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Abstract

In large-scale wireless sensor networks, sensor-processor elements (nodes) are densely deployed to monitor the

environment; consequently, their observations form a random field that is highly correlated in space. We consider a

fusion sensor-network architecture where, due to the bandwidth and energy constraints, the nodes transmit quantized

data to a fusion center. The fusion center provides feedback by broadcasting summary information to the nodes.

In addition to saving energy, this feedback ensures reliability and robustness to node and fusion-center failures.

We assume that the sensor observations follow a linear-regression model with known spatial covariances between

any two locations within a region of interest. We propose a Bayesian framework for adaptive quantization, fusion-

center feedback, and estimation of the random field and its parameters. We also derive a simple suboptimal scheme

for estimating the unknown parameters, apply our estimation approach to the no-feedback scenario, discuss field

prediction at arbitrary locations within the region of interest, and present numerical examples demonstrating the

performance of the proposed methods.

I. INTRODUCTION

Decentralized parameter estimation for sensor networks has recently attracted considerable attention [1]–[5].

Due to the high density of deployed sensor-processor elements (nodes), the physical phenomena monitored

by sensor networks (e.g. moisture content in an agricultural field, temperature distribution in a building,

pH values quantifying ecological content of a river, or concentration of a chemical) yield observations

that are highly correlated in space [6]–[11]. This spatial correlation has been utilized for estimation,

detection, classification, quantization, data aggregation, compression, routing, querying, localization, and

medium access control (MAC) protocol design, see [6]–[15] and references therein. In [4] and [5], efficient

quantization strategies have been designed for estimating a constant-mean signal in spatially correlated

Gaussian noise assuming that no feedback is available from a fusion center; in addition, [5] computes the

corresponding Cramér-Rao bounds for the unknown parameters. Data-rate limited dynamic state estimation

and control problems have also been studied in [16]–[18]. In [18], a Kalman-filter like distributed state

estimation scheme is developed for the scenario where nodes transmit signs of innovations to the fusion
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center. Kalman filtering in [19] considers missing observations due to unreliable network links. A framework

for distributed estimation of deterministic spatial phenomena is proposed in [20], see also [21]. Utilizing

and designing feedback links to improve communication and control over noisy channels have been studied

in [22]–[24], see also references therein. Feedback from the fusion center to the nodes has been utilized

to estimate states of finite-state Markov chains evolving in time [25] and space [15]. Decision feedback

is studied in [26]–[29] in the context of hypothesis testing (detection). Autoregressive target tracking with

feedback is proposed in [30], where the nodes transmit analog information to the fusion center. Estimation

from faded misaligned observations using quantized feedback is studied in [10]. A decentralized quantile

estimation scheme that utilizes quantized fusion-center feedback is proposed in [31]. However, fusion-center

feedback has not yet been used for adaptive quantization at the nodes.

In this paper, we propose a Bayesian framework for adaptive quantization, fusion-center feedback, and

estimation of a spatial random field and its parameters.

In Section II, we first introduce the measurement and prior models and then describe the proposed

quantization and feedback schemes (Section II-A); a no-feedback scenario is outlined in Section II-B. A

Monte-Carlo (MC) approach is developed in Section III for drawing independent, identically distributed

(i.i.d.) samples from the posterior distribution of the random field; these samples are then utilized to estimate

and predict the random field and its parameters. A simple suboptimal estimation approach and corresponding

quantization and feedback schemes are proposed in Section IV. In Section V, we evaluate the performance

of the proposed methods via numerical simulations. Concluding remarks are given in Section VI.

II. MEASUREMENT MODEL, PRIOR SPECIFICATION, AND QUANTIZATION AND FEEDBACK SCHEMES

Assume that a region of interest contains a cluster of N nodes at known locations xn, n = 1, 2, . . . , N ,

measuring

yn = hT
n α + en, n = 1, 2, . . . , N (2.1a)

and a fusion center at location xN+1, measuring

yN+1 = hT
N+1 α + eN+1 (2.1b)

where “T ” denotes a transpose, h1, h2, . . . ,hN , hN+1 are known regression vectors of size r ⇥ 1, and α is

an r ⇥ 1 vector of unknown regression coefficients. Here,

• the first terms in (2.1a) and (2.1b) model large-scale spatial-signal variation (e.g. spatial trend) and
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• the terms en, n = 1, 2, . . . , N + 1 are zero-mean spatially correlated Gaussian random variables,

modeling the small-scale random-field variations

see also [32, Ch. 9] and [33, Ch. 5.1]. This regression model and its special cases have been studied in

[3]–[5] and [34]; it is fairly general and can incorporate signal representations based on splines, wavelets,

Fourier series etc. For example, in Section V-B, we select the regression vectors as hn = [1 xT
n ]T , yielding

a linear trend-surface model for the large-scale spatial-signal variation; see [5, Sect. VI.B] and [34] for

other choices of hn that have been employed in the sensor-network context. Define

υ = [yT
1:N , yN+1]

T (2.2a)

where

y1:N = [y1, y2, . . . , yN ]T (2.2b)

is the vector of all measurements at the nodes within the region of interest. Denote by N (υ ; µ,Ψ) the

multivariate probability density function (pdf) of a Gaussian random vector υ with mean vector µ and

covariance matrix Ψ . Then, the pdf of υ is multivariate Gaussian:

p(υ |α) = N (υ ; H α,Ψ) (2.2c)

where Ψ = cov(υ |α) is the (N +1)⇥(N +1) positive definite spatial covariance matrix of the small-scale

random-field component and

H = [h1 h2 . . . hN hN+1]
T (2.2d)

is the known regression matrix of the large-scale spatial-signal variation component. The variance of the

small-scale random-field component is the (n, n) element of Ψ , denoted by

ψ2
n = Ψn,n = var(yn |α) = var(en) (2.2e)

for n = 1, 2, . . . , N + 1.

Prior specification. We assign a (conjugate) Gaussian prior pdf for the regression parameters:

π(α) = N (α ; µ
α
,Γα) (2.3)

where the r⇥1 vector µ
α
and r⇥r covariance matrix Γα quantify our prior knowledge about the large-scale

spatial-signal variation. Here, the fusion center may employ its past estimates of α to estimate µ
α
and Γα.
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A. Quantization and Feedback Schemes

We adopt a fusion architecture where the nodes n = 1, 2, . . . , N coarsely quantize their observations and

convey the quantization results to the fusion center. This quantization conserves energy at the nodes, as

well as radio-frequency (RF) bandwidth needed for communication from the nodes to the fusion center.

We assume that the fusion center knows all regression vectors h1, h2, . . . ,hN , hN+1, the spatial covariance

matrix Ψ of the small-scale random-field variations (which is also the assumption made in e.g. [4], [5], and

[13]) and the prior mean µ
α
and covariance matrix Γα for the regression-coefficient vector α. In contrast,

each node n = 1, 2, . . . , N knows only its regression vector hn and field variance ψ2
n. (In many models,

knowing hn effectively reduces to knowing node n’s location xn; hence, in such models, we require node

n to know its location.)

The fact that the nodes utilize only their local information is an important property of our approach.

Furthermore, the nodes do not have special arrangements with (i.e. are treated equally by) the fusion center

and can continue to operate in the same manner even if the fusion center changes, e.g. switches from one

node to another.

