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Abstract

Goal Recognition Design (GRD) problems involve iden-
tifying the best ways to modify the underlying environ-
ment that the agents operate in, typically by making a
subset of feasible actions infeasible, in such a way that
agents are forced to reveal their goals as early as possible.
Thus far, existing work assumes that the outcomes of the
actions of the agents are deterministic, which might be
unrealistic in real-world problems. For example, wheel
slippage in robots cause the outcomes of their movements
to be stochastic. In this paper, we generalize the GRD
problem to Stochastic GRD (S-GRD) problems, which
handle stochastic action outcomes. We also general-
ize the worst-case distinctiveness (wcd) measure, which
measures the goodness of a solution, to take stochastic-
ity into account. Finally, we introduce Markov decision
process (MDP) based algorithms to compute the wcd and
minimize it by making up to k actions infeasible.

1 Introduction

Plan and goal recognition problems aim to identify the ac-
tual plan or goal of an agent given its behavior. Within
the last decade, researchers have made significant progress
through synergistic integrations of techniques ranging from
natural language processing [Vilain, 1990; Geib and Steed-
man, 2007] to classical planning [Ramı́rez and Geffner, 2009;
2010; 2011]. Plan and goal recognition problems have been
used to model a number of applications ranging from soft-
ware personal assistants and robots that anticipate the needs
of the humans [Oh et al., 2010; 2011a; 2011b; Tavakkoli
et al., 2007; Kelley et al., 2012]; intelligent tutoring sys-
tems that recognize sources of confusion or misunderstand-
ing in students through their interactions with the system
[McQuiggan et al., 2008; Johnson, 2010; Lee et al., 2012;
Min et al., 2014]; and security applications that recognize
terrorists plans [Jarvis et al., 2005].

The existing research in this area primarily focuses on de-
veloping better and more efficient techniques to recognize the
plan or the goal of the user given a sequence of observations
of the user’s actions. For example, imagine a simplistic se-
curity example shown in Figure 1(a), where an agent (e.g., a
potential terrorist) is at E3, it can move in any of the four car-
dinal directions, and its goal is one of three possible goals G1
(at B1), G2 (at A5), and G3 (at C5). Additionally, assume
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Figure 1: Example Problem

that it will move along a shortest path to its goal. Then, if it
moves left to E2, we can deduce that its goal is G1. Similarly,
if it moves right to E4, then its goal is either G2 or G3. How-
ever, if it is moves up to D3, we cannot make any informed
deductions. In fact, if the agent moves along any one of its
shortest paths to goal G3, throughout its entire path, which is
of length 4, we cannot deduce whether its goal is either G2 or
G3! This example illustrates one of the challenges with this
approach, that is, there are often a large number of ambiguous
observations that can be a result of a large number of goals.
As such, it is difficult to uniquely determine the goal of the
agent until a long sequence of actions is observed.

Therefore, Keren et al. [2014] very recently proposed an
orthogonal approach to modify the underlying environment
of the agent, in such a way that the agent is forced to re-
veal its goal as early as possible. They call this problem the
Goal Recognition Design (GRD) problem. For example, if
we block the actions (E3, up), (C4, right), (C5, up) in our
example problem, where we use tuples (s, a) to denote that
action a is blocked from cell s, then the agent can make at
most 2 actions (i.e., right to E4 then up to D4) before its goal
is conclusively revealed. Figure 1(b) shows the blocked ac-
tions. This problem finds itself relevant in many of the same
applications of goal recognition because, typically, the under-
lying environment can be easily modified.

Keren et al. [2014] introduced the notion of worst-case
distinctiveness (wcd), as a goodness measure that assesses
the ease of performing goal recognition within an environ-
ment. The wcd of a problem is the longest sequence of
actions an agent can take without revealing its goal. The
objective in a GRD problem is then to find a subset of
feasible actions to make infeasible such that the resulting



wcd is minimized. In this problem, they make three as-
sumptions: (i) the agents in the system will act optimally
(i.e., agents will move along a shortest path to its goal);
(ii) the outcomes of the actions of agents are deterministic;
and (iii) the environment is fully observable (e.g., the out-
comes of the actions can be observed). Since then, they have
relaxed some of the assumptions [Keren et al., 2015; 2016a;
2016b]. Additionally, researchers have also addressed the
original GRD problem using ASP [Son et al., 2016].

