
Proactive Dynamic Distributed Constraint Optimization
∗

Khoi D. Hoang†, Ferdinando Fioretto†, Ping Hou†, Makoto Yokoo?, William Yeoh†, Roie Zivan�

†Department of Computer Science, New Mexico State University, USA
{khoang, ffiorett, phou, wyeoh}@cs.nmsu.edu
?Department of Informatics, Kyushu University, Japan

yokoo@inf.kyushu-u.ac.jp
�Department of Industrial Engineering and Management, Ben Gurion University of the Negev, Israel

zivanr@cs.bgu.ac.il

ABSTRACT

Current approaches that model dynamism in DCOPs solve a se-

quence of static problems, reacting to changes in the environment

as the agents observe them. Such approaches thus ignore possi-

ble predictions on future changes. To overcome this limitation, we

introduce Proactive Dynamic DCOPs (PD-DCOPs), a novel for-

malism to model dynamic DCOPs in the presence of exogenous

uncertainty. In contrast to reactive approaches, PD-DCOPs are able

to explicitly model the possible changes to the problem, and take

such information into account proactively, when solving the dy-

namically changing problem. The additional expressivity of this

formalism allows it to model a wider variety of distributed opti-

mization problems. Our work presents both theoretical and prac-

tical contributions that advance current dynamic DCOP models:

(i) we introduce the PD-DCOP model, which explicitly captures

dynamic changes of the DCOP over time; (ii) we discuss the com-

plexity of this new class of DCOPs; and (iii) we develop both exact

and approximation algorithms with quality guarantees to solve PD-

DCOPs proactively.

Keywords

Distributed Constraint Optimization; DCOP; Dynamic DCOP

1. INTRODUCTION
Distributed Constraint Optimization Problems (DCOPs) are prob-

lems where agents need to coordinate their value assignments to

maximize the sum of the resulting constraint utilities [17, 34].

DCOPs have emerged as one of the prominent multi-agent archi-

tectures to govern the agents’ autonomous behavior in distributed

optimization problems. The model represents a powerful approach

to the description and solution of many practical problems, serving

several applications such as distributed scheduling, coordination of

unmanned air vehicles, smart grid electricity networks, and sensor

networks [15, 11, 28, 32, 13, 16, 3, 7, 36]. In many distributed

∗
The team from NMSU is partially supported by NSF grants 1345232 and

1540168. The views and conclusions contained in this document are those
of the authors and should not be interpreted as representing the official poli-
cies, either expressed or implied, of the sponsoring organizations, agen-
cies, or the U.S. government. Makoto Yokoo is partially supported by JSPS
KAKENHI Grant Number 24220003.

Appears in: Proceedings of the 15th International Conference on Au-

tonomous Agents and Multiagent Systems (AAMAS 2016),

J. Thangarajah, K. Tuyls, C. Jonker, S. Marsella (eds.),

May 9–13, 2016, Singapore.

Copyright c© 2016, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

problems of interest, agents interact in complex, uncertain, and dy-

namic environments. For example, in distributed meeting schedul-

ing, participants could change their preferences and priorities over

time. In disaster management, new information (e.g., weather fore-

casts, priorities on buildings to evacuate) typically becomes avail-

able in an incremental manner. Thus, the information flow modi-

fies the environment over time. Unfortunately, the classical DCOP

paradigm is unable to model problems that change over time.

Consequently, researchers have introduced Dynamic DCOPs (D-

DCOPs) [23, 24, 12, 33], where utility functions can change dur-

ing the problem solving process. These models make the common

assumption that information on how the problem might change is

unavailable. As such, existing approaches react to the changes in

the problem and solve the current problem at hand. However, in

several applications, the information on how the problem might

change is indeed available, or predictable, within some degree of

uncertainty. We provide one such example, a distributed meeting

scheduling problem, as our motivating example in Section 3.

Therefore, in this paper, (i) we introduce Proactive Dynamic

DCOPs (PD-DCOPs), which explicitly model how the DCOP will

change over time; (ii) we discuss the complexity of this new class of

DCOPs; and (iii) we develop exact and approximation algorithms

with quality guarantees to solve PD-DCOPs proactively.

2. BACKGROUND
We now provide background on the regular and dynamic DCOPs

as well as the regular and super-stabilizing DPOP algorithms.

2.1 DCOPs
A Distributed Constraint Optimization Problem (DCOP) is a tuple

〈A,X,D,F, α〉, where A = {ai}
p
i=1 is a set of agents; X =

{xi}
n
i=1 is a set of decision variables; D = {Dx}x∈X is a set of

finite domains and each variable x ∈ X takes values from the set

Dx ∈ D; F = {fi}
m
i=1 is a set of utility functions, each defined

over a set of decision variables: fi :
∏

x∈xfi Dx → R
+ ∪ {⊥},

where xfi ⊆ X is scope of fi and ⊥ is a special element used to

denote that a given combination of values for the variables in xfi

is not allowed; and α : X → A is a function that associates each

decision variable to one agent.

A solution σ is a value assignment for a set xσ ⊆ X of vari-

ables that is consistent with their respective domains. The util-

ity F(σ) =
∑

f∈F,xf⊆xσ
f(σ) is the sum of the utilities across

all the applicable utility functions in σ. A solution σ is complete

if xσ = X. The goal is to find an optimal complete solution

x∗ = argmaxx F(x).
Given a DCOP P , G = (X, E) is the constraint graph of P ,

where {x, y} ∈ E iff ∃fi ∈ F such that {x, y} = xfi . A DFS

pseudo-tree arrangement for G is a spanning tree T = 〈X, ET 〉 of

G such that if fi ∈F and {x, y}⊆xfi , then x and y appear in the

same branch of T . We use N(ai) = {aj ∈ A | {xi, xj} ∈ E} to

denote the neighbors of agent ai.