The fusion center utilizes the quantized data collected from the nodes and knowledge of the small-scale

random-field covariances to estimate the regression parameters α, reconstruct the observations y1:N , and

predict the random field at arbitrary locations within the region of interest. It also occasionally broadcasts

summary information to the nodes, which we refer to as fusion-center feedback. This feedback facilitates

energy-efficient node transmissions, see the numerical examples in Sections V-A.1 and V-B.1. It also ensures

reliability and robustness to node and fusion-center failures, since all nodes within the region of interest

receive summary information regarding the large-scale component of the observed spatial phenomenon.

To prepare for the first feedback broadcast, the fusion center determines the posterior pdf of α based on

its measurement yN+1 [see (2.1b) and (2.3)]:

p(α | yN+1) = N (α ; α(0), C(0)) / p(yN+1 |α) π(α) (2.4a)

where the mean and covariance of this Gaussian pdf are

α(0) = C(0)

⇣
Γ

−1
α

µ
α

+
hN+1 yN+1

ψ2
N+1

⌘
(2.4b)

C(0) =
⇣
Γ

−1
α

+
hN+1 hT

N+1

ψ2
N+1

⌘−1

= Γα − Γα hN+1 hT
N+1 Γα

ψ2
N+1 + hT

N+1 Γα hN+1

. (2.4c)

Here, α(0) is also the Bayesian minimum mean-square error (MMSE) estimate of α, given yN+1.
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We first describe the initial information exchange (referred to as Round 1 ) between the fusion center and

the nodes n = 1, 2, . . . , N and then present an extension to multiple rounds.

Round 1. The fusion center broadcasts α(0) and C(0) to the nodes within the region of interest.
1 We

assume that sufficient RF bandwidth is available for these broadcasts and that the nodes within the region

of interest receive them error-free. Upon receiving α(0) and C(0), these nodes construct their local Gaussian

prior pdf for α:

p(α |α(0), C(0)) = N (α ; α(0), C(0)) (2.5a)

which, in the sequential-Bayesian spirit, coincides with the posterior pdf p(α | yN+1) in (2.4a). Each node

n utilizes the local prior (2.5a) to determine the predictive pdf of yn based on α(0) and C(0):

p(yn |α(0), C(0)) = N
(
yn ; hT

nα(0), h
T
nC(0)hn + ψ2

n

)
. (2.5b)

Observe that the local prior pdf (2.5a) is the same at all nodes, but the predictive pdfs (2.5b) for yn differ

(in general) from node to node. Now, node n determines its quantization thresholds τn,(1)(0) < τn,(1)(1) <

· · · < τn,(1)(K) as follows:

τn,(1)(l) = qn,(1)

⇣ l

K

⌘
, l = 0, 1, . . . , K (2.6a)

where qn,(1)(l/K) is the l/K quantile of the predictive pdf (2.5b) and K denotes the number of quantization

intervals.2 It then reports to the fusion center the index kn,(1) 2 {0, 1, 2, . . . , K − 1} corresponding to the
quantization interval Rn,(1) containing yn:

Rn,(1) =
h
τn,(1)(kn,(1)), τn,(1)(1 + kn,(1))

⌘
. (2.6b)

Hence, kn,(1) = j means that the measurement yn falls within the range

τn,(1)(j)  yn < τn,(1)(1 + j) (2.6c)

and, consequently, Rn,(1) =
⇥
τn,(1)(j), τn,(1)(1 + j)

)
; here, the first subscript “n” corresponds to the node

index and the second parenthesized subscript “(1)” denotes the round index. In Round 1, the fusion center

receives

k(1) = [k1,(1), k2,(1), . . . , kN,(1)]
T (2.6d)

1In general, any node in the region of interest may serve as a beacon, compute α(0) and C(0) based on its measurement and then broadcast

them to other nodes or, alternatively, send its measurement to the fusion center. However, such schemes violate our assumption that are all

nodes within the region of interest are treated equally by the fusion center. Therefore, we focus on the scenario where the fusion center uses

its own measurement in Round 1 to determine α(0) and C(0).
2Here, the trivial thresholds τn,(1)(0) = qn,(1)(0) = −∞ and τn,(1)(K) = qn,(1)(1) = +∞ are defined for notational convenience.
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from the nodes in the region of interest. To interpret k(1), the fusion center computes the same quantization

thresholds as the nodes. For K = 2 quantization intervals, analog-to-digital conversion greatly simplifies and

is reduced to a signal-level comparison [5]. In this case, the single nontrivial threshold is τn,(1)(1) = hT
nα(0)

and, therefore, the fusion center does not need to transmit C(0) to the nodes.

The fusion center completes Round 1 by estimating the posterior mean vector α(1) = E [α | yN+1,R(1)]

and covariance matrix C(1) = cov(α | yN+1,R(1)) of the regression parameters, where E [·] denotes expec-
tation and R(1) = (R1,(1),R2,(1), . . . ,RN,(1)) is the collection of all quantization intervals obtained by the

fusion center in Round 1; see also Section III. If Round 2 is planned, each node n saves its first-round

quantization interval Rn,(1), to be used for adaptive quantization, as discussed in the following.

Round p > 1. Suppose that, after Round 1, the fusion center decides to continue its information exchange

with the nodes n = 1, 2, . . . , N . This exchange proceeds as follows:

• The fusion center broadcasts α(p−1) and C(p−1) (estimated at the end of Round p − 1) to the nodes

n = 1, 2, . . . , N . Upon receiving α(p−1) and C(p−1), these nodes update their local Gaussian prior pdf

for α:

p(α |α(p−1), C(p−1)) = N (α ; α(p−1), C(p−1)). (2.7)

• To determine node n’s thresholds in Round p, we should exploit available information that this node

provided to the fusion center over the past p− 1 rounds. This information is quantified by an interval

denoted by Rn,(p−1) [computed recursively using (2.9c)]. Note that (2.7) approximates the analytically

intractable marginal posterior pdf p(α | yN+1,R(p−1)). Node n utilizes (2.7) and Rn,(p−1) to determine

the predictive pdf of yn based on α(p−1), C(p−1), and Rn,(p−1):

p(yn |α(p−1), C(p−1),Rn,(p−1)) / N
(
yn ; hT

nα(p−1), h
T
n C(p−1) hn + ψ2

n

)
· iRn,(p−1)

(yn) (2.8a)

where

iA(x) =

⇢
1, x 2 A,
0, otherwise

(2.8b)

denotes the indicator function. Now, node n determines its quantization thresholds τn,(p)(0) < τn,(p)(1) <

· · · < τn,(p)(K) as follows:

τn,(p)(l) = qn,(p)

⇣ l

K

⌘
, l = 0, 1, . . . , K (2.9a)

where qn,(p)(l/K) is the l/K quantile of the predictive pdf (2.8a). It then reports to the fusion center the

index kn,(p) 2 {0, 1, 2, . . . , K − 1} corresponding to the quantization interval
⇥
τn,(p)(kn,(p)), τn,(p)(1 +
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Fig. 1. Rounds 1,2, and 3 of the proposed adaptive quantization scheme, for K = 2 quantization intervals.

kn,(p))
)
containing yn. Hence, in Round p, the fusion center receives

k(p) = [k1,(p), k2,(p), . . . , kN,(p)]
T . (2.9b)

To interpret k(p), the fusion center computes the same quantization thresholds as the nodes.