In this paper, we make two extensions to the GRD prob-
lem. The first extension limits the maximum number of fea-
sible actions to make infeasible to k, which is a user-defined
parameter. This extension is identical to the original prob-
lem if k = ∞. The second extension relaxes the second as-
sumption, that is, we assume that the actions of agents can be
stochastic. Our approach lies in the use of Markov decision
processes (MDPs) [Mausam and Kolobov, 2012] to formulate
the planning problem of the agents within the GRD problem.
Our choice is motivated by the fact that MDPs are often de
facto models for representing planning problems with uncer-
tainties. Finally, we also introduce new optimization methods
that can be used to speed up the search.

2 Background

2.1 Classical Planning

A classical planning model [Geffner and Bonet, 2013], can be
represented as a tuple 〈S, s0,A, f,C,G〉, where S is a finite
and discrete state space; s0 is the start state of the agent; A is
the set of actions, and A(s) ⊆ A is the set of actions appli-
cable in each state s ∈ S; f : S ×A → S is a deterministic
state transition function, where s′ = f(s, a) is the successor
state after applying action a ∈ A(s) in state s; C : A → R+

defines the cost for each action; and G is a set of goal states.
A plan π = 〈a1, . . . , an〉 is a sequence of applicable actions
that brings an agent from the starting state s0 to a goal state
g ∈ G. The cost of a plan C(π) =

∑

i C(ai) is the sum
of the cost of each individual action in the plan. The goal is
typically to find a cost-minimal plan π∗ = argminπ C(π).

2.2 Goal Recognition Design (GRD)

A Goal Recognition Design (GRD) problem [Keren et al.,
2014] is represented as a tuple P = 〈D,G〉, where D =
〈S, s0,A, f,C〉 captures the domain information and G is
a set of possible goal states of the agent. The elements in
the tuple D are as they are described in classical planning
except that all actions have the same cost of 1. The worst case
distinctiveness (wcd) of problem P is the length of a longest
sequence of actions π = 〈a1, . . . , ak〉 that is the prefix in
cost-minimal plans π∗

g1
and π∗

g2
to distinct goals g1, g2 ∈ G

Using our example problem of Figure 1(a), a longest
sequence of actions that can lead to two distinct goals
is 〈(E3, up), (D3, up), (C3, right), (C4, right)〉, where we
use tuples (s, a) to denote that action a is taken from cell s.
This sequence of actions can lead to either goals G2 or G3
and is of length 4. Thus, the wcd of the problem is 4.

The objective in GRD is to find a subset of actions Â∗ ⊂
A such that if they are removed from the set of actions A,
then the wcd of the resulting problem is minimized. This

optimization problem is subject to the requirement that the
cost of cost-minimal plans to achieve each goal g ∈ G is the
same before and after removing the subset of actions. More
specifically, the objective is to find:

Â
∗ = argmin

Â⊂A

wcd(P̂ )

subject to C(π∗
g) = C(π̂∗

g) ∀g ∈ G

(1)

where P̂ = 〈D̂,G〉 is the problem with the resulting do-

main D̂ = 〈S, s0,A \ Â, f,C〉 after removing actions Â,
π∗
g is a cost-minimal plan to achieve goal g in the origi-

nal problem P , and π̂∗
g is a cost-minimal plan to achieve

goal g in problem P̂ . For example, blocking the ac-
tions (E3, up), (C4, right), (C5, up) in our example prob-
lem, where we use tuples (s, a) to denote that action a is
blocked from cell s, will reduce the wcd of the problem to 2.
Figure 1(b) shows the actions blocked. Then, the longest se-
quence of actions is 〈(E3, right), (E4, up)〉, which can lead
to goals G2 or G3. Thus, the resulting wcd is 2.