2.2 Dynamic DCOP
A Dynamic DCOP (D-DCOP) is defined as a sequence of DCOPs

with changes between them, without an explicit model for how the

DCOP will change over time. Solving a D-DCOP optimally means

finding a utility-maximal solution for each DCOP in the sequence.

Therefore, this approach is reactive since it does not consider fu-

ture changes. Its advantage is that solving a D-DCOP is no harder

than solving h DCOPs, where h is the horizon of the problem. Re-

searchers have used this approach to solve D-DCOPs, where they

introduce search- and inference-based approaches that are able to

reuse information from previous DCOPs to speed up the search

for the solution for the current DCOP [23, 33]. Alternatively, a

proactive approach predicts future changes in the D-DCOP and

finds robust solutions that require little or no changes despite fu-

ture changes.

Researchers have also proposed other models for D-DCOPs in-

cluding a model where agents have deadlines to choose their val-

ues [24], a model where agents can have imperfect knowledge

about their environment [12], and a model where changes in the

constraint graph depends on the value assignments of agents [36].

2.3 DPOP and S-DPOP
The Distributed Pseudo-tree Optimization Procedure (DPOP) [22]

is a complete inference algorithm composed of three phases:

• Pseudo-tree Generation: The agents build a pseudo-tree [8].

• UTIL Propagation: Each agent, starting from the leafs of the

pseudo-tree, computes the optimal sum of utilities in its subtree

for each value combination of variables in its separator.1 It does

so by adding the utilities of its functions with the variables in its

separator and the utilities in the UTIL messages received from

its children agents, and projecting out its own variables by opti-

mizing over them.

• VALUE Propagation: Each agent, starting from the pseudo-tree

root, determines the optimal value for its variables. The root

agent does so by choosing the values of its variables from its

UTIL computations.

Super-stabilizing DPOP (S-DPOP) [23] is a self-stabilizing ex-

tension of DPOP, where the agents restart the DPOP phases when

they detect changes in the problem. S-DPOP makes use of infor-

mation that is not affected by the changes in the problem.

3. MOTIVATING DOMAIN
We now introduce a distributed dynamic meeting scheduling prob-

lem, which will serve as a representative domain to motivate our

work. In a distributed meeting scheduling problem [15], a set of M

weekly meetings need to be scheduled between members of an or-

ganization (e.g., employees of a company; students, faculty mem-

bers, and staff of a university), taking restrictions in their availabil-

ity as well as their time and location preferences into account. For

a meeting m ∈ M, Am is the set of attendees to the meeting, sm is

the start time of the meeting, dm is its duration, and lm is its loca-

tion. Typically, the attendees commit to a meeting time. However,

certain exogenous factors may affect the meeting time preferences

of some participants. For instance, depending on the location and

1
The separator of xi contains all ancestors of xi in the pseudo-tree that are

connected to xi or one of its descendants.

time of the meeting, traffic conditions may cause delays that should

be taken into account, as they could cause cascading effects.

In a typical DCOP formulation, meeting starting times are mod-

eled as decision variables of the agents. Thus, for a given meet-

ing m, each agent a ∈ Am, controls a pair of decision variables,

xsm , xlm , whose values represent possible start times sm and loca-

tions lm for the meeting m. All agents participating in meeting m

need to agree upon a given meeting time and location. This condi-

tion can be modeled by imposing an equality constraints on the val-

ues of the variables xsm , and xlm controlled by the agents in Am.

Agent preferences on the time and location for a given meeting can

be modeled as unary constraints involving the variable describing

the desired meeting. The goal is to find a feasible weekly schedule

that maximizes the utility over all attendees.

Typical weekly meeting schedules may be adjusted based on

changes of the meeting participants’ preferences. To address such

a requirement, one can use a Dynamic DCOP formulation, where

a new DCOP problem, representing the scheduling problem for a

single week, can be modeled according to the previous formulation

and solved, as soon as some agent’s meeting preference changes.

However, these formulations exhibit several limitations: (i) they

fail to capture the presence of exogenous factors (e.g., traffic con-

ditions) in the dynamic aspect of the problem, and (ii) they do not

take account the inconvenience of the participants to change their

schedule, when the preference of some agents are updated. Our

proposed PD-DCOP model alleviates these limitations by acting

proactively during the problem resolution, which allows us to make

a step forward towards more refined dynamic solutions.

4. PD-DCOP MODEL
A Proactive Dynamic DCOP (PD-DCOP) is a tuple

〈A,X,D,F, h,T, c, γ, p0Y, α〉, where:

• A = {ai}
p
i=1 is a set of agents.

• X = {xi}
n
i=1 is a mixed set of decision and random vari-

ables. To differentiate between decision variables and random

variables, we use Y ⊆ X to denote the set of random variables

that model uncontrollable stochastic events (e.g., traffic, weather,

malfunctioning devices).

• D = {Dx}x∈X is a set of finite domains. Each variable

x ∈ X takes values from the set Dx ∈ D. We also use

Ω = {Ωy}y∈Y ⊆ D to denote the set of event spaces for the

random variables (e.g., different traffic conditions, weather con-

ditions, or stress levels to which a device is subjected to) such

that each y ∈ Y takes values in Ωy .

• F = {fi}
m
i=1 is a set of reward functions, each defined over

a mixed set of decision variables and random variables: fi :
∏

x∈xfi Dx → R
+ ∪ {⊥}, where xfi ⊆ X is scope of fi and

⊥ is a special element used to denote that a given combination

of values for the variables in xfi is not allowed.

• h ∈ N is a finite horizon in which the agents can change the

values of their variables.

• T = {Ty}y∈Y is the set of transition functions Ty : Ωy×Ωy →
[0, 1] ⊆ R for the random variables y ∈ Y, describing the prob-

ability for a random variable to change its value in successive

time steps. For a time step t > 0, and values ωi ∈ Ωy, ωj ∈ Ωy ,

Ty(ωi, ωj) = P (yt = ωj | yt−1 = ωi), where yt denotes the

value of the variable y at time step t, and P is a probability mea-

sure. Thus, Ty(ωi, ωj) describes the probability for the random

variable y to change its value from ωi at a time step t−1 to ωj at

a time step t. Finally,
∑

ωj∈Ωy
Ty(ωi, ωj) = 1 for all ωi ∈ Ωy .