• Upon receiving k(p), the fusion center determines Rn,(p) using the recursive formula:

Rn,(p) = Rn,(p−1) \
⇥
τn,(p)(kn,(p)), τn,(p)(1 + kn,(p))

)
. (2.9c)

If Round p + 1 is planned, each node n computes its Rn,(p) using (2.9c), to be used for adaptive

quantization in Round p + 1. Now,

R(p) = (R1,(p),R2,(p), . . . ,RN,(p)) (2.9d)

quantifies the fusion-center’s knowledge of the intervals within which yn, n = 1, 2, . . . , N fall based

on the information provided by the nodes over the past p rounds.

• The fusion center completes Round p by estimating α(p) and C(p), as shown in Section III.

Our adaptive quantization scheme is depicted in Fig. 1.

B. No Feedback

If there is no fusion-center feedback, we determine the K quantization intervals using the following fixed

thresholds:

τNF
n,(1)(l) = qNF

n,(1)

⇣ l

K

⌘
, l = 0, 1, . . . , K (2.10a)

where qNF
n,(1)(l/K) is the l/K quantile of the the marginal pdf of yn:

p(yn) = N
(
yn ; hT

n µ
α
, hT

n Γα hn + ψ2
n

)
. (2.10b)
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Note that (2.10b) can be obtained by replacing α(0) and C(0) in (2.5b) with the prior mean µ
α
and

covariance matrix Γα for the regression-coefficient vector α. The nodes n = 1, 2, . . . , N employ the

thresholds (2.10a) to quantize their measurements and then transmit the quantized information to the fusion

center, completing Transmission 1 . Here, in addition to its regression vector hn and field variance ψ2
n, each

node n = 1, 2, . . . , N must know µ
α
and Γα, which may be obtained during the initial network setup. We

can continue and have multiple “no feedback” transmissions: in Transmission p, each node n quantizes its

measurement yn in a manner analogous to our quantization scheme from Section II-A, with α(p) and C(p)

replaced by µ
α
and Γα, respectively, for all p ≥ 0. If we employ censoring in each transmission from the

nodes, multiple transmissions will reduce average transmission energy compared with an equivalent (single)

“no feedback” transmission. Censoring is also used for energy-efficient detection in sensor networks [35].

III. ESTIMATION OF α(p) AND C(p) AND RANDOM-FIELD ESTIMATION AND PREDICTION

At the end of Round p, the fusion center selects α(p) and C(p) as the marginal posterior mean vector and

covariance matrix of the regression parameters:

α(p) = E [α | yN+1,R(p)], C(p) = cov(α | yN+1,R(p)). (3.1)

Note that α(p) and C(p) cannot be determined in closed form [except when p = 0, see (2.4b)–(2.4c)]; hence,

we estimate them via MC sampling. Let us first obtain the pdf p(υ, α |R(p)):

p(υ, α |R(p)) / p(υ |α) π(α) ·
NY

n=1

iRn,(p)
(yn) (3.2a)

see (2.2c), (2.3), and (2.9d). Then, the kernel of the conditional posterior pdf of α given υ and R(p) is

p(α |υ,R(p)) = p(α |υ) / p(υ |α) π(α)

/ exp[−1
2
(υ − Hα)T

Ψ
−1 (υ − Hα)] · exp[−1

2
(α − µ

α
)T

Γα

−1 (α − µ
α
)] (3.2b)

implying that p(α |υ,R(p)) is a multivariate Gaussian pdf:

p(α |υ,R(p)) = N
⇣
α ; Ω (Γ−1

α
µ

α
+ HT

Ψ
−1υ),Ω

⌘
(3.2c)

where

Ω = (Γ−1
α

+ HT
Ψ

−1H)−1. (3.2d)

The marginal posterior pdf of υ given R(p) is a truncated multivariate Gaussian:

p(υ |R(p)) / p(υ) ·
NY

n=1

iRn,(p)
(yn) (3.3a)
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where p(υ) denotes the marginal pdf of υ:

p(υ) = N (H µ
α
,Σ ) (3.3b)

Σ = cov(υ) = H Γα HT + Ψ . (3.3c)

The marginal variance of yn is the (n, n) element of Σ , denoted by

σ2
n = Σn,n = var(yn), n = 1, 2, . . . , N + 1. (3.3d)

We also adopt the following block partitioning of Σ :

Σ = cov(υ) =


Σ1:N,1:N σ1:N,N+1

σT
1:N,N+1 σ2

N+1

]
(3.3e)

where Σ1:N,1:N = cov(y1:N) and σ1:N,N+1 = cov(y1:N , yN+1) are N ⇥N matrix and N ⇥ 1 column vector,

respectively.

Using the conditional pdf result for multivariate Gaussian distributions in e.g. [36, Theorem 10.2], we

obtain an expression for the kernel of the marginal posterior pdf p(y1:N | yN+1,R(p)):

p(y1:N | yN+1,R(p)) / N
(
y1:N ; m, S

)
·

NY

n=1

iRn,(p)
(yn) (3.4a)

where

m = [h1 h2 · · ·hN ]T µ
α

+
σ1:N,N+1

σ2
N+1

· (yN+1 − hT
N+1 µ

α
) (3.4b)

S = Σ1:N,1:N − σ1:N,N+1 σT
1:N,N+1

σ2
N+1

. (3.4c)

In the following section, we develop an algorithm for drawing i.i.d. samples from this distribution. The

obtained samples are then utilized to calculate the marginal posterior mean and covariance matrix of α in

(3.1) and to estimate and predict the random field within the region of interest.

A. Random-field Sampler and Signal-parameter and Random-field Estimators

We now present a scheme for sampling y
(t)
1:N,(p), t = 1, 2, . . . , T from the marginal posterior pdf in (3.4a).

First, decompose the N ⇥ N positive definite covariance matrix S in (3.4c) as follows:

S = LLT (3.5a)

where L is the lower-triangular Cholesky root of S:

L =

2

664

l11 0 0 · · · 0
l21 l22 0 . . . 0
...

...
...

...
...

lN1 lN2 lN3 · · · lNN

3

775 . (3.5b)
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Denote the nth element of L−1 m by [L−1 m]n. We obtain y
(t)
1:N,(p) as follows:

1. First, draw x
(t)
1,(p) from

p(x1 | yN+1,R(p)) / N (x1 ; [L−1 m]1, 1) · iR1,(p)

(
l11 x1

)
; (3.6a)

2. draw x
(t)
2,(p) from

p(x2 |x(t)
1,(p), yN+1,R(p)) / N (x2 ; [L−1 m]2, 1) · iR2,(p)

(
l21 x

(t)
1,(p) + l22 x2

)
; (3.6b)

· · ·
N . draw x

(t)
N,(p) from

p(xN |x(t)
1,(p), x

(t)
2,(p), . . . , x

(t)
N−1,(p), yN+1,R(p))

/ N (xN ; [L−1 m]N , 1) · iRN ,(p)

(
lN1 x

(t)
1,(p) + · · · + lN(N−1) x

(t)
N−1,(p) + lNN xN

)
. (3.6c)

Now, compute

y
(t)
1:N,(p) = L [x

(t)
1,(p), x

(t)
2,(p), . . . , x

(t)
N−1,(p), x

(t)
N,(p)]

T (3.6d)

and define

υ
(t)
(p) = [(y

(t)
1:N,(p))

T , yN+1]
T . (3.7)

The steps 1, 2, . . . , N require sampling from truncated univariate Gaussian pdfs, which we describe in

Appendix A. The sampling scheme (3.6) is more efficient than the Gibbs sampler in [37, Sect. 3] and [38,

Sect. 3], where sampling from full conditional pdfs of yn was used to perform an equivalent task.