2.3 Markov Decision Process (MDP)

A Stochastic Shortest Path Markov Decision Process (SSP-
MDP) [Mausam and Kolobov, 2012] is represented as a tu-
ple 〈S, s0,A,T,C,G〉. It consists of a set of states S; a
start state s0 ∈ S; a set of actions A; a transition function
T : S×A× S → [0, 1] that gives the probability T (s, a, s′)
of transitioning from state s to s′ when action a is executed;
a cost function C : S × A × S → R+ that gives the cost
C(s, a, s′) of executing action a in state s and arriving in state
s′; and a set of goal states G ⊆ S. The goal states are ter-
minal, that is, T (g, a, g) = 1 and C(g, a, g) = 0 for all goal
states g ∈ G and actions a ∈ A.

An SSP-MDP must also satisfy the following two condi-
tions: (1) There must exist a proper policy, which is a map-
ping from states to actions with which an agent can reach a
goal state from any state with probability 1. (2) Every im-
proper policy must incur an accumulated cost of ∞ from all
states from which it cannot reach the goal with probability 1.
In this paper, we will focus on SSP-MDPs and will thus use
the term MDPs to refer to SSP-MDPs.

A “solution” to an MDP is a policy π, which maps states
to actions. Solving an MDP is to find an optimal policy, that
is, a policy with the smallest expected cost. Value Iteration
(VI) [Bellman, 1957] is one of the fundamental algorithms to
find an optimal policy. It uses a value function V to represent
expected costs. The expected cost of an optimal policy π∗ for
the starting state s0 ∈ S is the expected cost V (s0), and the
expected cost V (s) for all states s ∈ S is calculated using the
Bellman equation [Bellman, 1957]:

V (s) = min
a∈A

∑

s′∈S

T (s, a, s′)
[

C(s, a, s′) + V (s′)
]

(2)

The action chosen by the policy for each state s is then the
one that minimizes V (s).

3 Stochastic GRD Problem

We now describe the Stochastic GRD (S-GRD) problem,
which is an extension of the original GRD problem along two



dimensions. First, it limits the maximum number of actions
to make infeasible to a user-defined parameter k. Second, it
handles uncertainty in the actions of agents. In other words,
an agent executing an action can now transition to multiple
possible successor states with some probability. This exten-
sion is important because it can better model some real-world
applications. For example, assume that the agent in our ex-
ample in Figure 1 is a robot. Then, due to slippage, the robot
has a small probability of staying where it is when it attempts
to move. This characteristic, which cannot be captured by the
original GRD problem, is captured in the S-GRD problem.

An S-GRD problem is also represented as a tuple P =
〈D,G〉 similar to GRD problems, except that the domain in-
formation D = 〈S, s0,A,T,C〉 is now represented similar
to an MDP instead of a classical planning problem. There-
fore, the elements in the tuple D are as they are described in
MDPs. Like in the original GRD problem, we also assume
here that all actions have the same cost of 1 though our model
can be generalized to handle non-uniform costs.

Definition 1 (policy prefix) A policy prefix is a mapping π :
Sπ → A, where s0 ∈ Sπ ⊆ S and, for each s ∈ Sπ \ {s0},
there exists a state sequence 〈s0, s1, . . . , sn = s〉, where
T (si, π(si), si+1) > 0 ∧ si ∈ Sπ .

In other words, a policy prefix is a policy defined only on
some states that are reachable from the start state s0. Fig-
ures 3(a) and 3(b) show examples of policy prefixes for an
optimal policy to reach goal G2.

Definition 2 (boundary states) Given a policy prefix π :
Sπ → A, the set of boundary states Bπ is defined as:

Bπ = {s | ∃T (s′, π(s′), s) > 0 ∧ s′ ∈ Sπ ∧ s /∈ Sπ}

In other words, the set of boundary states is composed of all
states s that are undefined in the policy prefix and whose pre-
decessor state s′ is defined in the policy prefix.

