslocation. Concomitantly, VLDL assembly is enhanced, and triacylglycerol secretion is increased. gp78-mediated ubiquitination commits ApoB-100 to p97/VCP-mediated retrotranslocation [82]. Therefore, gp78 plays an important regulatory role in VLDL assembly through ubiquitination of ApoB-100.

gp78 also has an established role in the regulated degradation of HMG-CoA reductase (HMGCR), a key enzyme that catalyzes the conversion of HMG-CoA to mevalonate in the rate-limiting step of cholesterol biosynthesis [84]. The conversion is under strict feedback regulation mediated by sterol and nonsterol metabolites of mevalonate [84]. One mechanism for the feedback regulation involves rapid degradation of HMGCR through ERAD, according to studies in cultured cells [85]. Accumulation of sterols in the ER membrane triggers binding of the ER membrane proteins Insig-1 and Insig-2 to the sterol-sensing domain of HMGCR. Insig-1 in turn interacts with the N-terminal transmembrane domains of gp78, thereby targeting HMGCR to the gp78 complex. gp78 then catalyzes polyubiquitination of HMGCR through its interaction with the E2 Ube2g2 [43, 84]. Ufd1 acts as a cofactor for gp78 to promote HMGCR ubiquitination [86]. The ubiquitinated HMGCR is extracted from the ER by p97/VCP and then delivered to the proteasomes for degradation [43]. Taken together, gp78 binds to HMGCR in an Insig1-dependent and sterol regulated manner. When cells are depleted of sterols, gp78 targets Insig-1 for degradation leading to increases in sterol synthesis by HMGCR [87]. It is worth noting that Hrd1p is the E3 ubiquitin ligase involved in ERAD of HMGCR in yeast [88], while Hrd1, the mammalian homolog of Hrdlp, is not involved in the regulation of HMGCR degradation in mammalian cells [43, 89].

The liver cytochrome P450 (CYP) enzymes have recently joined the list of gp78 substrates. Specifically, CYP3A4 and CYPE21 have been shown to be substrates for gp78 [90, 91]. CYP3A4 is responsible for the metabolism of the majority of xenobiotics including anticancer agents. The levels of CYP3A4 expression have been proposed as a factor responsible for the variability in clinical response to chemotherapy. gp78 regulates the levels of CYP3A4 by ubiquitinating CYP3A4, leading to its degradation by the proteasomes. This finding has important clinical implications, because most anticancer agents have very narrow therapeutic windows, thus even slight changes in CYP3A4 levels could alter the exposure of the drug and result in either insufficient efficacy or toxicity [92]. Liver CYP2E1 is responsible for the biotransformation of clinically relevant drugs, low molecular weight xenobiotics, carcinogens and endogenous ketones. gp78 is able to ubiquitinate and target CYP2E1 for proteasomal degradation [91]. Phosphorylation of CYP2E1 and CYP3A4 may serve to engage the gp78/Ube2g2 complex to enhance their ubiquitination. The hepatic function of gp78 in vivo is further highlighted by its high level of expression in mouse liver compared with other organs (Ballar, P and Fang, S, unpublished data). Thus, gp78 may play important roles in the regulation of drug metabolism in liver.

DISEASES ASSOCIATED WITH GP78-MEDIATED ERAD

The significance of gp78-mediated ERAD is underscored by its association with not only physiological proteins but also proteins that are linked to human diseases, such as KAI1, ATZ, and CFTRΔF508, and mutant huntingtin (htt), neuroserpin, ataxin-3 and SOD1.

gp78 was originally identified as a 78-kDa glycoprotein that promotes tumor metastasis [93]. Subsequently, it was shown to be the tumor autocrine motility factor (AMF) receptor (AMFR) [94, 95]. Consistently, gp78 has been shown to be highly expressed in various cancers, such as bladder cancer, colorectal cancer, esophageal cancer, gastric cancer and hepatocelllular carcinoma, and its elevated expression is correlated with metastasis [96]. This is in accordance with the observation that patients with increased expression of gp78 have significantly worse disease-free survival rates [97]. The correlation of elevated expression in tumors and increased metastasis has been solely attributed to the function of gp78 as AMFR. However, gp78 also promotes metastasis through the ERAD pathway [98]. gp78 associates with and targets the transmembrane metastasis suppressor, KAI1 (also known as CD82), for degradation. Reduction of gp78 expression increases the abundance of KAI1 and reduces the metastatic potential of tumor cells, an effect that is largely abrogated by concomitant suppression of KAI1. This inverse relationship between these proteins was revealed in a human sarcoma tissue microarray [98]. When overexpressed in mammary glands, gp78 promotes cell proliferation and nontumorigenic ductal outgrowth mediated by the metastasis suppressor KAI1 [99]. Therefore, gp78 may promote tumor cell proliferation, invasion and metastasis by more than one mechanism.