Random-field estimation in Round p. Once we have collected the desired number of samples T , we

estimate y1:N by averaging the random-field draws:

y1:N,(p) = E [y1:N | yN+1,R(p)] ⇡
1

T

TX

t=1

y
(t)
1:N,(p). (3.8a)

Note that (3.9a) and (3.8a) can be viewed as (approximate) Round p’s MMSE estimates of α and y1:N .

Define

υ(p) = [yT
1:N,(p), yN+1]

T . (3.8b)
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Regression-parameter estimation in Round p. To estimate the marginal posterior mean vector and

covariance matrix of α in (3.1) when p ≥ 1, we employ Rao-Blackwellization3 based on (3.2c):

α(p) ⇡ 1

T

TX

t=1

(Ω Γ
−1
α

µ
α

+ ω
(t)
(p))

= Ω Γ
−1
α

µ
α

+ ω(p) (3.9a)

C(p) ⇡ Ω +
h 1

T

TX

t=1

ω
(t)
(p) (ω

(t)
(p))

T
i
− ω(p) ωT

(p) (3.9b)

where Ω was defined in (3.2d) and

ω
(t)
(p) = Ω HT

Ψ
−1 υ

(t)
(p) (3.9c)

ω(p) = Ω HT
Ψ

−1 υ(p). (3.9d)

In particular, Rao-Blackwellization based on (3.2c) yields the following estimate of the marginal posterior

pdf of α:

p(α|yN+1,R(p)) ⇡
1

T

TX

t=1

N
(
α;ΩΓ

−1
α

µ
α

+ ω
(t)
(p),Ω

)
(3.9e)

and (3.9a)–(3.9b) follow from this pdf. Clearly, C(p)−Ω is a positive semidefinite matrix, implying that C(p)

is lower-bounded by Ω . A single sample T = 1 in (3.9b) leads to the crude covariance estimate C(p) ⇡ Ω .

B. Random-field Prediction

Our sampler can be utilized to predict the random field yi at a location xi where sensors have not been

deployed. Here, we are motivated by the fact that a typical goal of a sensor network is to infer the state

of nature from partial and noisy information about the phenomenon of interest, which is in contrast with

simple recovery of sensor readings by the fusion center. To predict the random field well, we must exploit

the correlation structure of the small-scale random-field component. We assume that the random-field value

yi follows the model (2.1a):

yi = hT
i α + ei (3.10a)

and that the fusion center knows the corresponding regression vector hi and small-scale random-field

variance and covariances

ψ2
i = var(yi |α) = var(ei) (3.10b)

ψi = cov(υ, yi |α). (3.10c)

3Rao-Blackwellization is a well-known variance-reduction method applied in Monte-Carlo computations, see [39, Chs. 2.3 and 6.6.3] and

references therein.
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Using the conditional pdf result for multivariate Gaussian distributions in [36, Theorem 10.2], we obtain

an expression for the conditional posterior pdf p(yi |υ,R(p), α):

p(yi |υ,R(p), α) = p(yi |υ, α)

= N
(
yi ; qT

i α + ψT
i Ψ

−1 υ, ψ2
i − ψT

i Ψ
−1ψi

)
(3.11a)

where

qi = hi − HT
Ψ

−1 ψi. (3.11b)

Using (3.2c) and (3.11a), we obtain the marginal posterior-predictive pdf

p(yi |υ,R(p)) = p(yi |υ) = N
⇣
yi ; qT

i Ω (Γ−1
α

µ
α

+ HT
Ψ

−1 υ) + ψT
i Ψ

−1υ, var(yi|υ)
⌘

(3.12a)

where

var(yi |υ) = qT
i Ω qi + ψ2

i − ψT
i Ψ

−1ψi. (3.12b)

Now, Rao-Blackwellization based on (3.12a) yields the following predictor of yi and corresponding posterior-

predictive variance:

yi,(p) = E [yi|yN+1,R(p)] ⇡ qT
i α(p) + ψT

i Ψ
−1υ(p) (3.13a)

var(yi | yN+1,R(p)) ⇡ var(yi |υ) + (H Ω qi + ψi)
T

Ψ
−1

Ξ Ψ
−1 (H Ω qi + ψi) (3.13b)

where

Ξ =
h 1

T

TX

t=1

υ
(t)
(p) (υ

(t)
(p))

T
i
− υ(p) υT

(p) (3.13c)

and υ
(t)
(p), υ(p), and α(p) are computed using (3.7), (3.8b), and (3.9a).

Random-field estimation as a special case. For n = 1, 2, . . . , N , qn = 0r⇥1, where 0r⇥1 denotes the

r⇥ 1 vector of zeros. Consequently, (3.13a) with i = n reduces to the nth element of y1:N,(p) in (3.8a) and

(3.13b) reduces to the (n, n) element of Ξ :

var(yn | yN+1,R(p)) = Ξn,n. (3.14)

We now outline a simple suboptimal estimation approach and corresponding quantization and feedback

schemes.
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IV. A SUBOPTIMAL SCHEME FOR ESTIMATION, QUANTIZATION, AND FEEDBACK

We propose a suboptimal method for estimating the field measurements yn and regression coefficients α

in Round p. We mimic the sampling scheme in Section III-A and generate a single deterministic sample

of the random field as follows:

y
(0)
1:N,(p) = L [x

(0)
1,(p), x

(0)
2,(p), . . . , x

(0)
N−1,(p), x

(0)
N,(p)]

T (4.1a)

where we use the parenthesized superscript index “(0)” to distinguish this deterministic sample from the

random MC samples, which have indices t = 1, 2, . . . , T . Here, x
(0)
n,(p), n = 1, 2, . . . , N are recursively

computed as

x
(0)
n,(p) = E

⇥
xN

∣∣ x(0)
1,(p), x

(0)
2,(p), . . . , x

(0)
N−1,(p), yN+1,R(p)

⇤
(4.1b)

i.e. x
(0)
n,(p) are the means of the conditional pdfs that we sampled from in our MC scheme (3.6) (with t set

to zero to indicate deterministic sampling), see also Appendix B. After computing y
(0)
1:N,(p), we estimate the

regression parameters as

α
(0)
(p) = Ω (Γ−1

α
µ

α
+ HT

Ψ
−1υ

(0)
(p)) (4.1c)

where υ
(0)
(p) = [(y

(0)
1:N,(p))

T , yN+1]
T . This α

(0)
(p) is the standard linear MMSE estimator, with υ replaced by its

estimate υ
(0)
(p); it is also equal to the Rao-Blackwellized estimate in (3.9a) with T = 1 and t set to zero to

indicate deterministic sampling.