Definition 3 (non-distinctive policy prefix) Given a prob-
lem P = 〈D,G〉, a policy prefix π is a non-distinctive pol-
icy prefix in P if ∃g′, g′′ ∈ G such that g′ 6= g′′ and
π(s) = π∗

g′(s) = π∗
g′′(s) for all states s ∈ Sπ , where π∗

g′

and π∗
g′′ are optimal policies for the problems 〈D, g′〉 and

〈D, g′′〉, respectively, and the goals g′ and g′′ are terminal
states. Otherwise, π is distinctive.

Intuitively, as long as an agent executes a non-distinctive
policy prefix π, it does not reveal its goal. However, the agent
might eventually transition to a boundary state b ∈ Bπ . If it
transitions to goal boundary state b ∈ G and stops executing
any actions, then it has revealed its goal to be state b. If it
transitions to a non-goal boundary state b /∈ G and executes
a particular action in that state, it might have revealed that its
goal is not one of the two goals that define policy prefix π in
Definition 3. For instance, consider distinct goals G2 and G3
in the example problem given in Figure 1. If the actions can
either succeed with probability p or have no effect with proba-
bility 1−p, then Figure 2(a) shows the set of actions (denoted
by arrows) that form all possible non-distinctive policy pre-
fixes to those two goals and Figure 2(b) shows an example of
one non-distinctive policy prefix and the corresponding set of

(a) (b)

Figure 2: Example Non-distinctive Policy Prefixes and
Boundary States for Goals G2 and G3

boundary states (cells shaded in dark grey). In this case, there
is only one boundary state for this policy prefix.

We now need a metric to assess the largest number of ac-
tions an agent can take or, equivalently, the largest cost an
agent can incur before revealing its goal. Since transitions
are stochastic, the number of actions or, equivalently, the cost
incurred can be measured either in in the worst-case maxi-
mum or in the expectation. The worst-case maximum may
be infinite (e.g., when the agent can transition back to its pre-
vious state and, thus, potentially get stuck in a loop), which
prohibits meaningful comparisons. Therefore, in this paper,
we choose to measure in the expectation and use the worst-
case distinctiveness (wcd) as this measure.

Before defining the wcd, let Vπ(s0) denote the expected
cost of reaching a boundary state b ∈ Bπ from the start state
with policy prefix π. It is recursively computed using:1

Vπ(s) =
∑

s′∈S

T (s, π(s), s′) [C(s, π(s), s′) + Vπ(s
′)] (3)

Definition 4 (worst-case distinctiveness) The worst-case
distinctiveness (wcd) of a problem P is defined as:

wcd(P ) = max
π∈Π

Vπ(s0) (4)

where Π is the set of all non-distinctive policy prefixes and
Vπ(s0) is recursively computed using Equation 3.

In other words, the wcd of a problem is the largest expected
cost to reach a boundary state from the start state over all
possible non-distinctive policy prefixes.

The objective in S-GRD problems is identical to the objec-
tive in the original GRD problems except that wcd compu-
tations are now done according to Definition 4 and costs are
measured in the expectation. More formally, the objective is

to find a subset of actions Â∗ ⊂ A:

Â
∗ = argmin

Â⊂A

wcd(P̂ )

subject to Vπ∗

g
(s0) = Vπ̂∗

g
(s0) ∀g ∈ G

|Â∗| ≤ k

(5)

where P̂ = 〈D̂,G〉 is the problem with the domain D̂ =

〈S, s0,A \ Â,T,C〉 after removing actions Â, π∗
g is an op-

timal policy to achieve goal g in the original problem P , and

π̂∗
g is an optimal policy to achieve goal g in problem P̂ .

1The evaluation is done on an MDP where all the boundary states
are terminal goal states.