Another pathogenic role of gp78 is in cystic fibrosis (CF). CF is a common autosomal recessive disease caused by mutations in the gene encoding the CF transmembrane conductance regulator (CFTR), an epithelial anion channel [100]. Deletion of phenylalanine 508 (CFTRΔF508) is the most common CF-associated mutation, which accounts for about 70% of CF alleles [101]. CFTR∆F508 is retained in the ER and rapidly degraded through the ERAD pathway, which prevents its trafficking to the plasma membrane [101]. RMA1, an ER-anchored RING finger E3, is involved in ERAD of CFTRΔF508 [40]. gp78 may act as an E4 to extend the polyubiquitin chain that has been conjugated to CFTRΔF508 by RMA1 [34]. gp78 also enhances the interaction of CFTRΔF508 with p97/VCP, presumably to increase CFTRΔF508 retrotranslocation. Harnessing gp78-mediated ERAD via knockdown of p97/VCP or overexpression of gp78 dominant negative mutant rescues CFTRΔF508 from ERAD and increases its trafficking to the cell surface and partially restores its channel function [102]. By contrast, Hrd1 inhibits CFTR∆F508 degradation by acting as an E3 for gp78 [77]. Knockdown of Hrd1 results in stabilization of gp78, and consequently increases in CFTRΔF508 degradation [77]. Both p97/VCP and Derlin1 are critical components of the CFTRΔF508 degradation machinery. SVIP is known to sequester p97/VCP and Derlin1 away from gp78 to form an ERAD-inactive complex [79] (Fig. 3). It was shown that overexpression of SVIP leads to accumulation of CFTRΔF508 [77], supporting the idea that gp78 targets CFTR Δ F508 for degradation.

gp78 is widely involved in degradation of neurodegenerative disease proteins. This function is unlikely to be specific for gp78, since Hrd1 also acts in the same spectrum of

neurodegenerative disease proteins [46, 47, 103, 104]. Therefore, gp78 and Hrd1 probably recognize these mutant proteins by a quality control mechanism, although the mechanism of substrate recognition by these two E3s may be different. Polyglutamine expansion in htt protein induces Huntington's disease (HD), although the mechanism remains uncertain. Some insights into the mechanism come from the discovery that mutant htt interacts with gp78 [46]. The HEAT repeats 2&3 of htt interact with the Cue domain of gp78. The interaction competitively reduces polyubiquitinated protein binding to gp78 and also sterically blocks gp78 interaction with p97/VCP. These effects of htt negatively regulate the function of gp78 in ERAD and are aggravated by polyglutamine expansion. Paradoxically, gp78 is still able to ubiquitinate and facilitate degradation of htt proteins with expanded polyglutamines. When mutant htt accumulates and aggregates, it also impairs the function of p97/VCP-Ufd1-Npl4 in ERAD by sequestering them to its aggregates [105]. Therefore, it is not surprising that the impairment of ERAD by mutant htt proteins is associated with induction of ER stress [46, 105]. We speculate that mutant htt accumulates and gradually aggregates in neurons during HD progression, probably because the rate of mutant htt degradation is slower than the rate of its production/accumulation. The inefficiency in degradation of mutant htt proteins would preoccupy E3 proteins like gp78 and Hrd1 that might typically operate in ERAD in a futile effort toward degrading mutant htt proteins. This nonproductive interaction would lead to an accumulation of misfolded proteins in the ER leading to ER stress.

Hrd1 and gp78 are also involved in ubiquitination and degradation of mutant neuroserpin [104], a secreted glycoprotein and a serine protease inhibitor of serpin family predominantly expressed in the neurons of the central nervous system (CNS) [106]. The role of neuroserpin is largely unknown, but it has been suggested that neuroserpin plays a neuroprotective role and may be involved in regulation of the morphology of neuroendocrine cells and neurite outgrowth [107]. Point mutations in the neuroserpin gene result in its misfolding, accumulation and formation of neuroserpin inclusion bodies in the ER, which causes familial encephalopathy with neuroserpin inclusion bodies [108]. Recent studies demonstrate that overexpression of Hrd1 and gp78 reduces the mutant neuroserpin levels, whereas knockdown of either E3 stabilizes it [104]. Impairment of p97/VCP function also stabilizes neuroserpin and increases its aggregation. These results suggest that mutant neuroserpin is a bona fide ERAD substrate for both gp78 and Hrd1 [104]. Therefore, gp78 and Hrd1 may play a protective role against mutant neuroserpininduced neuronal degeneration. Similarly, gp78 has been shown to promote degradation of mutant SOD1 and ataxin-3. two neurodegenerative disease proteins, associated with familial amyotrophic lateral sclerosis and Machado-Joseph disease/spinocerebellar ataxia type 3, respectively [47]. The common pathological feature of these neurodegenerative disease proteins is their accumulation and aggregation in neurons during disease progression, gp78 and Hrd1 act as quality control E3s for these mutant proteins, which is another common feature. These commonalities may explain why ER stress has been increasingly recognized as a common pathogenic factor in various neurodegenerative diseases [109]. It is likely that gp78 and Hrd1 protect neurons at the early stage of the disease when disease proteins are not in aggregates. As the disease progresses, production of mutant proteins exceeds the degradation capacity of gp78 and Hrd1. which leads to accumulation and aggregation of the mutant proteins. The disease protein aggregates interact with gp78 and Hrd1 as well as p97/VCP and impair their functions in ERAD leading to ER stress. The findings that gp78 and Hrd1 mediate degradation of cytosolic misfolded proteins, such as mutant htt, SOD1 and ataxin-3, extend the territory of the role of gp78 and Hrd1 in quality control to cytosolic pro-

Other substrates of gp78 include ATZ and cholera toxin (CT). Mutations of α -1-antitrypsin (AAT) lead to AAT protein retention in the ER and deficiency of circulating AAT. Accumulation of mutant AAT in the ER causes severe liver injuries, such as neonatal hepatitis, juvenile cirrhosis and hepatocellular carcinoma [110]. gp78 was shown to ubiquitinate and facilitate degradation of ATZ, the classic deficiency variant of circulating AAT having a Z mutation (Glu 342 Lys) [72]. Cholera toxin (CT) is the virulence factor produced by Vibrio cholera. It is transported from the cell surface to the ER lumen where the catalytic CTA1 subunit is retrotranslocated to the cytosol to induce pathological water secretion. Although CTA1 is not degraded after retrotranslocation, gp78 and Hrd1 were shown to cooperate with Derlin1 and the ER luminal chaperone protein disulfide isomerase (PDI) to facilitate CTA1 retrotranslocation, suggesting that ubiquitination may be involved in CTA1 retrotranslocation [111].