Quantization. In Round 1, we select α
(0)
(0), C

(0)
(0) , and Rn,(1) identical to (2.4b), (2.4c), and (2.6b), respec-

tively. In Rounds p > 1, we choose C
(0)
(p−1) as the following crude estimate of the posterior covariance

matrix of α:

C
(0)
(1) = C

(0)
(2) = . . . = Ω (4.1d)

equal to our Rao-Blackwellized estimate in (3.9b) with T = 1. Note that Ω needs to be transmitted to the

nodes only once, during the initial network setup. The adaptive quantization proceeds in the same manner

as described in Section II-A, with α(p) and C(p) replaced by α
(0)
(p) and C

(0)
(p) .

Suboptimal random-field prediction in Round p. To predict yi, we apply (3.13a) with α(p) and υ(p)

replaced by α
(0)
(p) and [(y

(0)
1:N,(p))

T , yN+1]
T , respectively. Denote the resulting suboptimal predictor by y

(0)
i,(p).
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V. NUMERICAL EXAMPLES

To assess the performance of the proposed methods, we consider a sensor network with N nodes randomly

(uniformly) placed on a 10 m⇥ 10 m two-dimensional (2-D) grid with 1 m spacing between the potential

node locations. The fusion center was placed at the center of the grid. We simulated the observations

υ using (2.2c) where we selected an isotropic exponential spatial covariance model for the small-scale

random-field component, with (see e.g. [6], [13], and [33, Ch. 2.1.3]):

cov(yi, yj |α) = cov(ei, ej) = ψ2 · exp(−φ kxi − xjk). (5.1)

Here, the locations xi and xj are 2-D Cartesian-coordinate column vectors, k · k denotes the Euclidean
norm (i.e. kxk2 = xT x), and ψ2 = var(yn |α) = var(en) and φ > 0 are known constants. Note that ψ2 is

the variance of the small-scale random-field component and φ quantifies the spatial-correlation strength of

the field, with large values of φ corresponding to low spatial correlation and vice versa. We set the number

of nodes to

N = 10 (5.2a)

and the small-scale random-field variance to

ψ2 = 1 (5.2b)

except in Section V-B.2, where we vary ψ2 (Figs. 11 and 12).

A. Constant Mean Signal

We adopt the constant-mean signal model with hn = 1:

H = 1N+1 (5.3a)

where 1N+1 denotes the (N +1)⇥ 1 vector of ones. In this case, α = α is the constant mean signal. Here,

we choose a diffuse prior pdf for α, with (see (2.3))

µα = 0, Γα = 25 (5.3b)

implying that the marginal variance of the measurements yn is

var(yn) = Σn,n = Γα + ψ2 = 26 (5.3c)

which quantifies the dynamic range of measurements at the nodes.
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Fig. 2. Constant mean-signal scenario: Random-field realizations for (a) φ = 0.5 m−1 and (b) φ = 2 m−1.

In Fig. 2, we show random-field realizations generated for the correlation model (5.1) and mean signal

α = 0 using the method in [40]. To demonstrate the importance of the correlation-strength parameter φ,

we generated two random-field realizations, with (a) φ = 0.5 m−1 and (b) φ = 2 m−1, corresponding to

effective ranges of 6 m and 0.5 m. (The effective ranges are distances where the spatial correlation falls to

0.05, approximately equal to 3/φ, see [33, p. 26].)

We now study the mean-square error (MSE) performances of the proposed methods. Our performance

metrics are the average MSEs of mean-signal estimators bα and random-field estimators by1:N , computed

using L = 5000 independent trials:

MSE(bα) = E [(bα − α)2] ⇡ 1

L

LX

l=1

(
bα
∣∣
lth trial − α

∣∣
lth trial

)2
(5.4a)

MSE(by1:N) =
1

N
E
⇥
kby1:N − y1:Nk2

⇤
⇡ 1

N L

LX

l=1

∥∥by1:N

∣∣
lth trial − y1:N

∣∣
lth trial

∥∥2
(5.4b)

where averaging is performed over random realizations of the mean-field signal α [simulated from (2.3)

using (5.3b)] and random realizations of the measurement locations xn, n = 1, 2, . . . , N . In Fig. 3, we

show the average MSEs (5.4a) for the following estimates of α:

(i) MC estimates α(p) in (3.9a) computed using the adaptive quantization and feedback schemes in

Section II-A, with T = 20 draws;

(ii) no-feedback MC estimates in Section II-B, with multiple transmissions and T = 20 draws;
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Fig. 3. Constant mean-signal scenario: Average MSEs of various estimators of α as functions of φ, for (a) K = 2 and (b) K = 3 quantization
intervals and p ∈ {1, 2} rounds.

(iii) suboptimal estimates α
(0)
(p) in (4.1c) computed using the adaptive quantization and feedback schemes

in Section IV;

(iv) estimates E [α |υ] for the case where analog (unquantized) observations υ are available at the

fusion center (used as a benchmark); the average MSE of this estimator is

E [Ω ] ⇡ 1

L

LX

l=1

Ω
∣∣
lth trial (5.5)

where averaging is performed over the random realizations of Ψ that vary due to the random

node placement in each trial, see also (3.2d).

Clearly, (5.5) is a lower bound on the average MSEs achievable by estimators of α that are based on

quantized observations; hence, in Fig. 3, we refer to (5.5) as lower bound. In this example, the suboptimal

estimates α
(0)
(p) achieve approximately the same performance as the corresponding MC estimates α(p). When

K = 3 quantization intervals are employed, the proposed estimators perform remarkably well, effectively

attaining the lower bound (5.5) after p = 2 rounds, see Fig. 3 (b).

As φ decreases to zero (corresponding to highly correlated random field), this bound converges to the

following constant:

E [Ω ]
∣∣
φ&0

= (Γ−1
α + ψ−2)−1 ⇡ 0.96 (5.6a)

see also Fig. 3. In this case, the measurements at the nodes n = 1, 2, . . . , N are redundant, as they are

approximately equal to the fusion center’s observation yN+1; since all information is effectively captured

by a single observations and our prior on α is diffuse, the constant in (5.6a) is approximately equal to the

small-scale random-field variance ψ2 = 1 in (5.2b).
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Fig. 4. Constant mean-signal scenario: Average MSEs of various estimators of y1:N as functions of φ, for (a) K = 2 and (b) K = 3
quantization intervals and p ∈ {1, 2, 3} rounds.

For large φ, corresponding to white small-scale random-field variations (i.e. Ψ proportional to the identity

matrix, see (5.1)), the lower bound (5.5) converges to the following constant:

E [Ω ]
∣∣
φ%+1

=
⇣
Γ

−1
α +

N + 1

ψ2

⌘−1

⇡ 0.09 (5.6b)

see also Fig. 3. Since our prior on α is diffuse, the term Γ
−1
α in (5.6b) can be neglected; consequently,

this constant is approximately N + 1 = 11 times smaller than ψ2. In this case, each node’s measurement

contributes equal amount of information to the estimation of α. Under the constant mean-signal scenario

with white small-scale random-field variations, the node indices n become irrelevant for estimating α;

instead, the numbers of nodes reporting kn,(p) = 0, 1, 2, . . . , K − 1 are sufficient. We can exploit this fact to

simplify communication from the nodes to the fusion center; however, this scenario has limited applicability.