Algorithm 1: FIND-WCD(P = 〈D,G〉)

1 wcd← 0
2 for g ∈ G do
3 SOLVE-MDP(D, g)
4 Π

∗

g ← {π
∗

g |π
∗

g is an optimal policy to reach g}

5 for g, g′ ∈ G do

6 A
common
g,g′ ← A

cand
g,g′ ← ∅

7 for s ∈ S, π∗

g ∈ Π∗

g , and π∗

g′ ∈ Π∗

g′ do

8 if s is a reachable state with π∗

g and π∗

g′ and

π∗

g(s) = π∗

g′(s) then

9 A
common
g,g′ ← A

common
g,g′ ∪

{

(s, π∗

g(s))
}

10 if s is a reachable state with π∗

g then

11 A
cand
g,g′ ← A

cand
g,g′ ∪

{

(s, π∗

g(s))
}

12 if s is a reachable state with π∗

g′ then

13 A
cand
g,g′ ← A

cand
g,g′ ∪

{

(s, π∗

g′(s))
}

14 wcdg,g′ ← 0
15 Π

common
g,g′ ← CONSTRUCTPOLICIES(Acommon

g,g′ )

16 for π ∈ Π
common
g,g′ do

17 Vπ ← CALCEXPECTEDCOST(π,D,Bπ)
18 if wcdg,g′ < Vπ then
19 wcdg,g′ ← Vπ

20 if wcd < wcdg,g′ then
21 wcd← wcdg,g′

22 return 〈wcd, {wcdg,g′}g,g′∈G, {Acand
g,g′ }g,g′∈G〉

Theorem 1 The Stochastic GRD (S-GRD) problem sub-
sumes the (deterministic) GRD problem when k = ∞.

3.1 Finding the wcd

We now introduce FIND-WCD, which computes the wcd of
a given problem. Algorithm 1 shows the pseudocode of this
algorithm. Essentially, it follows the logic in Definition 4 via
the following high-level steps: (1) Find the set of all pos-
sible non-distinctive policies Π; (2) Calculate the expected
cost Vπ(s0) of each non-distinctive policy π ∈ Π using the
Bellman equation; and (3) Return the largest expected cost,
which is also the wcd of the problem. We now describe these
steps in more detail:

• Step 1: In order to find the set Π, the algorithm first
solves |G| MDPs, where each MDP models the problem
that contains only a single terminal goal g ∈ G, and
stores all optimal policies for each MDP in Π∗

g (lines 2-
4). For example, if we model our example deterministic
problem of Figure 1 with MDPs, then Figure 3 shows
two optimal policies to move to goal G2 (Figures 3(a)
and 3(b)) and goal G3 (Figures 3(c) and 3(d)).

Then, if two optimal policies π∗
g and π∗

g′ for two dis-

tinct goals g, g′ ∈ G maps a particular state s to the
same action a and s is reachable with both policies, then
the state-action pair (s, a) is common between the two
policies and is stored in the set Acommon

g,g′ (lines 5-9). In

our example, the pairs (E3, up), (D3, up), (D3, right)
are example common pairs stored in A

common
G2,G3

. Fig-
ure 3(e) shows the complete set of all state-action pairs

in A
common
G2,G3

.

After iterating through all pairs of distinct goals, all
common state-action pairs are stored. Finally, the al-
gorithm calls CONSTRUCTPOLICIES to construct the
set of all policies Πcommon

g,g′ from each set A
common
g,g′

(line 15). The check for whether a policy reaches bound-
ary states can be done using depth-first search. Fig-
ures 3(c) and 3(d) are two example policies in Πcommon

G2,G3
.

The union of all these sets of policies for all pairs of dis-
tinct goals form the set of all non-distinctive policies Π.2

We do not represent or construct this set explicitly.

• Step 2: Then, the algorithm calculates the expected cost
Vπ(s0) for each non-distinctive policy π ∈ Πcommon

g,g′ for

each pair of goals g, g′. It does so by calling CALCEX-
PECTEDCOST, which recursively computes the Bellman
equation (lines 16-17).