• c ∈ R
+ is a switching cost, which is the cost associated with the

change in the value of a decision variable between time steps.

• γ ∈ [0, 1) is a discount factor, which represents the decrease in

the importance of rewards/costs over time.

• p0Y = {p0y}y∈Y is a set of initial probability distributions for the

random variables y ∈ Y.

• α : X\Y → A is a function that associates each decision vari-

able to one agent. We assume that the random variables are not

under the control of the agents and are independent of decision

variables. Thus, their values are solely determined according to

their transition functions.

Throughout this paper, we refer to decision (resp. random) vari-

ables as with the letter x (resp. y). We also assume that each agent

controls exactly one decision variable (thus, α is a bijection), and

that each reward function fi ∈ F associates with at most one ran-

dom variable yi.
2

The goal of a PD-DCOP is to find a sequence of h + 1 assign-

ments x∗ for all the decision variables in X \Y:

x
∗ = argmax
x=〈x0,...,xh〉∈Σh+1

Fh(x) (1)

Fh(x) =

h−1
∑

t=0

γ
t
[

F t
x (x

t) + F t
y (x

t)
]

(2)

−
h−1
∑

t=0

γ
t
[

c ·∆(xt
,x

t+1)
]

(3)

+ F̃x(x
h) + F̃y(x

h) (4)

where Σ is the assignment space for the decision variables of the

PD-DCOP, at each time step. Equation (2) refers to the optimiza-

tion over the first h time steps, with:

F t
x(x) =

∑

fi∈F\FY

fi(xi) (5)

F t
y(x) =

∑

fi∈FY

∑

ω∈Ωyi

fi(xi|yi=ω) · p
t
yi
(ω) (6)

where xi is an assignment for all the variables in xfi ; we write

xi|yi=ω to indicate that the random variable yi ∈ xfi takes on the

event ω ∈ Ωyi ; FY ={fi∈F |xfi ∩Y 6=∅} is the set of functions

in F that involve random variables; ptyi(ω) is the probability for

the random variable yi to assume value ω at time t, and defined as

p
t
yi
(ω) =

∑

ω′∈Ωyi

Tyi(ω
′
, ω) · pt−1

yi
(ω′) (7)

Equation (3) considers the penalties due to the changes in the de-

cision variables’ values during the optimization process, where

∆:Σ×Σ→N is a function counting the number of assignments to

decision variables that differs from one time step to the next.

Equation (4) refers to the optimization over the last time step,

which further accounts for discounted future rewards:

F̃x(x) =
γh

1− γ
Fh

x (x) (8)

F̃y(x) =
∑

fi∈FY

∑

ω∈Ωyi

f̃i(xi|yi=ω) · p
h
yi
(ω) (9)

f̃i(xi|yi=ω) = γ
h · fi(xi|yi=ω) (10)

+ γ
∑

ω′∈Ωyi

Tyi(ω, ω
′) · f̃i(xi|yi=ω′)

The goal of a PD-DCOP is to find an assignment of values to its

decision variables that maximizes the sum of two terms. The first

2
If multiple random variables are associated with a reward function,

w.l.o.g., they can be merged into a single variable.

term maximizes the discounted net utility, that is, the discounted re-

wards for the functions that do not involve exogenous factors (Fx)

and the expected discounted random rewards (Fy) minus the dis-

counted penalties over the first h time steps. The second term max-

imizes the discounted future rewards for the problem.

While the PD-DCOP model can be used to capture the pres-

ence of exogenous factors in the dynamic aspect of the problem,

it can also model dynamic changes to the DCOP constraint graph,

through the transition functions. In particular, the deletion of a

constraint will force the random variable associated with that con-

straint to transit to a 0 reward value for all decision variables; the

addition of a constraint can be handled by defining a 0 reward con-

straint in the model from the start, and updating its reward when

the constraint is added.

4.1 Modeling the Motivating Domain
PD-DCOPs can naturally handle the dynamic characteristic of the

distributed dynamic meeting scheduling problem that we use as our

motivating domain. Uncontrollable events, such as traffic condi-

tions, affecting the meeting times of agents can be modeled via

random variables. In particular, in our model, each pair of agent’s

variables xsm and xlm , describing the time and location of a meet-

ing m, is associated to a random variable ym ∈ Y, describing the

different traffic conditions that can affect agents’ time and location

preferences for the meeting. Traffic predictions are often available

and they are modeled via the transition functions. Additionally,

rescheduling meetings is inconvenient for the meeting participants

and this inconvenience is modeled via switching costs for each at-

tendee, imposed when a meeting is forced to be rescheduled. Fi-

nally, the PD-DCOP horizon captures the horizon (i.e., number of

weeks) of the scheduling problem (e.g., the DCOP problem of each

time step corresponds to the scheduling problem for a single week).

4.2 Theoretical Properties
We now describe some of the theoretical properties of PD-DCOPs.

THEOREM 1. Solving a PD-DCOP is PSPACE-complete (-hard)

if the horizon h is polynomial (exponential) in |X|.

PROOF: We first consider the case when h is polynomial in |X|:
Membership in PSPACE follows from the existence of a naive

depth-first search to solve PD-DCOPs, where a non-deterministic

branch is opened for each complete assignment of the PD-DCOP’s

decision variables and for each time step 0 ≤ t ≤ h. The algorithm

requires linear space in the number of variables and horizon length.