Fig. 4 shows average MSEs (5.4b) of various random-field estimators as functions of φ, for (a) K = 2

and (b) K = 3 quantization intervals. The suboptimal estimates y
(0)
1:N,(p) in (4.1a) match the performance

of the corresponding MC estimates y1:N,(p) in (3.8a) (computed using T = 20 samples). The feedback MC

and suboptimal random-field estimators achieve remarkably good average MSE performances after p = 3

rounds.

The performances of all methods improve uniformly as we increase the number of quantization levels

from K = 2 to K = 3: compare parts (a) and (b) of Figs. 3 and 4. The feedback estimators of α and y1:N

significantly outperform their no-feedback counterparts; already in Round 1, the feedback methods achieve

smaller average MSEs than the no-feedback scheme after two transmissions. Therefore, feedback facilitates

energy-efficient node transmissions, which is quantified in the following example.
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Fig. 5. Constant mean-signal scenario: Average MSEs of MC random-field estimators as functions of the average number of bit transmissions

per node, for (a) φ = 0.2 m−1 and (b) φ = 0.5 m−1.

1) Average MSE of random-field estimation versus average number of bit transmissions per node: In

each transmission from the nodes, we employ censoring, described below for K 2 {2, 3}.

K = 2, Round p: If kn,(p) = 1, node n transmits a single bit; otherwise (i.e. if kn,(p) = 0), node n stays

silent.

K = 3, Round p: If kn,(p) 2 {0, 2}, node n transmits a single bit, e.g. −1 if kn,(p) = 0 and +1 if

kn,(p) = 2; otherwise (i.e. if kn,(p) = 1), node n stays silent.

Fig. 5 shows average random-field MSEs (5.4b) for various (feedback and no-feedback) MC random-field

estimators as functions of the average number of bit transmissions per node for (a) φ = 0.2 m−1 and (b)

φ = 0.5 m−1. Here, both the average number of bit transmission per node and average MSEs (5.4b) are

estimated using the L = 5000 trials. As the spatial correlation decreases (i.e. φ increases), the average MSEs

increase, compare Fig. 5 (a) with Fig. 5 (b). Observe the nearly perfect exponential decay of the average

MSEs as functions of the average number of transmitted bits. In this example, fusion-center feedback brings

an order of magnitude improvement compared with the no-feedback approach. About two bit transmissions

per node (on average) are sufficient to estimate the random field remarkably well.

2) Random-field prediction: Consider now N = 10 nodes placed over a 10 m⇥ 10 m region of interest,

at locations depicted by crosses, and a fusion center placed at the center of this region, marked with a

circle, see Fig. 6. In this example, the nodes quantize their observations using K = 3 intervals. The random

field was generated on a 100 ⇥ 100 uniform grid covering the region of interest, using φ = 0.2 m−1 and

φ = 0.5 m−1 and estimated and predicted at these locations using the MC approach in Sections III-A and
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Fig. 6. Constant mean-signal scenario: average MSEs of the feedback MC random-field predictors for (a) φ = 0.2 m−1 and p = 1 round,
(b) φ = 0.2 m−1 and p = 2 rounds, (c) lower bound for φ = 0.2 m−1, (d) φ = 0.5 m−1 and p = 1, (e) φ = 0.5 m−1 and p = 2, and (f)
lower bound for φ = 0.5 m−1, using K = 3 quantization intervals.

III-B with T = 20 samples. Hence, we predict the random field at M = 1002 − N − 1 = 9989 locations:

i 2 {N + 2, N + 3, . . . , N + M + 1}. (5.7a)

In this example, the suboptimal scheme yields estimates y
(0)
1:N,(p) and predictions y

(0)
i,(p) that are almost

identical to those of the MC approach; hence, we present only the MC results y1:N,(p) and yi,(p) in (3.8a)

and (3.13a). Here, our performance metric is the average MSE of the MC random-field predictor yi,(p) =

E [yi | yN+1,R(p)] at locations with indices i in (5.7a):

MSE(yi,(p)) = E [(yi,(p) − yi)
2] ⇡ 1

L

LX

l=1

(
yi,(p)

∣∣
lth trial − yi

∣∣
lth trial

)2
(5.7b)

computed using L = 5000 independent trials, where averaging is performed over random realizations of

the mean-field signal α [simulated from (2.3) using (5.3b)]. Note that the node locations are fixed in this
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example, i.e. they do not vary from one trial to another. Parts (a) and (b) in the upper row of Fig. 6

show performances of our MC random-field predictors and estimators after p = 1 and p = 2 feedback

rounds (respectively) for φ = 0.2 m−1 whereas parts (d) and (e) in the lower row show the corresponding

performances for φ = 0.5 m−1. As expected, the random-field prediction performance is better for fields

with stronger spatial correlations (smaller φ).

Parts (c) and (f) in Fig. 6 show the average prediction MSEs (3.12b) for the case where analog observations

υ are available at the fusion center and φ = 0.2 m−1 and 0.5 m−1, respectively. Clearly, (3.12b) is a lower

bound on the average MSE achievable by our random-field predictor at location xi. In Fig. 6, average

prediction MSE performances close to the lower bounds (3.12b) are achieved after few feedback rounds.

B. Linear Trend Surface

Consider now a linear trend-surface model for the large-scale signal component, with hn = [1 xT
n ]T :

H = [1N+1, [x1, x2 · · ·xN+1]
T ]. (5.8a)

and the 3 ⇥ 1 regression-coefficient vector α = [α1, α2, α3]
T , where α1 and α2, α3 quantify the mean and

slope of the trend surface, respectively. A realization of this random field for α = [0, 2,−1] and φ = 0.5 m−1

is given in Fig. 14 (a). Denote by diag{γ1, γ2, γ3} a 3⇥ 3 diagonal matrix with diagonal elements equal to

γ1, γ2, and γ3. We choose a diffuse prior pdf for α, with [see (2.3)]

µ
α

= 03⇥1, Γα = diag{25, 1, 1} (5.8b)

implying that the expected marginal variance of the measurements yn is [see also (3.3c)]:

E [var(yn)] = E [σ2
n] = E [Σn,n] ⇡ 43 (5.8c)

which roughly quantifies the dynamic range of measurements at the nodes. Here, the expectation is taken

over the random realizations of Ψ that vary due to random node placement in each trial. Note that the

fusion-center’s measurement yN+1 does not provide information about the slope of the trend surface, making

this scenario more challenging than that for constant mean signal in Section V-A.

Our performance metrics are the average random-field estimation MSEs in (5.4b) and average MSE

matrices for regression-vector estimators bα

MSE(bα) = E [(bα − α) (bα − α)T ]

⇡ 1

L

LX

l=1

(
bα
∣∣
lth trial − α

∣∣
lth trial

)(
bα
∣∣
lth trial − α

∣∣
lth trial

)T
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computed using L = 5000 independent trials, where averaging is performed over random node locations

xn. In Figs. 7 and 8, we show performances of the following estimators of α as functions of φ, using

K = 2 and K = 3 quantization intervals (respectively):

(i) MC estimates α(p) in (3.9a) computed using T = 50 draws;

(ii) no-feedback MC estimates with multiple transmissions, computed using T = 50 draws;

(iii) suboptimal estimates α
(0)
(p);

(iv) estimates E [α |υ] for the case where analog observations υ are available at the fusion center

(used as a benchmark); the average MSE of this estimator is given in (5.5).