• Step 3: Finally, it stores the largest expected cost in the
variable wcd (lines 1, 14, 18-21) and returns it (line 22).

We do not describe lines 10-13 as they are used in the function
to reduce the wcd. If the goal is to only compute the wcd,
these lines can be omitted.

3.2 Reducing the wcd

We now describe REDUCE-WCD, which finds a set of (up
to) k actions, represented as (up to) k state-action pairs, such
that their removal from the problem will minimize the wcd.
Essentially, it follows the logic in Equation 5 via the follow-
ing high-level steps: (1) Find the wcd of the original problem;
(2) Find the set of candidate set of (up to) k state-action pairs
that can be removed; (3) For each candidate set, calculate the
resulting wcd if the state-action pairs in the set are removed;
and (4) Return the candidate set with the smallest resulting
wcd. We now describe these steps in more detail.

• Step 1: The algorithm calls FIND-WCD to compute the
wcd of the original problem (line 23).

• Step 2: In order to find the set of candidate sets, it
first finds the set Acand

g,g′ for each pair of distinct goals

g, g′ ∈ G and takes the union of all these sets over all
goals g, g′ ∈ G (line 25). The construction of each
set Acand

g,g′ is done in FIND-WCD (lines 10-13). The
set contains the state-action pairs that are in the optimal
policies to either goals g or g′ and are reachable with the
optimal policies. State-action pairs that are not in the
optimal policies or are not reachable need not be con-
sidered since removing them will not reduce the wcd.
For example, Figures 3(f) and 3(g) show A

cand
G1,G3

and

A
cand
G2,G3

, respectively, in our example problem.

After finding all these sets in FIND-WCD, the algo-
rithm takes the union of all these sets over all pairs of
distinct goals g, g′ ∈ G and stores the union in A

cand

(line 25). This union now contains all candidate state-
action pairs that can be removed. For example, Fig-
ure 3(h) shows Acand in our example problem. If k = 1,

2To be precise, it does not include non-distinctive policies that
are sub-policies of another non-distinctive policy since they do not
affect the correctness of the wcd computations.
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Figure 3: Example Partial Trace

Algorithm 2: REDUCE-WCD(P = 〈D,G〉, k)

23 〈wcd,{wcdg,g′}g,g′∈G,{Acand
g,g′ }g,g′∈G〉←FIND-WCD(P )

24 Â
∗ ← ∅

25 A
cand ←

⋃

g,g′∈G
A

cand
g,g′

26 Q← set of all i ≤ k state-action combinations from A
cand

27 while Q 6= ∅ do

28 Â← an element in Q

29 Q← Q \ Â
30 if ∀g, g′ ∈ G, where wcdg,g′ ≥ wcd,

∃(ŝ, â) : (ŝ, â) ∈ A ∧ (ŝ, â) ∈ Â
cand
g,g′ then

31 D̂ → 〈S, s0,T,A \ Â,C〉
32 for g ∈ G do
33 V ∗(s0)← SOLVE-MDP(D, g)

34 V̂ ∗(s0)← SOLVE-MDP(D̂, g)

35 if V ∗(s0) 6= V̂ ∗(s0) then
36 go to Line 27

37 〈wcd
Â
, ·, ·〉 ← FIND-WCD(〈D̂,G〉)

38 if wcd
Â

< wcd then
39 wcd← wcd

Â

40 Â
∗ ← Â

41 return 〈Â∗, wcd〉

one can iterate through all state-action pairs in this set
and check for the one that minimizes the wcd. How-
ever, if k > 1, the algorithm constructs a set Q, which

contains all
⋃k

i=1

(

|Acand|
i

)

combinations of state-action
pairs (line 26).