We reduce the satisfiability of quantified Boolean formula (QSAT)

to a PD-DCOP with 0 horizon. Each existential Boolean variable

in the QSAT is mapped to a corresponding decision variable in

the PD-DCOP, and each universal Boolean variable in the QSAT

is mapped to a PD-DCOP random variable. The domains Dx of all

variables x∈X are the sets of values {0, 1}, corresponding respec-

tively to the evaluations, false and true, of the QSAT variables. The

initial probability distribution p0y of each PD-DCOP random vari-

able y∈Y is set to as the uniform distribution. Each QSAT clause

c is mapped to a PD-DCOP reward function fc, whose scope in-

volves all and only the PD-DCOP-corresponding boolean variables

appearing in c, and such that:

fc(x
c) =

{

1, if c(xc)= true

⊥, otherwise.

where c(xc) denotes the instantiation of the values of the variables

in xc to the truth values of the corresponding literals of c. In other

words, a clause is satisfied iff the equivalent reward function pre-

serves its semantics. The choices for, the switching cost, the dis-

count factor γ, and the transition function Ty , for each y ∈ Y, of

the PD-DCOP, are immaterial. The reduction is linear in the size

of the original quantified Boolean formula. The quantified Boolean

formula is satisfiable iff the equivalent PD-DCOP has at least one

solution x whose cost F(x) 6= ⊥.

We next consider the case when h is exponential in X: In such

case solving PD-DCOPs is PSPACE-hard as storing a solution re-

quires space exponential in |X|. 2

Absolute Error Bound: Let U∞ denote the optimal solution

quality with an infinite horizon and Uh denote the optimal so-

lution quality with a finite horizon h. Thus, ε ≥ U∞ − Uh

and we first describe this error bound. Let’s define F∆ =
max
y∈Ω

max
x∈Σ

(F(x∗ ∪ y)− F(x ∪ y)), where x and y are assign-

ments of values to all decision and random variables, respectively;

F is the overall reward function for a (regular) DCOP in the PD-

DCOP; and x∗ is an optimal value assignment of decision variables

for that regular DCOP given value assignment y.

THEOREM 2. The absolute error bound ε equals γh

1−γ
F∆.

PROOF: Let x̌∗ = 〈x̌∗
0, . . . , x̌

∗
h, x̌

∗
h+1, . . .〉 be the vector of as-

signments that maximizes U∞.

U
∞ =

∞
∑

t=0

γ
t
[

F t
x(x̌

∗
t) + F t

y(x̌
∗
t)− c ·∆(x̌∗

t , x̌
∗
t+1)

]

Ignoring switch costs after time h, we get U∞
+ and U∞≤U∞

+ , as:

U
∞
+ =

h−1
∑

t=0

γ
t
[

F t
x(x̌

∗
t) + F t

y(x̌
∗
t)− c ·∆(x̌∗

t , x̌
∗
t+1)

]

+
∞
∑

t=h

γ
t
[

F t
x(x̌

∗
t) + F t

y(x̌
∗
t)
]

Let x∗=〈x∗
0,. . .,x

∗
h〉 be the vector of assignments maximizing Uh

,

U
h =

h−1
∑

t=0

γ
t
[

F t
x(x

∗
t) + F t

y(x
∗
t)− c ·∆(x∗

t ,x
∗
t+1)

]

+

∞
∑

t=h

γ
t
[

F t
x(x

∗
h) + F t

y(x
∗
h)
]

For x̌∗, if we change the decision variable assignment after time

step h to x̌∗
h, as 〈x̌∗

0, . . . , x̌
∗
h, x̌

∗
h, . . .〉, we get U∞

− :

U
∞
− =

h−1
∑

t=0

γ
t
[

F t
x(x̌

∗
t) + F t

y(x̌
∗
t)− c ·∆(x̌∗

t , x̌
∗
t+1)

]

+
∞
∑

t=h

γ
t
[

F t
x(x̌

∗
h) + F t

y(x̌
∗
h)
]

Since the value assignments of x̌ are identical for all time steps

t ≥ h, U∞
− ≤ Uh. Therefore, we get U∞

− ≤ Uh ≤ U∞ ≤ U∞
+ .

Next, we know that

U
∞
+ − U

∞
− =

∞
∑

t=h

γ
t
[

F t
x(x̌

∗
t) + F t

y(x̌
∗
t)−F t

x(x̌
∗
h) + F t

y(x̌
∗
h)
]

Given a value assignment y for all random variables, the PD-

DCOP becomes a regular DCOP, where one only needs to find

value assignment of decision variables and maximize the total

utility. For this DCOP, there is a utility difference between the

best assignment and the worst assignment for all decision vari-

ables. Among all these utility differences, the maximum one is

F∆ = max
y∈Ω

max
x∈Σ

(F(x∗ ∪ y)− F(x ∪ y)), where x and y are

assignments of values to all decision and random variables, respec-

tively; F is the overall reward function for a (regular) DCOP in the

PD-DCOP; and x∗ is an optimal value assignment of decision vari-

ables for that regular DCOP given value assignment y. Thus, it is

the maximum difference in overall reward over all combination of

value assignments x and y.

Notice that the quantity F t
x(x̌

∗
t)+F t

y(x̌
∗
t)−F t

x(x̌
∗
h)+F t

y(x̌
∗
h)

is the utility difference between the value assignment x̌∗
t and x̌∗

h

for the regular DCOPs in time step t. So, we have:

F t
x(x̌

∗
t) + F t

y(x̌
∗
t)−F t

x(x̌
∗
h) + F t

y(x̌
∗
h) ≤ F

∆

which concludes the proof. 2

COROLLARY 1. Given a maximum acceptable absolute error ε,

the minimum horizon h is logγ
(1−γ)·ε

F∆ .

Upper Bound on Optimal Quality: We now describe an up-

per bound on the optimal solution quality Fh(x∗). Let x̂∗ =
〈x̂∗

0, . . . , x̂
∗
h〉 be the vector of assignments, where:

x̂
∗
t =







argmax
x∈Σ

γ
t
[

F t
x (x)+F t

y (x)
]

if 0≤ t<h

argmax
x∈Σ

[

F̃x(x)+F̃y(x)
]

otherwise

and F̂h(x) =
∑h−1

t=0 γt
[

F t
x (x)+F t

y (x)
]

+F̃x(x)+F̃y(x).