CONCLUDING REMARKS

We have summarized the structure and function of gp78 in ERAD. Through ERAD gp78 regulates several important physiological processes and is involved in pathogenesis of many human diseases. However, many questions remain to be answered. For example, gp78-mediated ERAD is independent of Ufd1 and dependent on Npl4. This is in contrast to the demonstrated requirement for p97/VCP-Ufd1-Npl4 in other ERAD pathways. We do not know how gp78, p97/VCP and Npl4 act together in ERAD. gp78 contains a complex domain structure that mediates its own oligomerization or interacts with other proteins to promote ERAD. The list of proteins that have been isolated as gp78-interacting proteins is growing, but some of the interactions remain to be validated. Moreover, gp78 is involved in disposing of all types of substrate proteins, including luminal, membrane and cytosolic proteins, but it is not known whether different subcomplexes of gp78 are formed to handle different types of substrates. We still do not have any information on luminal substrates targeting to the gp78 complex and do not known the identity of the retrotranslocation channel, if any. How the domains unique to gp78, including G2BR, Cue and VIM coordinate ubiquitination and retrotranslocation of substrates requires further investigation. Most of the conserved domains in the cytosolic tail of gp78 have been or have started to be elucidated, but the transmembrane domains are well conserved and should have important functions, but this remains unexplored. It would be interesting to know if the transmembrane domains of gp78 participate in the formation of a retrotranslocation channel and/or are involved in interactions with other membrane components of the gp78 complex. gp78-mediated ERAD targets both physiological and pathological proteins for degradation, reflecting its significance in regulation of cellular processes and removal of unwanted proteins during ERAD. However, most of these studies were performed in cellular systems. It would be important to validate the roles of gp78 in animals and animal models of human diseases.

CONFLICT OF INTEREST

The author(s) confirm that this article content has no conflicts of interest.

ACKNOWLEDGEMENTS

We thank Ms. Pamela Wright for critical reading of the manuscript. The cited work from Dr. Shengyun Fang's lab was supported by grants GM06696 from NIH and 1120833 from NSF.

REFERENCES

- [1] Schubert, U.; Anton, L.C.; Gibbs, J.; Norbury, C.C.; Yewdell, J.W.; and Bennink, J.R. Rapid degradation of a large fraction of newly synthesized proteins by proteasomes. *Nature*, 2000, 404, 770.
- [2] Hampton, R.Y. ER-associated degradation in protein quality control and cellular regulation. *Curr. Opin. Cell. Biol.*, 2002, 14, 476-482.
- [3] Vembar, S.S.; and Brodsky, J.L. One step at a time: endoplasmic reticulum-associated degradation. *Nat. Rev. Mol. Cell. Biol.*, 2008, 9, 944-957.
- [4] Rutkowski, D.T.; and Kaufman, R.J. Trends. A trip to the ER: coping with stress. Cell. Biol., 2004, 14, 20-28.
- [5] Malhotra, J.D.; and Kaufman, R.J. Semin. The endoplasmic reticulum and the unfolded protein response. Cell. Dev. Biol., 2007,18, 716-731.
- [6] Szegezdi, E.; Logue, S.E.; Gorman, A.M.; and Samali, A. Mediators of endoplasmic reticulum stress-induced apoptosis. *EMBO*. *Rep.*, 2006, 7, 880–885.
- [7] Sommer, T.; and Jentsch, S. A protein translocation defect linked to ubiquitin conjugation at the endoplasmic reticulum. *Nature*, 1993, 365, 176-179.
- [8] Tsai B.; Ye Y.; and Rapoport, T.A. Retro-translocation of proteins from the endoplasmic reticulum into the cytosol. Nat. Rev. Mol. Cell. Biol., 2002, 3, 246-255.
- [9] Hebert, D.N.; Foellmer, B. and Helenius, A. Glucose trimming and reglucosylation determine glycoprotein association with calnexin in the endoplasmic reticulum. *Cell*, **1995**, *81*, 425-433.
- [10] Kikkert, M.; Hassink, G.; and Wiertz, E. The role of the ubiquitination machinery in dislocation and degradation of endoplasmic reticulum proteins. Curr. Top. Microbiol. Immunol., 2005, 300, 57-93
- [11] Kostova, Z.; Tsai, Y.C.; and Weissman, A.M. Ubiquitin ligases, critical mediators of endoplasmic reticulum-associated degradation. Cell. Dev. Biol., 2007, 18, 770–779.
- [12] Fang, S.; Ferrone, M.; Yang, C.; Jensen, J.P.; Tiwari, S.; and Weissman, A.M. The tumor autocrine motility factor receptor, gp78, is a ubiquitin protein ligase implicated in degradation from the endoplasmic reticulum. *Proc. Natl. Acad. Sci. USA*, 2001, 98, 14422–14427.
- [13] Fang, S.; and Weissman, A.M. A field guide to ubiquitylation. Cell. Mol. Life. Sci., 2004, 61, 1546-1561.
- [14] Ben-Saadon, R.; Zaaroor, D.; Ziv, T.; and Ciechanover, A. The polycomb protein Ring1B generates self atypical mixed ubiquitin chains required for its in vitro histone H2A ligase activity. *Mol. Cell.*, 2006, 24, 701-711.
- [15] Behrends, C.; and Harper, J.W. Constructing and decoding unconventional ubiquitin chains. *Nat. Struct. Mol. Biol.*, 2011, 18, 520-528