In particular, for an estimator bα = [bα1, bα2, bα3]
T , we show average MSEs for the trend-surface mean and

slope estimates bα1 and bα2, bα3:

MSE(bα1) = [MSE(bα)]1,1

1
2
[MSE(bα2) +MSE(bα3)] = 1

2
{[MSE(bα)]2,2 + [MSE(bα)]3,3}

as well as the corresponding lower bounds E [Ω1,1] and E
⇥

1
2
(Ω2,2 +Ω3,3)

⇤
on the average MSEs achievable

by estimators of α that are based on quantized observations. As φ decreases to zero, these bounds converge

to E [Ω1,1]
∣∣
φ&0

⇡ 0.96 [where we used (5.2b) and (5.3b)] and E
⇥

1
2
(Ω2,2 +Ω3,3)

⇤∣∣
φ&0

= 0, see Figs. 7 and

8. Here, the small-scale random-field variations approximately satisfy e1 = e2 = . . . = eN+1, implying that

the trend-surface slope regression coefficients α1 and α2 can be determined very accurately. For large φ,

(5.5) simplifies to

E [Ω ]
∣∣∣
φ%+1

= E

( 
Γ

−1
α

+
1

ψ2


N + 1

PN+1
n=1 xT

nPN+1
n=1 xn (

PN+1
n=1 xn xT

n )

]!−1)
⇡

2

4
0.119 0.007 0.005
0.007 0.016 0
0.005 0 0.016

3

5

where we used (5.2a), (5.2b), and (5.3b), see Figs. 7 and 8.

Since fusion-center’s measurement yN+1 does not provide information about the trend-surface slope

regression coefficients α2 and α3, we must employ feedback to estimate α2 and α3 well. Here, the proposed

feedback MC estimators outperform their suboptimal counterparts in estimating these parameters. The lower

bounds are effectively attained for K = 3 quantization levels and p = 3 rounds, see Fig. 8.

Fig. 9 shows average MSEs (5.4b) of various random-field estimators as functions of φ, using (a) K = 2

and (b) K = 3 quantization intervals. Again, the MC scheme (computed using T = 50 samples) outperforms

the suboptimal scheme.
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Fig. 7. Linear trend-surface scenario: (a) MSE(bα1) and (b)
1
2

[MSE(bα2) +MSE(bα3)] as functions of φ, for K = 2 quantization intervals.

Fig. 8. Linear trend-surface scenario: (a) MSE(bα1) and (b)
1
2

[MSE(bα2) +MSE(bα3)] as functions of φ, for K = 3 quantization intervals.

The performances of all methods improve uniformly as we increase the number of quantization levels

from K = 2 to K = 3: compare Fig. 7 with Fig. 8 and Fig. 9 (a) with Fig. 9 (b). As expected, the feedback

estimators of α and y1:N outperform their no-feedback counterparts.

1) Average MSE of random-field estimation versus average number of bit transmissions per node:

We employ censoring in each transmission from the nodes, as described in Section V-A.1. Fig. 10 shows

average random-field estimation MSEs (5.4b) for various MC estimators (computed using T = 50 samples)

as functions of the average number of bit transmissions per node for (a) φ = 0.2 m−1 and (b) φ = 0.5 m−1.

We again observe the nearly perfect exponential decay of the average MSEs as functions of the average

number of transmitted bits. As the spatial correlation decreases (i.e. φ increases), the average MSEs increase



23

Fig. 9. Linear trend-surface scenario: Average MSEs of the proposed estimators of y1:N as functions of φ, for (a) K = 2 and (b) K = 3
quantization intervals and p ∈ {1, 2, 3} rounds.

Fig. 10. Linear trend-surface scenario: Average MSEs of MC random-field estimators as functions of the average number of bit transmissions

per node, for (a) φ = 0.2 m−1 and (b) φ = 0.5 m−1.

only slightly, compare Fig. 10 (a) with Fig. 10 (b). For the same average number of transmitted bits, the

average MSEs of the feedback random-field estimation approach are up to three times smaller than those of

the no-feedback scheme. In this example, feedback brings less improvement compared with the constant-

mean case in Section V-A.1.

2) Average MSE of regression-coefficient and random-field estimators as functions of the small-scale

random-field variance ψ2: Throughout this section, we set the correlation-strength parameter φ to

φ = 0.5 m−1. (5.9)

Figs. 11 and 12 show MSE(bα1) and
1
2
[MSE(bα2) +MSE(bα3)] for various estimators bα as functions of ψ2,

using K = 2 and K = 3 quantization intervals, respectively. Assuming that ψ2 > 0.1, the lower bounds
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Fig. 11. Linear trend-surface scenario: (a) MSE(bα1) and (b)
1
2

[MSE(bα2) +MSE(bα3)] as functions of ψ2, for K = 2 quantization intervals.

Fig. 12. Linear trend-surface scenario: (a) MSE(bα1) and (b)
1
2

[MSE(bα2) +MSE(bα3)] as functions of ψ2, for K = 3 quantization intervals.

are approximately attained for K = 3 quantization levels and p = 3 feedback rounds, see Fig. 12. Fig. 13

shows average MSEs (5.4b) of various random-field estimators as functions of ψ2, using (a) K = 2 and

(b) K = 3 quantization intervals. As expected, the performances of all methods improve uniformly as we

increase the number of quantization levels from K = 2 to K = 3.

As ψ2 increases, the role of the prior pdf grows and, for sufficiently large ψ2, the lower bound (5.5)

simplifies to the prior covariance matrix:

E [Ω ]
∣∣
ψ2%+1

= Γα (5.10)

meaning that we rely solely on the prior information about α. Therefore, in this case, no feedback is needed
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Fig. 13. Linear trend-surface scenario: Average MSEs of the proposed estimators of y1:N as functions of ψ2 for (a) K = 2 and (b) K = 3
quantization intervals and p ∈ {1, 2, 3} rounds.

regarding α and our feedback and no-feedback approaches become equivalent, see Figs. 11–13.

Observe a dithering-like effect exhibited (to various degrees) by the feedback methods in Fig. 13; this

effect also shows in slope regression-coefficient estimation, see Fig. 11 (b) and Fig. 12 (b). In particular, for

ψ2 sufficiently small, the feedback random-field and slope-parameter estimators improve with the increase

of ψ2. For p = 3 rounds and K = 3 quantization levels, the suboptimal field and slope-parameter estimates

perform poorly when ψ2 is small, see Figs. 13 (b) and 12. This poor performance is likely due to the

crude posterior covariance estimates C
(0)
(p−1) in (4.1d) that the suboptimal approach employs in Rounds

p = 2, 3, . . .. Indeed, in Round 1 where the suboptimal method utilizes C
(0)
(0) = C(0) in (2.4c) [the same as

that used in Round 1 of the feedback MC method], the suboptimal method matches the performance of the

feedback MC method.

To illustrate the impact of fusion-center feedback on field prediction, we now apply the MC feedback

scheme to a random-field realization generated from the linear-trend and correlation models in (5.3a) and

(5.1) with α = [0, 2,−1] and φ = 0.5 m−1, shown in Fig. 14 (a). The nodes sample this random field

at locations depicted by crosses. In this example, the nodes quantize their observations using K = 3

intervals. We applied the MC random-field estimators (3.8a) and predictors (3.13a) using T = 50 draws.