THEOREM 3. ∀x ∈ Σh+1 : Fh(x) ≤ Fh(x∗) ≤ F̂h(x̂∗).

PROOF: For any given assignment x ∈ Σh+1, Fh(x) is a clear

lower bound for Fh(x∗).
For the upper bound, let Fh

t (·) be the tth component of the

Fh(·), defined as:

Fh
t (xt)=

{

γt
[

F t
x (xt)+F t

y (xt)− [c∆(xt,xt+1)
]

if 0≤ t<h

F̃x(xt)+F̃y(xt) otherwise

with xt, defined as the tth value assignment in the PD-DCOP solu-

tion x. Analogously, let us denote with F̂h
t (·) the tth component of

the F̂h(·), defined as:

F̂h
t (xt)=

{

γt
[

F t
x (xt)+F t

y (xt)
]

if 0≤ t<h

F̃x(xt)+F̃y(xt) otherwise

It follows that for all 0 ≤ t < h:

Fh
t (x

∗
t) = γ

t
[

F t
x (x

∗
t)+F t

y (x
∗
t)− [c∆(xt,xt+1)

]

≤ γ
t
[

F t
x (x

∗
t)+F t

y (x
∗
t)
]

≤ max
x∈Σ

γ
t
[

F t
x (x)+F t

y (x)
]

= F̂h
t (x̂

∗
t)

where x∗
t (resp. x̂∗

t) is the tth component of the PD-DCOP solution

vector x∗ (resp. x̂∗). For t = h, it follows:

Fh
h (x

∗
h) = F̃x(x

∗
h)+F̃y(x

∗
h)

≤ max
x∈Σ

[

F̃x(x)+F̃y(x)
]

= F̂h
h (x̂

∗
h)

Thus, from the two inequalities above, it follows:

Fh(x∗) ≤
h

∑

t=0

F̂h
t (x

∗
t) = F̂h(x̂∗)

which concludes the proof. 2

COROLLARY 2. The approximation ratio ρ is
F̂h(x̂∗)

Fh(x)
for any so-

lution x.

5. PD-DCOP ALGORITHMS
We now introduce exact and approximation PD-DCOP algorithms.

5.1 Exact Approach
We first propose an exact approach, which transforms a PD-DCOP

into an equivalent DCOP and solves it using any off-the-shelf

DCOP algorithm. Since the transition of each random variable is

independent of the assignment of values to decision variables, this

problem can be viewed as a Markov chain. Thus, it is possible to

collapse an entire PD-DCOP into a single DCOP, where (1) each

reward function Fi in this new DCOP captures the sum of rewards

of the reward function fi ∈ F across all time steps, and (2) the do-

main of each decision variable is the set of all possible combination

of values of that decision variable across all time steps. However,

this process needs to be done in a distributed manner.

We divide the reward functions into two types: (1) The functions

fi ∈ F whose scope xfi ∩Y = ∅ includes exclusively decision

variables, and (2) the functions fi ∈ F whose scope xfi ∩Y 6= ∅
includes one random variable. In both cases, let xi=〈x0

i , . . . ,x
h
i 〉

denote the vector of value assignments to all decision variables in

xfi for each time step.

Then, each function fi ∈ F whose scope includes only decision

variables can be replaced by a function Fi:

Fi(xi) =

h−1
∑

t=0

F
t
i (x

t
i) + F

h
i (x

h
i) (11)

=

[

h−1
∑

t=0

γ
t · fi(x

t
i)

]

+

[

γh

1− γ
fi(x

h
i)

]

(12)

where the first term with the summation is the reward for the first

h time steps and the second term is the reward for the remaining

time steps. Each function fi ∈ F whose scope includes random

variables can be replaced by a unary function Fi:

Fi(xi) =

h−1
∑

t=0

F
t
i (x

t
i) + F

h
i (x

h
i) (13)

=

h−1
∑

t=0

γ
t

∑

ω∈Ωyi

fi(x
t
i|yi=ω) · p

t
yi
(ω) (14)

+
∑

ω∈Ωyi

f̃i(x
h
i |yi=ω) · p

h
yi
(ω) (15)

where the first term (Equation (14)) is the reward for the first h

time steps and the second term (Equation (15)) is the reward for

the remaining time steps. The function f̃i is recursively defined

according to Equation (10). Additionally, each decision variable xi

will have a unary function Ci:

Ci(xi) = −
h−1
∑

t=0

γ
t
[

c ·∆(xt
i,x

t+1
i)

]

(16)

which captures the cost of switching values across time steps. This

collapsed DCOP can then be solved with any off-the-shelf DCOP

algorithm. In our experiments, we use DPOP [22] to solve it.

5.2 Approximation Approach
Since optimally solving PD-DCOPs is P-SPACE-hard, the exact

approach described earlier will fail to scale to large problems, as

we show in our experimental results. Therefore, approximation

approaches are necessary to solve the larger problems of inter-

est. Our local search algorithm to solve PD-DCOPs is inspired

by MGM [14], which has been shown to be robust in dynamically

Algorithm 1: LOCAL SEARCH()

1 iter ← 1

2 〈v0∗i , v1∗i , . . . , vh∗i 〉 ← 〈Null, Null, . . . , Null〉

3 〈v0i , v
1
i , . . . , v

h
i 〉 ← INITIALASSIGNMENT()

4 context← 〈(xj , t, Null | xj ∈ N(ai), 0 ≤ t ≤ h)〉

5 Send VALUE(〈v0i , v
1
i , . . . , v

h
i 〉) to all neighbors

Procedure CalcGain()

6 〈u0
i , u

1
i , . . . , u

h
i 〉 ← CALCUTILS(〈v0i , v

1
i , . . . , v

h
i 〉)