- [16] Ye, Y.; and Rape, M. Building ubiquitin chains: E2 enzymes at work. Nat. Rev. Mol. Cell. Biol., 2009, 10, 755-764.
- [17] Dikic, I.; Wakatsuki, S.; and Walters, K.J. Ubiquitin-binding domains from structures to functions. *Nat. Rev. Mol. Cell. Biol.*, 2009, 10, 659-671.
- [18] Winget, J.M.; and Mayor, T. The diversity of ubiquitin recognition: hot spots and varied specificity. Mol. Cell., 2010, 38, 627-635.
- [19] Schwartz, A.L.; and Ciechanover, A. Targeting proteins for destruction by the ubiquitin system: implications for human pathobiology. *Annu. Rev. Pharmacol. Toxicol.*, 2009, 49, 73-96.
- [20] Weissman, A.M.; Shabek, N. and Ciechanover, A. The predator becomes the prey: regulating the ubiquitin system by ubiquitylation and degradation. *Nat. Rev. Mol. Cell. Biol.*, 2011, 12, 605-620.
- [21] Chen, B.; Mariano, J.; Tsai, Y.C.; Chan, A.H.; Cohen, M.; and Weissman, A.M. The activity of a human endoplasmic reticulumassociated degradation E3, gp78, requires its Cue domain, RING finger, and an E2-binding site. *Proc. Natl. Acad. Sci. USA*, 2006, 103, 341–346.
- [22] Li, W.; Tu, D.; Li, L.; Wollert, T.; Ghirlando, R.; Brunger, A.T. and Ye, Y. Mechanistic insights into active site-associated polyubiquitination by the ubiquitin-conjugating enzyme Ube2g2. *Proc. Natl. Acad. Sci. USA*, 2009, 106, 3722–27.
- [23] Ballar, P.; Shen, Y.; Yang, H.; and Fang, S. The role of a novel p97/valosin-containing protein-interacting motif of gp78 in endoplasmic reticulum-associated degradation. *J. Biol. Chem.*, 2006, 281, 35359–35368.
- [24] Lorick, K.L.; Jensen, J.P.; Fang, S.; Ong, A.M.; Hatakeyama, S.; and Weissman, A.M. RING fingers mediate ubiquitin-conjugating enzyme (E2)-dependent ubiquitination. *Proc. Natl. Acad. Sci. USA*, 1999, 96, 11364-11369.
- [25] Weissman, A.M. Themes and variations on ubiquitylation. *Nat. Rev. Mol. Cell. Biol.*, 2001, 2, 169-178.
- [26] Das, R.; Mariano, J.; Tsai, Y.C.; Kalathur, R.C.; Kostova, Z.; Li, J.; Tarasov, S.G.; McFeeters, R.L.; Altieri, A.S.; Ji, X.; Byrd, R.A. and Weissman, A.M. Allosteric activation of E2-RING fingermediated ubiquitylation by a structurally defined specific E2binding region of gp78. Mol. Cell., 2009, 34, 674–685.
- [27] Li, W.; Tu, D.; Brunger, A.T.; Ye, Y. A ubiquitin ligase transfers preformed polyubiquitin chains from a conjugating enzyme to a substrate. *Nature*. 2007, 446, 333–337.
- [28] Bordallo, J.; and Wolf, D.H. A RING-H2 finger motif is essential for the function of Der3/Hrd1 in endoplasmic reticulum associated protein degradation in the yeast Saccharomyces cerevisiae. FEBS. Lett., 1999, 448, 244-248.
- [29] Bays, N.W.; Gardner, R.G.; Seelig, L.P.; Joazeiro, C.A.; and Hampton R.Y. Hrd1p/Der3p is a membrane-anchored ubiquitin ligase required for ER-associated degradation. *Nat. Cell. Biol.*, 2001, 3, 24-29.
- [30] Biederer, T.; Volkwein, C.; and Sommer, T. Role of Cuelp in ubiquitination and degradation at the ER surface. *Science*, 1997, 278, 1806–1809.
- [31] Kostova, Z.; Mariano, J.; Scholz, S.; Koenig, C.; and Weissman, A.M. A Ubc7p-binding domain in Cue1p activates ER-associated protein degradation. J. Cell. Sci., 2009, 122, 1374-1381.
- [32] Deak, P.M.; and Wolf, D.H. Membrane topology and function of Der3/Hrd1p as a ubiquitin-protein ligase (E3) involved in endoplasmic reticulum degradation. J. Biol. Chem., 2001, 276, 10663– 10669.
- [33] Ravid, T.; Hochstrasser, M. Autoregulation of an E2 enzyme by ubiquitin-chain assembly on its catalytic residue. *Nat. Cell. Biol.*, 2007, 9, 422–427.
- [34] Morito, D.; Hirao, K.; Oda, Y.; Hosokawa, N.; Tokunaga, F.; Cyr, D.M. Tanaka, K.; Iwai, K.; and Nagata, K. Gp78 cooperates with RMA1 in endoplasmic reticulum-associated degradation of CFTRDeltaF508. Mol. Biol. Cell., 2008, 19, 1328–1336.
- [35] Carvalho, P.; Goder, V.; and Rapoport, T.A. Distinct ubiquitinligase complexes define convergent pathways for the degradation of ER proteins. *Cell*, 2006, 126, 361-373.
- [36] Denic, V.; Quan, E.M.; and Weissman, J.S. A luminal surveillance complex that selects misfolded glycoproteins for ER-associated degradation. *Cell*, 2006, 126, 349-359.
- [37] Ruddock, L.W.; and Molinari, M.J. N-glycan processing in ER quality control. Cell. Sci., 2006, 119, 4373-4380.