The obtained results after p = 1, 2, and 3 feedback rounds are shown in parts (b)–(d) of Fig. 14; part (e)

shows the lower bounds (3.12b) on average MSEs achievable by our predictors, whereas parts (f)–(h) show

MC posterior-predictive variances (3.13b) after p = 1, 2, and 3 rounds, respectively.
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Fig. 14. Linear trend-surface scenario with K = 3 quantization intervals: (a) a random-field realization; feedback MC random-field estimates
and predictions after (b) p = 1, (c) p = 2, and (d) p = 3 rounds; (e) lower bounds on random-field prediction MSEs, and MC posterior-predictive
variances after (f) p = 1, (g) p = 2, and (h) p = 3 rounds.

VI. CONCLUDING REMARKS

We developed a Bayesian framework for adaptive quantization, fusion-center feedback, and estimation of

a spatially correlated Gaussian random field and its parameters.

In this paper, we did not take into account the energy consumption at the nodes within the region

of interest due to “listening,” i.e. receiving fusion-center feedback. Instead, we focused on utilizing this

feedback to reduce the node transmission energy. Further research will include:

• developing adaptive no-feedback quantization schemes [44];

• accounting for the listening cost and applying quantized fusion-center feedback;

• analyzing the impact of communication errors between the nodes and the fusion center;4

• analyzing the proposed feedback schemes and analytically predicting the results in Figs. 5 and 10;

• extending the proposed framework to random-field tracking over time and to nonlinear models;

• extending our measurement model to correlated non-Gaussian random fields by applying copulas [43].

4Interestingly, some communication errors may be detected during the adaptive quantization process. A communication error has occurred

if (2.9c) yields an empty set or multiple intervals (instead of a single interval).
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APPENDIX

To simplify notation, in this appendix we omit the round subscript “(p)” and use y
(t)
1:N , α(t), Rn, R, and

k = [k1, k2, . . . , kN ] in place of y
(t)
1:N,(p), α

(t)
(p), Rn,(p), R(p), and k(p) = [k1,(p), k2,(p), . . . , kN,(p)]

T .

Let us explicitly define the endpoints of the interval Rn:

Rn =
(
yn,MIN, yn,MAX

)
.

APPENDIX A. SIMULATING x
(t)
1 , x

(t)
2 , . . . , x

(t)
N IN (3.6)

We now show how to simulate x
(t)
1 , x

(t)
2 , . . . , x

(t)
N in (3.6a) (Step 1), (3.6b) (Step 2), . . . , (3.6c) (Step N ).

Note that [see (3.5)]

lnn > 0, n = 1, 2, . . . , N (A.1)

because S is a positive definite matrix.

We first unify the tasks in Steps n, n = 2, 3, . . . , N and Step 1. Then, we outline a rejection-sampling

approach to their implementation.

Steps 2,. . .,N . For 2  n  N , we draw samples from a truncated univariate Gaussian distribution with

density proportional to (see also (A.1))

N (xn ; [L−1 m]n, 1) · iRn

(
ln1 x

(t)
1 + · · · ln(n−1) x

(t)
n−1 + lnn xn

)
(A.2)

where x
(t)
1 , x

(t)
2 , . . . x

(t)
n−1 are fixed values, treated as constants. Equivalently, we sample zn from a truncated

standard normal pdf with density proportional to [see also (A.1)]

wn(zn) = N (zn ; 0, 1) · i
(z

(t)
n,MIN,z

(t)
n,MAX)

(zn) (A.3)

where

z
(t)
n,MIN = (yn,MIN − ln1 x

(t)
1 − · · · − ln(n−1) x

(t)
n−1 − lnn [L−1 m]n)/lnn (A.4a)

z
(t)
n,MAX = (yn,MAX − ln1 x

(t)
1 − · · · − ln(n−1) x

(t)
n−1 − lnn [L−1 m]n)/lnn (A.4b)

and then compute

x(t)
n = [L−1 m]n + zn. (A.5)

Step 1. We sample z1 from univariate probability distribution with density proportional to (A.3) with

n = 1, where

z1,MIN =
y1,MIN − l11 [L−1 m]1

l11
(A.6a)

z1,MAX =
y1,MAX − l11 [L−1 m]1

l11
(A.6b)
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and then compute x
(t)
1 using (A.5) with n = 1.

Therefore, we have reduced the tasks in Steps n, n = 1, 2, . . . , N to sampling zn, n = 1, 2, . . . , N from

the truncated standard normal pdfs (A.3). To apply rejection sampling, we need a “dominating” pdf gn(·),
where gn(·) is easy to sample from and

wn(ξ)  mn gn(ξ)

for all ξ and some positive constant mn, see [41, Ch. 11.1] and [42]. We choose the dominating functions

using heuristic rules similar to those in [37, Sect. 2].

APPENDIX B. COMPUTING x
(0)
n IN SECTION IV

Based on the discussion in Appendix A, we compute x
(0)
n in (4.1b) as follows:

x(0)
n = [L−1 m]n + z(0)

n (B.1a)

where

z(0)
n =

R +1

−1
z N (x ; 0, 1) i

(z
(0)
n,MIN,z

(0)
n,MAX)

(z) dz
R +1

−1
N (x ; 0, 1) i

(z
(0)
n,MIN,z

(0)
n,MAX)

(z) dz
=

1p
2 π

exp[−(z
(0)
n,MIN)2/2] − exp[−(z

(0)
n,MAX)2/2]

Φ(z
(0)
n,MAX) − Φ(z

(0)
n,MIN)

(B.1b)

and, for n = 2, 3, . . . , N ,

z
(0)
n,MIN = (yn,MIN − ln1 x

(0)
1 − · · · − ln(n−1) x

(0)
n−1 − lnn [L−1 m]n)/lnn (B.1c)

z
(0)
n,MAX = (yn,MAX − ln1 x

(0)
1 − · · · − ln(n−1) x

(0)
n−1 − lnn [L−1 m]n)/lnn (B.1d)

and, for n = 1,

z
(0)
1,MIN =

y1,MIN − l11 [L−1 m]1
l11

(B.1e)

z
(0)
1,MAX =

y1,MAX − l11 [L−1 m]1
l11

(B.1f)

see also (A.4) and (A.6).

For z
(0)
n,MIN large (e.g. z

(0)
n,MIN > 7), the above expression can be accurately computed using the expansion

from [45, 26.2.13 on p. 932]:

z(0)
n = (1 − exp{(z(0)

n,MIN)2/2 − (z
(0)
n,MAX)2/2}) · {q(z(0)

n,MIN) − q(z
(0)
n,MAX) exp

⇥
(z

(0)
n,MIN)2/2 − (z

(0)
n,MAX)2/2

⇤
}−1(B.2a)

where

q(z) =
1

z

⇥
1 − 1

z2 + 2
+

1

(z2 + 2) (z2 + 4)
− 5

(z2 + 2) (z2 + 4) (z2 + 6)
+ . . .

⇤
. (B.2b)

Here, (B.2a) can be trivially modified to the case of z
(0)
n,MAX small (e.g. z

(0)
n,MAX < −7), by replacing the

interval (z
(0)
n,MIN, z

(0)
n,MAX) with (−z

(0)
n,MAX,−z

(0)
n,MIN).
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