7 u∗ ← −∞

8 foreach 〈d0i , d
1
i , . . . , d

h
i 〉 in ×h

i=0Dxi do

9 u← CALCCUMULATIVEUTIL(〈d0i , d
1
i , . . . , d

h
i 〉)

10 if u > u∗ then

11 u∗ ← u

12 〈v0∗i , v1∗i , . . . , vh∗i 〉 ← 〈d
0
i , d

1
i , . . . , d

h
i 〉

13 if u∗ 6= −∞ then

14 〈u0∗
i , u

1∗
i , . . . , u

h∗
i 〉 ← CALCUTILS(〈v0∗i , v

1∗
i , . . . , v

h∗
i 〉)

15 〈û0
i, û

1
i, . . . , û

h
i 〉 ← 〈u

0∗
i , u

1∗
i , . . . , u

h∗
i 〉 − 〈u

0
i, u

1
i, . . . , u

h
i 〉

16 else

17 〈û0
i , û

1
i , . . . , û

h
i 〉 ← 〈Null, Null, . . . , Null〉

18 Send GAIN(〈û0
i , û

1
i , . . . , û

h
i 〉) to all neighbors

changing environments. Algorithm 1 shows its pseudocode, where

each agent ai maintains the following data structures:

• iter is the current iteration number.

• context is a vector of tuples (xj , t, v
t
j) for all its neighboring

variables xj ∈N(ai). Each of these tuples represents the agent’s

assumption that variable xj is assigned value vtj at time step t.

• 〈v0i , v
1
i , . . . , v

h
i 〉 is a vector of the agent’s current value assign-

ment for its variable xi at each time step t.

• 〈v0∗i , v1∗i , . . . , vh∗i 〉 is a vector of the agent’s best value assign-

ment for its variable xi at each time step t.

• 〈u0
i , u

1
i , . . . , u

h
i 〉 is a vector of the agent’s utility (rewards from

reward functions minus costs from switching costs) given its cur-

rent value assignment at each time step t.

• 〈u0∗
i , u1∗

i , . . . , uh∗
i 〉 is a vector of the agent’s best utility given

its best value assignment at each time step t.

• 〈û0∗
i , û1∗

i , . . . , ûh∗
i 〉, which is a vector of the agent’s best gain in

utility at each time step t.

The high-level ideas are as follows: (1) Each agent ai starts by

finding an initial value assignment to its variable xi for each time

step 0 ≤ t ≤ h and initializes its context context. (2) Each agent

uses VALUE messages to ensure that it has the correct assumption

on its neighboring agents’ variables’ values. (3) Each agent com-

putes its current utilities given its current value assignments, its

best utilities over all possible value assignments, and its best gain

in utilities, and sends this gain in a GAIN message to all its neigh-

bors. (4) Each agent changes the value of its variable for time step t

if its gain for that time step is the largest over all its neighbors’ gain

for that time step, and repeats steps 2 through 4 until a termination

condition is met. In more detail:

Step 1: Each agent initializes its vector of best values to a vector

of Nulls (line 2) and calls INITIALASSIGNMENT to initializes its

current values (line 3). The values can be initialized randomly or

according to some heuristic function. We describe later one such

heuristic. Finally, the agent initializes its context, where it assumes

that the values for its neighbors is null for all time steps (line 4).

Step 2: The agent sends its current value assignment in a VALUE

message to all neighbors (line 5). When it receives a VALUE mes-

sage from its neighbor, it updates its context with the value assign-

ments in that message (lines 19-21). When it has received VALUE

Procedure When Receive VALUE(〈v0∗s , v1∗s , . . . , vh∗s 〉)

19 foreach t from 0 to h do

20 if vt∗s 6= Null then

21 Update (xs, t, v
t
s) ∈ context with (xs, t, v

t∗
s)

22 if received VALUE messages from all neighbors in this iteration then

23 CALCGAIN()

24 iter ← iter + 1

Procedure When Receive GAIN(〈û0
s, û

1
s, . . . , û

h
s 〉)

25 if 〈û0
s, û

1
s, . . . , û

h
s 〉 6= 〈Null, Null, . . . , Null〉 then

26 foreach t from 0 to h do

27 if ût
i ≤ 0 ∨ ût

s > ût
i then

28 vt∗i ← Null

29 if received GAIN messages from all neighbors in this iteration then

30 foreach t from 0 to h do

31 if vt∗i 6= Null then

32 vti ← vt∗i

33 Send VALUE(〈v1∗i , v2∗i , . . . , vh∗i 〉) to all neighbors

messages from all neighbors in the current iteration, it means that

its context now correctly reflects the neighbors’ actual values. It

then calls CALCGAIN to start Step 3 (line 23).

Step 3: In the CALCGAIN procedure, the agent calls CALCUTILS

to calculate its utility for each time step given its current value as-

signments and its neighbors’ current value assignments recorded in

its context (line 6). The utility for a time step t is made out of two

components (line 41). The first component is the sum of rewards

over all reward functions that involve the agent, under the assump-

tion that the agent takes on its current value and its neighbors take

on their values according to its context. Specifically, if the scope

of the reward function F t
j involves only decision variables, then

F t
j (v

t
i , v

t
j) is a function of both the agent’s current value vti and

its neighbor’s value vtj in its context and is defined according to

Equations (11) to (12). If the scope involves both decision and

random variables, then F t
j (v

t
i) is a unary constraint that is only a

function of the agent’s current value vti and is defined according

to Equations (13) to (15). The second component is the cost of

switching values from the previous time step t − 1 to the current

time step t and switching from the current time step to the next time

step t+ 1. This cost is c if the values in two subsequent time steps

are different and 0 otherwise. The variable cti captures this cost

(lines 35-40). The (net) utility is thus the reward from the reward

functions minus the switching cost (line 41).