- [38] Hebert, D.N.; Bernasconi, R.; and Molinari, M. Semin. ERAD substrates: which way out? Cell. Dev. Biol., 2010, 21, 526-532.
- [39] Hosokawa, N.; Wada, I.; Nagasawa, K.; Moriyama, T.; Okawa, K.; and Nagata, K. Human XTP3-B forms an endoplasmic reticulum quality control scaffold with the HRD1-SEL1L ubiquitin ligase complex and BiP. J. Biol. Chem., 2008, 283, 20914-20924.
- [40] Younger, J.M.; Chen, L.; Ren, H.Y.; Rosser, M.F.; Turnbull, E.L.; Fan, C.Y.; Patterson, C.; and Cyr, D.M. Sequential quality-control checkpoints triage misfolded cystic fibrosis transmembrane conductance regulator. *Cell*, 2006, 126, 571–582.
- [41] Sun, F.; Zhang, R.; Gong, X.; Geng, X.; Drain, P.F.; and Frizzell, R.A. Derlin-1 promotes the efficient degradation of the cystic fibrosis transmembrane conductance regulator (CFTR) and CFTR folding mutants. J. Biol. Chem., 2006, 281, 36856–63.
- [42] Wang, B.; Heath-Engel, H.; Zhang, D.; Nguyen, N.; Thomas, D.Y.; Hanrahan, J.W.; and Shore, G.C. BAP31 interacts with Sec61 translocons and promotes retrotranslocation of CFTRDeltaF508 via the derlin-1 complex. *Cell*, 2008, 133, 1080-1092.
- [43] Song, B.L.; Sever, N.; and DeBose-Boyd, R.A. Gp78, a membraneanchored ubiquitin ligase, associates with Insig-1 and couples sterol-regulated ubiquitination to degradation of HMG CoA reductase. Mol. Cell., 2005, 19 (6): 829-840.
- [44] Jo, Y.; Sguigna, P.V.; and DeBose-Boyd, R.A. Membraneassociated ubiquitin ligase complex containing gp78 mediates sterol-accelerated degradation of 3-hydroxy-3-methylglutarylcoenzyme A reductase. J. Biol. Chem., 2011, 286, 15022-15031.
- [45] Pearce, M.M.; Wang, Y.; Kelley, G.G.; and Wojcikiewicz, R.J. SPFH2 mediates the endoplasmic reticulum-associated degradation of inositol 1,4,5-trisphosphate receptors and other substrates in mammalian cells. J. Biol. Chem., 2007, 282, 20104-20115.
- [46] Yang, H.; Liu, C.; Zhong, Y.; Luo, S.; Monteiro, M.J.; and Fang, S. Huntingtin Interacts with the Cue Domain of gp78 and Inhibits gp78 Binding to Ubiquitin and p97/VCP. PLoS One, 2010, 5, e8905.
- [47] Ying, Z.; Wang, H.; Fan, H.; Zhu, X.; Zhou, J.; Fei, E.; and Wang, G. Gp78, an ER associated E3, promotes SOD1 and ataxin-3 degradation. Hum. Mol. Genet., 2009, 18, 4268–4281.
- [48] Zhong, Y.; Wang, Y.; Yang, H.; Ballar, P.; Lee, J.G.; Ye, Y.; Monteiro, M.J.; and Fang, S. Importin beta interacts with the endoplasmic reticulum-associated degradation machinery and promotes ubiquitination and degradation of mutant alpha1-antitrypsin. *J. Biol. Chem.*, **2011**, *286*, 33921-33930.
- [49] Bays, N.W.; and Hampton, R.Y. Cdc48-Ufd1-Np14: stuck in the middle with Ub. Curr. Biol., 2002, 12, R366–R371.
- [50] Ye, Y.; Meyer, H.H. and Rapoport, T.A. Function of the p97-Ufd1-Npl4 complex in retrotranslocation from the ER to the cytosol: dual recognition of nonubiquitinated polypeptide segments and polyubiquitin chains. J. Cell. Biol., 2003, 162, 71–84.
- [51] Ye, Y.; Shibata, Y.; Yun, C.; Ron, D.; and Rapoport, T.A. A membrane protein complex mediates retro-translocation from the ER lumen into the cytosol. *Nature*, 2004, 429, 841-847.
- [52] Ye, Y.; Shibata, Y.; Kikkert, M.; van Voorden, S.; Wiertz, E. and Rapoport, T.A. Recruitment of the p97 ATPase and ubiquitin ligases to the site of retrotranslocation at the endoplasmic reticulum membrane. Proc. Natl. Acad. Sci. USA, 2005, 102, 14132–14138.
- [53] Lilley, B.N.; and Ploegh, H.L. Multiprotein complexes that link dislocation, ubiquitination, and extraction of misfolded proteins from the endoplasmic reticulum membrane. *Proc. Natl. Acad. Sci.* USA, 2005, 102, 14296–14301.
- [54] Lilley, B.N.; and Ploegh, H.L. A membrane protein required for dislocation of misfolded proteins from the ER. *Nature*, 2004, 429, 834–840
- 55] Schulze, A.; Standera, S.; Buerger, E.; Kikkert, M.; van Voorden, S.; Wiertz, E.; Koning, F.; Kloetzel, P.M.; and Seeger, M. The ubiquitin-domain protein HERP forms a complex with components of the endoplasmic reticulum associated degradation pathway. *J. Mol. Biol.*, 2005, 354, 1021–1027.
- [56] Liang, J.; Yin, C.; Doong, H.; Fang, S.; Peterhoff, C.; Nixon, R.A.; and Monteiro, M.J. Characterization of erasin (UBXD2): a new ER protein that promotes ER-associated protein degradation. *J. Cell. Sci.*, 2006, 119, 4011-4024.
- [57] Mueller, B.; Klemm, E.J.; Spooner, E.; Claessen, J.H.; and Ploegh, H.L. SEL1L nucleates a protein complex required for dislocation of