• Step 3: We first describe an unoptimized version of this
step, which skips line 30, and describe the optimized
version later. The algorithm evaluates each set of (up

to) k state-action pairs Â in the candidate set Q and en-
sures that the removal of these state-action pairs will not

change the expected cost to reach any of the goals g ∈ G

(lines 27-29, 31-36). If it changes the expected cost for
any goal, these state-action pairs are not considered and
the algorithm iterates to the next set of state-action pairs.
If it does not change the expected cost for any goal,
then the algorithm computes the wcd if these state-action
pairs are removed (line 37). Note that the FIND-WCD
function call here should not include lines 10-13.

• Step 4: Finally, it stores the best wcd reduction and the
corresponding set of state-action pairs (lines 38-40) and
returns it (line 41).

We now describe the optimization on line 30 for Step 3. For
each pair of distinct goals g, g′ ∈ G, the algorithm computes
the wcd of a subproblem that considers only these goals and
ignores all other goals (lines 18-19). This wcd value is stored
in variable wcdg,g′ . Additionally, observe that in order to
reduce the wcd of the original problem, then at least one state-
action pair in candidate set Acand

g,g′ must be removed for all

pairs of distinct goals g, g′ ∈ G, where wcdg,g′ is the wcd
of the original problem. Otherwise, all the original actions
that can lead an agent to either goals are not removed, and
the wcd will remain the same. For example, if k = 3, then
removing the actions {(E2, up), (D2, up), (C2, up)} will not
reduce the wcd since none of those actions are in A

cand
G2,G3

and

wcdG2,G3 equals the wcd of the problem.

Theorem 2 formalizes the optimization on line 30, where
the algorithm ignores candidate k state-action pairs that do
not include at least one state-action pair in A

cand
g,g′ for all goals

g, g′ ∈ G whose wcdg,g′ is greater than the current best wcd.
We believe this optimization will also apply to other search-
based algorithms that searches the space of actions to reduce
the wcd, such as those proposed by [Keren et al., 2014].

Theorem 2 The wcd of the problem wcd∗ will not be reduced

by removing up to k state-action pairs Â, where @(s, a) ∈

Â : (s, a) ∈ A
cand
g,g′ ∧ wcdg,g′ ≥ wcd∗ ∧ g 6= g′.
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N 4-12-48 10.0→ 10.0 223 217 10.0→ 8.9 3,933 3,909 10.0→ 8.9 46,286 46,718

8-18-39 18.9→ 18.9 1 1 18.9→ 18.9 1 1 18.9→ 18.9 1 1
19-7-55 43.3→ 43.3 2 2 43.3→ 43.3 2 2 43.3→ 43.3 3 3
9-15-44 4.4→ 4.4 1 1 4.4→ 3.3 2 2 4.4→ 3.3 5 4

IP
C

–
G

R
ID

+

5-5-4 4.44→ 2.22 179 179 4.44→ 2.22 294 226 4.44→ 2.22 1,497 1,034
10-5-4 13.33→ 11.11 2,097 2,078 13.33→ 11.11 3,327 3,328 13.33→ 11.11 30,561 31,507
5-10-4 12.22→ 8.89 3,864 3,842 12.22→ 8.89 4,984 4,241 12.22→ 8.89 35,010 20,745
10-10-4 20.00→ 18.89 112,205 111,842 20.00→ 15.56 117,207 114,449 — timeout timeout

B
L

O
C

K
-

W
O

R
D

S 5-3 3.33→ 3.33 4 4 3.33→ 3.33 18 19 3.33→ 3.33 61 60
6-5 4.44→ 2.22 376 321 4.44→ 2.22 4,082 718 4.44→ 2.22 25,302 6,996
7-8 11.11→ 11.11 13,649 13,619 — timeout timeout — timeout timeout
7-11 7.78→ 7.78 21,268 5,781 7.78→ 7.78 timeout 159,924 — timeout timeout

L
O

G
IS

-
T

IC
S

2-2-2-2 6.67→ 6.67 4 4 6.67→ 6.67 29 31 6.67→ 6.67 131 129
2-2-3-3 6.67→ 6.67 112 111 6.67→ 6.67 1,131 971 6.67→ 6.67 26,657 24,261
3-3-2-2 6.67→ 6.67 1,638 1,629 6.67→ 3.33 4,110 4,040 6.67→ 3.33 41,891 42,254
3-3-3-3 — timeout timeout — timeout timeout — timeout timeout

Table 1: Experimental Results for Stochastic GRD Problems

Finally, solving S-GRDs is at least NP-hard as one of the
subroutines, solving the Stochastic Longest Path (SLP) prob-
lem to compute the wcd, is NP-hard [Kolobov, 2013].