The agent then searches over all possible combination of values

for its variable across all time steps to find the best value assign-

ment that results in the largest cumulative cost across all time steps

(lines 8-12). It then computes the net gain in utility at each time

step by subtracting the utility of the best value assignment with the

utility of the current value assignment (lines 13-15).

Step 4: The agent sends its gains in a GAIN message to all neigh-

bors (line 18). When it receives a GAIN message from its neigh-

bor, it updates its best value vt∗i for time step t to null if its gain

is non-positive (i.e., ût
i ≤ 0) or its neighbor has a larger gain

(i.e., ût
s > ût

i) for that time step (line 27). When it has received

GAIN messages from all neighbors in the current iteration, it means

that it has identified, for each time step, whether its gain is the

largest over all its neighbors’ gains. The time steps where it has

the largest gain are exactly those time steps t where vt∗i is not null.

The agent thus assigns its best value for these time steps as its cur-

rent value and restarts Step 2 by sending a VALUE message that

contains its new values to all its neighbors (lines 29-33).

Function CalcUtils(〈v0i , v
1
i , . . . , v

h
i 〉)

34 foreach t from 0 to h do

35 if t = 0 then

36 cti ← γ0· cost(v0i , v
1
i)

37 else if t = h then

38 cti ← γh−1· cost(vh−1
i , vhi)

39 else

40 cti ← γt−1· cost(vt−1
i , vti) +γt· cost(vti , v

t+1
i)

41 ut
i ←

∑

F t
j
|xi∈x

Ft
j
F t
j − cti

42 return 〈u0
i , u

1
i , . . . , u

h
i 〉

Function CalcCumulativeUtil(〈v0i , v
1
i , . . . , v

h
i 〉)

43 u←
∑h

t=0

∑

F t
j
|xi∈x

Ft
j
F t
j

44 c← 0
45 foreach t from 0 to h− 1 do

46 c← c+ γt· cost(vti , v
t+1
i)

47 return u− c

Heuristics for INITIALASSIGNMENT: We simplify the PD-

DCOP into h independent DCOPs by assuming that the switching

costs are 0 and the constraints with random variables are collapsed

into unary constraints similar to the description for our exact ap-

proach. Then, one can use any off-the-shelf DCOP algorithm to

solve these h DCOPs. We initially used DPOP to do this, but our

preliminary experimental results show that this approach is compu-

tationally inefficient; the runtimes with this approach were larger

than with the random assignment heuristic.

However, we observed that these h DCOPs do not vary much

across subsequent DCOPs as changes are due only to the changes in

distribution of values of random variables. Therefore, the utilities

in UTIL tables of an agent ai remain unchanged across subsequent

DCOPs if neither it nor any of its descendants in the pseudo-tree

are constrained with a random variable. We thus used S-DPOP to

solve the h DCOPs and the runtimes decreased marginally.

We further optimized this approach by designing a new pseudo-

trees construction heuristic, such that agents that are constrained

with random variables are higher up in the pseudo-tree. Intu-

itively, this will maximize the number of utility values that can be

reused, as they remain unchanged across subsequent time steps.

This heuristic, within the Distributed DFS algorithm [8], assigns a

score to each agent a according to heuristic h1(a):

h1(a) = (1 + I(a)) · |Ny(a)| (17)

Ny(a) = {a′|a′∈ N(a) ∧ ∃f ∈F, ∃ y∈Y :{a′
, y}∈x

f}

I(a)=

{

0 if ∀f ∈F, ∀y∈Y :{a, y} 6∈ xf

1 otherwise

It then makes the agent with the largest score the pseudo-tree root

and traverses the constraint graph using DFS, greedily adding the

neighboring agent with the largest score as the child of the cur-

rent agent. However, this resulting pseudo-tree can have a large

depth, which is undesirable. The popular max-degree heuristic

h2(a) = |N(a)|, which chooses the agent with the largest number

of neighbors, typically results in pseudo-trees with small depths.

We thus also introduced a hybrid heuristic h3(a) = wh1(a) +
(1 − w)h2(a), which combines both heuristics and weigh them

according to a heuristic weight w.

5.3 Theoretical Properties
In the following discussion, let O(L) denote the agent’s space re-

quirement for the INITIALASSIGNMENT function in line 3.

|A| C-DPOP LS-SDPOP LS-RAND
time (ms) ρ time (ms) ρ time (ms) ρ

2 223 1.001 197 (207) 1.003 203 1.019
4 489 1.000 255 (307) 1.009 273 1.037
6 5547 1.000 382 (456) 1.011 385 1.045
8 — 739 (838) 1.001 556 1.034

12 — 4821 (7091) 1.003 1092 1.031
16 — 264897 (595245) 1.033 2203 1.015

Table 1: Experimental Results Varying Number of Agents

Random Networks. We first vary the weight w of the pseudo-tree

construction heuristic h3 to identify the best weight for LS-SDPOP.

Figure 1(left) shows the runtimes of LS-SDPOP. At w = 0, the

heuristic h3 corresponds the max-degree heuristic h2 and, at w =
1, the heuristic is analogous to our h1 heuristic. The runtimes are

high at both extremes for the following reasons: When w = 0, LS-

SDPOP exploits weakly the reuse of information, and when w = 1,

the resulting pseudo-trees have large depths, which in turn result in

large runtimes. The best weight is found at w = 0.4, thus we use

this value for the remaining experiments.

We then vary the switching cost c of the problem from 0 to

500 to investigate its impact on the algorithms’ performance. Fig-

ure 1(center) shows the number of iterations it takes for the lo-

cal search algorithms to converge from the initial solution. When

c = 0, the initial solution found by LS-SDPOP is an optimal so-

lution since the initial solution already optimizes the utilities of

the problem over all time steps ignoring switching costs. Thus,

it requires 0 iterations to converge. For sufficiently large costs

(c ≥ 100), the optimal solution is one where the values for each

agent is the same across all time steps since the cost of changing

values is larger than the gain in utility. Thus, the number of it-

erations they take to converge is the same for all large switching

costs. At intermediate cost values (0 < c < 100), they require

an increasing number of iterations to converge. Finally, LS-RAND

requires more iterations to converge than LS-SDPOP since it starts

with poorer initial solutions.