- misfolded glycoproteins. Proc. Natl. Acad. Sci. USA, 2008, 105, 12325-12330.
- [58] Zhong, X.; Shen, Y.; Ballar, P.; Apostolou, A.; Agami, R.; and Fang, S. AAA ATPase p97/valosin-containing protein interacts with gp78, a ubiquitin ligase for endoplasmic reticulum-associated degradation. J. Biol. Chem., 2004, 279, 45676–45684.
- [59] Hanzelmann, P.; and Schindelin, H. The structural and functional basis of the p97/valosin-containing protein (VCP)-interacting motif (VIM): mutually exclusive binding of cofactors to the N-terminal domain of p97. J. Biol. Chem., 2011, 286(44), 38679-90.
- [60] Meyer, H.H.; Shorter, J.G.; Seemann, J.; Pappin, D.; and Warren, G. A complex of mammalian ufd1 and npl4 links the AAA-ATPase, p97, to ubiquitin and nuclear transport pathways. *EMBO*. *J.*, 2000, *19*, 2181-2192.
- [61] Stapf, C.; Cartwright, E.; Bycroft, M.; Hofmann, K.; and Buchberger, A. The general definition of the p97/valosincontaining protein (VCP)-interacting motif (VIM) delineates a new family of p97 cofactors. J. Biol. Chem., 2011, 286(44):38670-8.
- [62] Ballar, P.; A. Pabuccuoglu, F.A. Kose. Different p97/VCP complexes function in retrotranslocation step of mammalian ER-associated degradation (ERAD). Int. J. Biochem. Cell Biol., 2011, 43, 613.
- [63] Soetandyo, N.; and Ye, Y. The p97 ATPase dislocates MHC class I heavy chain in US2-expressing cells via a Ufd1-Npl4-independent mechanism. J. Biol. Chem., 2010, 285, 32352-32359.
- [64] Heo, J.M.; Livnat-Levanon, N.; Taylor, E.B.; Jones, K.T.; Dephoure, N.; Ring, J.; Xie, J.; Brodsky, J.L.; Madeo, F.; Gygi, S.P.; Ashrafi, K.; Glickman, M.H.; and Rutter, J. A stressresponsive system for mitochondrial protein degradation. *Mol. Cell.*, 2010, 40, 465-480.
- [65] Wiertz, E.J.; Tortorella, D.; Bogyo, M.; Yu, J.; Mothes, W.; Jones, T.R.; Rapoport, T.A.; and Ploegh, H.L. Sec61-mediated transfer of a membrane protein from the endoplasmic reticulum to the proteasome for destruction. *Nature*, 1996, 384, 432-438.
- [66] Schekman, R. Cell biology: a channel for protein waste. *Nature*, 2004, 429, 817-818.
- [67] Meusser, B.; Hirsch, C.; Jarosch, E.; and Sommer, T. ERAD: the long road to destruction. *Nat. Cell. Biol.*, 2005, 7, 766-772.
- [68] Carvalho, P.; Stanley, A.M.; and Rapoport, T.A. Retrotranslocation of a misfolded luminal ER protein by the ubiquitin-ligase Hrd1p. Cell, 2010, 143, 579-591.
- [69] Greenblatt, E.J.; Olzmann, J.A.; and Kopito, R.R. Derlin-1 is a rhomboid pseudoprotease required for the dislocation of mutant α-1 antitrypsin from the endoplasmic reticulum. Nat. Struct. Mol. Biol., 2011, 18(10):1147-52.
- [70] Li, G.; Zhou, X.; Zhao, G.; Schindelin, H.; and Lennarz, W.J. Multiple modes of interaction of the deglycosylation enzyme, mouse peptide N-glycanase, with the proteasome. *Proc. Natl. Acad. Sci. USA*, 2005, 102, 15809.
- [71] Li, G.; Zhao, G.; Schindelin, H.; and Lennarz, W.J. Tyrosine phosphorylation of ATPase p97 regulates its activity during ERAD. *Biochem. Biophys. Res. Commun.*, 2008, 375, 247-251.
- [72] Shen, Y.; Ballar, P.; and Fang, S. Ubiquitin ligase gp78 increases solubility and facilitates degradation of the Z variant of alpha-1antitrypsin. *Biochem. Biophys. Res. Commun.*, 2006, 349, 1285-1293.
- [73] Wang, Q.; Liu, Y.; Soetandyo, N.; Baek, K.; Hegde, R.; and Ye, Y. A ubiquitin ligase-associated chaperone holdase maintains polypeptides in soluble states for proteasome degradation. *Mol. Cell.*, 2011, 42, 758-770.
- [74] Travers, K.J.; Patil, C.K.; Wodicka, L.; Lockhart, D.J.; Weissman, J.S.; and Walter, P. Functional and genomic analyses reveal an essential coordination between the unfolded protein response and ER-associated degradation. *Cell*, 2000, 101, 249-258.
- [75] Shen, Y.; Ballar, P.; Apostolou, A.; Doong, H.; and Fang, S. ER stress differentially regulates the stabilities of ERAD ubiquitin ligases and their substrates. *Biochem. Biophys. Res. Commun.*, 2007, 352(4), 919-24.
- [76] Termine, D.J.; Moremen, K.W.; and Sifers, R.N. The mammalian UPR boosts glycoprotein ERAD by suppressing the proteolytic downregulation of ER mannosidase I. J. Cell. Sci., 2009, 122, 976-984.