4 Experimental Results

We evaluated our REDUCE-WCD algorithm with and with-
out the optimization on Line 30 (labeled R-W(o) and R-
W(¬o), respectively) on the same four deterministic bench-
marks domains [Keren et al., 2014], except that we modified
them to allow for stochastic actions, where each action can
transition to its deterministic successor with probability 0.9
and stay in the same state with probability 0.1. The four
domains are: (1) GRID-NAVIGATION, where each instance
is defined by the x- and y-dimensions and the number of
cells; (2) IPC-GRID

+, where each instance is defined by the x-
and y-dimensions and the number of locks/keys; (3) BLOCK-
WORDS, where each instance is defined by the number of
blocks and words/goals; and (4) LOGISTICS, where each in-
stance is defined by the number of packets, places, trucks,
and airplanes. Table 1 tabulates the results. The experiments
were conducted on a 3.1GHz quad-core machine with 6GB
of RAM and a timeout of 2 days was set.

• As expected, when k increases, the runtimes increased
but the wcd was reduced in more cases. For the instances
where the wcd remained unchanged, we suspect that it
is because of one of the following reasons: (1) the wcd
cannot be reduced further even if k = ∞, or (2) the
wcd can only be reduced with a significantly larger k.
For the second and third GRID-NAVIGATION instances,
we have empirically verified that it is the former case as
there is only one optimal policy to reach each of the goal
and blocking any action will result in a suboptimal pol-
icy. This is also the reason why the runtimes for these
instances are very small. For the other instances, es-
pecially those with significantly larger runtimes, it may
be the latter case. However, since S-GRDs are offline

problems, if a larger k is necessary, one could run the
algorithm for a longer amount of time.

• GRID-NAVIGATION and IPC-GRID
+ are the two do-

mains with a larger number of instances with wcd reduc-
tions. In the BLOCK-WORDS domain, words (goals) can
differ in only one letter. As a result, the goals are very
similar to one another and it is difficult to reduce the wcd
with small values of k. In the LOGISTICS domain, the
optimal policies for the different goals are already rather
distinct. As a result, it is also difficult to reduce the wcd.

• In general, the runtimes of R-W(o) are smaller than the
runtimes of R-W(¬o) due to the optimization savings.
These savings are up to 82%. However, the runtimes of
the R-W(o) can be larger than the runtimes of R-W(¬o),
indicating that in those instances, little pruning is done
and time is wasted on overhead. The additional overhead
results in at most 8% more runtime.

• While the runtime of R-W can be large, this is not a ma-
jor concern since S-GRD problems are offline problems.

5 Conclusions and Future Work

A new and novel approach to goal recognition is Goal Recog-
nition Design (GRD), where the problem is to modify the un-
derlying environment such that agents are forced to reveal
their goals as early as possible. However, the GRD model
and existing GRD algorithms assume that the outcomes of
agent actions are deterministic. In this paper, we propose the
Stochastic GRD (S-GRD) model, which subsumes GRD and
allows outcomes of agent actions to be stochastic, as well as
introduce an MDP-based approach to solve this problem.

For future work, we will consider other metrics aside from
wcd such as those that measure the mean and variance of
the distribution of the expected cost over all possible non-
distinctive policy prefixes. We will also consider other pos-
sible definitions for non-distinctive policy prefixes such as
those that are defined over all goals instead of pairs of goals.
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