- [77] Ballar, P.; Ors, A.U.; Yang, H.; and Fang, S. Differential regulation of CFTRDeltaF508 degradation by ubiquitin ligases gp78 and Hrd1. Int. J. Biochem. Cell. Biol., 2010, 42(1), 167–173.
- [78] Shmueli, A.; Tsai, Y.C.; Yang, M.; Braun, M.A.; and Weissman, A.M. Targeting of gp78 for ubiquitin-mediated proteasomal degradation by Hrd1: cross-talk between E3s in the endoplasmic reticulum. *Biochem. Biophys. Res. Commun.*, 2009, 390, 758–762.
- [79] Ballar, P.; Zhong, Y.; Nagahama, M.; Tagaya, M.; Shen, Y.; and Fang, S. Identification of SVIP as an endogenous inhibitor of endoplasmic reticulum-associated degradation. *J. Biol. Chem.*, 2007, 282(47), 33908-33914.
- [80] Wang, Y.; Ballar, P.; Zhong, Y.; Zhang, X.; Liu, C.; Zhang, Y.J.; Monteiro, M.J.; Li, J.; and Fang, S. SVIP induces localization of p97/VCP to the plasma and lysosomal membranes and regulates autophagy. *PLoS ONE*, 2011, 6(8), e24478.
- [81] Liang, J.S.; Kim, T.; Fang, S.; Yamaguchi, J.; Weissman, A.M.; Fisher, E.A.; and Ginsberg, H.N. Overexpression of the tumor autocrine motility factor receptor Gp78, a ubiquitin protein ligase, results in increased ubiquitinylation and decreased secretion of apolipoprotein B100 in HepG2 cells. J. Biol. Chem., 2003, 278, 23984–23988.
- [82] Fisher, E.A.; Khanna, N.A.; and McLeod, R.S. Ubiquitination regulates the assembly of VLDL in HepG2 cells and is the committing step of the apoB-100 ERAD pathway. J. Lipid. Res., 2011, 52, 1170-1180.
- [83] Fisher, E.A.; Lapierre, L.R.; Junkins, R.D.; and McLeod, R.S. The AAA-ATPase p97 facilitates degradation of apolipoprotein B by the ubiquitin-proteasome pathway. J. Lipid. Res., 2008, 49, 2149– 2160.
- [84] Goldstein, J.L.; DeBose-Boyd, R.A.; and Brown, M.S. Protein sensors for membrane sterols. *Cell*, **2006**, *124*, 35–46.
- [85] Sever, N.; Song, B.L.; Yabe, D.; Goldstein, J.L.; Brown, M.S.; and DeBose-Boyd, R.A. Insig-dependent ubiquitination and degradation of mammalian 3-hydroxy-3-methylglutaryl-CoA reductase stimulated by sterols and geranylgeraniol. *J. Biol. Chem.*, 2003, 278, 52479–52490.
- [86] Cao, J.; Wang, J.; Qi, W.; Miao, H. H.; Wang, J.; Ge, L.; DeBose-Boyd, R. A.; Tang, J.J.; Li, B.L.; and Song, B.L. Ufd1 is a cofactor of gp78 and plays a key role in cholesterol metabolism by regulating the stability of HMG-CoA reductase. *Cell. Metab.*, 2007, 6, 115–128.
- [87] Lee, J.N.; B. Song, R.A. DeBose-Boyd, J. Ye. J. Sterol-regulated degradation of Insig-1 mediated by the membrane-bound ubiquitin ligase gp78. *Biol. Chem.*, 2006, 281, 39308-39315.
- [88] Hampton, R.Y.; Gardner, R.G. and Rine, J. Role of 26S proteasome and HRD genes in the degradation of 3-hydroxy-3-methylglutaryl-CoA reductase, an integral endoplasmic reticulum membrane protein. Mol. Biol. Cell., 1996, 7, 2029-2044.
- [89] Nadav, E.; Shmueli, A.; Barr, H.; Gonen, H.; Ciechanover, A.; and Reiss, Y. A novel mammalian endoplasmic reticulum ubiquitin ligase homologous to the yeast Hrd1. *Biochem. Biophys. Res. Commun.*, 2003, 303, 91-97.
- [90] Kim, S.M.; Acharya, P.; Engel, J.C.; and Correia, M.A. Liver cyto-chrome P450 3A ubiquitination in vivo by gp78/autocrine motility factor receptor and C terminus of Hsp70-interacting protein (CHIP) E3 ubiquitin ligases: physiological and pharmacological relevance. *J. Biol. Chem.*, 2010, 285, 35866-35877.
- [91] Wang, Y.; Guan, S.; Acharya, P.; Koop, D.R.; Liu, Y.; Liao, M.; Burlingame, A.L.; and Correia, M.A. Ubiquitin-dependent proteasomal degradation of human liver cytochrome P450 2E1: identification of sites targeted for phosphorylation and ubiquitination. *J. Biol. Chem.*, 2011, 286, 9443-9456.
- [92] Peer, C.J.; Sissung, T.M.; and Figg, W.D. CHIP and gp78-mediated ubiquitination of CYP3A4: Implications for the pharma-cology of anticancer agents. Cancer. Biol. Ther., 2011, 11(6), 549-551

- [93] Nabi, I.R.; and Raz, A. Cell shape modulation alters glycosylation of a metastatic melanoma cell-surface antigen. *Int. J. Cancer*, 1987, 40, 396–402.
- [94] Silletti, S.; Watanabe, H.; Hogan, V.; Nabi, I.R.; and Raz, A. Purification of B16-F1 melanoma autocrine motility factor and its receptor. *Cancer Res.*, 1991, 51, 3507–3511.
- [95] Nabi, I.R.; Watanabe, H.; and Raz, A. Identification of B16-F1 melanoma autocrine motility-like factor receptor. *Cancer. Res.*, 1990, 50, 409–414.
- [96] Fairbank, M.; St-Pierre, P.; and Nabi, I.R. The complex biology of autocrine motility factor/phosphoglucose isomerase (AMF/PGI) and its receptor, the gp78/AMFR E3 ubiquitin ligase. *Mol. Biosys.*, 2009, 5, 793–801.
- [97] Endo, K.; Shirai, A.; Furukawa, M.; and Yoshizaki, T. Prognostic value of cell motility activation factors in patients with tongue squamous cell carcinoma. *Hum. Pathol.*, 2006, 37(8), 1111-1116.
- [98] Tsai, Y.C.; Mendoza, A.; Mariano, J.M.; Zhou, M.; Kostova, Z.; Chen, B.; Veenstra, T.; Hewitt, S.M.; Helman, L.J.; Khanna, C.; and Weissman, A.M. The ubiquitin ligase gp78 promotes sarcoma metastasis by targeting KAI1 for degradation. *Nat. Med.*, 2007, 13 (12), 1504-1509
- [99] Joshi, B.; Li, L.; and Nabi, I.R. A role for KAI1 in promotion of cell proliferation and mammary gland hyperplasia by the gp78 ubiquitin ligase. J. Biol. Chem., 2010, 285, 8830-8839.
- [100] Ashlock, M.A.; and Olson, E.R. Therapeutics development for cystic fibrosis: a successful model for a multisystem genetic disease. *Annu. Rev. Med.*, 2011, 62, 107-125.
- [101] Ostedgaard, L.S.; Rogers, C.S.; Dong, Q.; Randak, C.O.; Vermeer, D.W.; Rokhlina, T.; Karp, P.H.;and Welsh, M.J. Processing and function of CFTR-DeltaF508 are species-dependent. *Proc. Natl. Acad. Sci. USA*, 2007, 104, 15370-15375.
- [102] Vij, N.; Fang, S.; and Zeitlin, P.L. Selective inhibition of endoplasmic reticulum-associated degradation rescues DeltaF508-cystic fibrosis transmembrane regulator and suppresses interleukin-8 levels: therapeutic implications. J. Biol. Chem., 2006, 281,17369-78
- [103] Yang, H.; Zhong, X.; Ballar, P.; Luo, S.; Shen, Y.; Rubinsztein, D.C.; Monteiro, M.J.; and Fang, S. Ubiquitin ligase Hrd1 enhances the degradation and suppresses the toxicity of polyglutamine-expanded huntingtin. *Exp. Cell. Res.*, 2007, 313, 538–550.
- [104] Ying, Z.; Wang, H.; Fan, H.; and Wang, G. The endoplasmic reticulum (ER)-associated degradation system regulates aggregation and degradation of mutant neuroserpin. J. Biol. Chem., 2011, 286, 20835-44.
- [105] Duennwald, M.L.; S. Lindquist. Impaired ERAD and ER stress are early and specific events in polyglutamine toxicity. *Genes Dev.*, **2008**, 22, 3308-3319.
- [106] Hastings, G.A.; Coleman, T.A.; Haudenschild, C.C.; Stefansson, S.; Smith, E.P.; Barthlow, R.; Cherry, S.; Sandkvist, M.; and Lawrence, D.A. Neuroserpin, a brain-associated inhibitor of tissue plasminogen activator is localized primarily in neurons. Implications for the regulation of motor learning and neuronal survival. *J. Biol. Chem.*, 1997, 272, 33062-33067.
- [107] Parmar, P.K.; Coates, L.C.; Pearson, J.F.; Hill, R.M.; and Birch, N.P. Neuroserpin regulates neurite outgrowth in nerve growth factor-treated PC12 cells. J. Neurochem., 2002, 82, 1406-1415.
- [108] Miranda, E.; Römisch, K.; and Lomas, D.A. Mutants of neuroserpin that cause dementia accumulate as polymers within the endoplasmic reticulum. J. Biol. Chem., 2004, 279, 28283–28291.
- [109] Lindholm, D.; Wootz, H.; and Korhonen, L. ER stress and neurodegenerative diseases. Cell Death Differ., 2006, 13, 385-392.
- [110] Perlmutter, D.H. Liver injury in alpha1-antitrypsin deficiency: an aggregated protein induces mitochondrial injury. J. Clin. Invest., 2002,110, 1579-1583.
- [111] Bernardi, K.M.; Forster, M.L.; Lencer, W.I.; and Tsai, B. Derlin-1 facilitates the retro-translocation of cholera toxin. *Mol. Biol. Cell.*, 2008, 19, 877-884.