We also vary the horizon h of the problem from 2 to 10 to eval-

uate the scalability of the algorithms.4 Figure 1(right) shows the

runtimes of all three algorithms. As expected, the runtimes increase

when the horizon increases. When the horizon h ≥ 6 is sufficiently

large, LS-SDPOP is faster than LS-RAND indicating that the over-

head of finding good initial solutions with S-DPOP is worth the

savings in runtime to converge to the final solution.

Finally, we vary the number of agents |A| (and thus the num-

ber of the decision variables) of the problem from 2 to 16. Table 1

tabulates the runtimes and the approximation ration ρ for all three

algorithms. The runtimes of LS-SDPOP without reusing informa-

tion are shown in parentheses. C-DPOP times out after |A| ≥ 8.

In general, the runtimes of C-DPOP is largest, followed the by the

runtimes of LS-SDPOP and the runtimes of LS-RAND. The dif-

ference in runtimes increases with increasing number of agents,

indicating that the overhead to find good initial solutions with S-

DPOP is not worth the savings in convergence runtime. As ex-

pected, the approximation ratio ρ with C-DPOP the is the smallest,

since it finds optimal solutions, whilst the ratios of the local search

algorithms are of similar values, indicating that they converge to

solutions with similar qualities. Therefore, LS-SDPOP is preferred

in problems with few agents but large horizons and LS-RAND is

preferred in problems with many agents but small horizons.

However, another factor to consider when choosing which algo-

rithm to run is their memory requirement. LS-SDPOP suffer from

variables.
4
In this experiment, we set the number of decision variables to 6 in order

for the algorithms to scale to larger horizons.

|A| C-DPOP LS-SDPOP LS-RAND
time (ms) % SAT time (ms) % SAT time (ms) % SAT

2 509 100 262 100 271 100
4 4786 100 367 100 399 100
6 — 2651 96 718 93
8 — 71726 96 3249 86

10 — — 9723 86
12 — — 15370 86

Table 2: Results for Dynamic Distributed Meeting Scheduling

the same exponential memory requirement (in the induced width of

the pseudo-tree) of DPOP [22]. In contrast, LS-RAND’s memory

requirement is only linear in the number of agents and the hori-

zon. Thus, LS-RAND is preferred in problems where agents have

a limited amount of memory (e.g., sensor networks).

Dynamic Distributed Meeting Scheduling. We also evaluate our

PD-DCOP algorithms on the dynamic distributed meeting schedul-

ing problem introduced in Section 3, where we use the following

parameters: We allow each meeting to be scheduled in 4 different

starting time and 2 locations. We generate the underlying graph

topology randomly, using the same settings described in the pre-

vious experiments. Thus, the number of meetings and the number

of meetings participants are not bounded by any fixed value. In

order to ensure that each agent controls exactly one decision vari-

able, we use the pseudo-agent decomposition technique [35]. In-

equality constraints between the meeting start time and locations

ensure that an agent can attend at most one meeting at a given time,

and that no two meetings are held in the same location at the same

time. In addition, start times and locations of each meeting’s par-

ticipants are enforced to be equal, so as to produce feasible sched-

ules. Finally, agents’ preferences on time and meeting locations are

modeled through unary costs functions. We use the same heuristic

weight, switching costs, and horizon settings from the previous ex-

periment on random networks.

Table 2 illustrates the average runtimes (in ms) and the percent-

age of feasible solutions over 30 instances, returned by the algo-

rithms at varying the number of agents |A| from 2 to 12. Similar to

the results analyzed for random networks, both approximation ap-

proaches (LS-SDPOP and LS-RAND) can produce solutions faster

than the exact approach. However, the number of satisfiable in-

stances decreases with increasing number of agents. In particular,

the quality of solutions found by LS-SDPOP degrades slower than

the quality of solutions found by LS-RAND. The reason is likely

because LS-SDPOP starts with a better initial solution than LS-

RAND. As expected, these results reveal that for our PD-DCOP

approximation approach, the initial solution is crucial to ensure

convergence to solutions of high quality within a bounded runtime.

8. CONCLUSIONS
In real-world applications, agents often act in dynamic environ-

ments. Thus, the Dynamic DCOP formulation is attractive to

model such problems. Current research has focused at solving

such problems reactively, thus discarding the information on pos-

sible future changes, which is often available in many applications.

To cope with this limitation, we (i) introduce Proactive Dynamic

DCOPs (PD-DCOPs), which model the dynamism in Dynamic

DCOPs; (ii) provide theoretical results on the complexity class of

PD-DCOPs; and (iii) develop an exact PD-DCOP algorithm that

solves the problem proactively as well as an approximation algo-

rithm with quality guarantees that can scale to larger and more

complex problems. Finally, in contrast to many experiments in the

literature, we evaluate our algorithms on an actual distributed sys-

tem, which will ease the transition to real-world applications.

REFERENCES

[1] R. Becker, S. Zilberstein, V. Lesser, and C. Goldman.

Solving transition independent decentralized Markov

decision processes. Journal of Artificial Intelligence

Research, 22:423–455, 2004.

[2] D. Bernstein, R. Givan, N. Immerman, and S. Zilberstein.

The complexity of decentralized control of Markov decision

processes. Mathematics of Operations Research,

27(4):819–840, 2002.

[3] F. Delle Fave, A. Rogers, Z. Xu, S. Sukkarieh, and

N. Jennings. Deploying the max-sum algorithm for

decentralised coordination and task allocation of unmanned

aerial vehicles for live aerial imagery collection. In

Proceedings of ICRA, pages 469–476, 2012.

[4] J. S. Dibangoye, C. Amato, and A. Doniec. Scaling up

decentralized MDPs through heuristic search. In Proceedings

of UAI, pages 217–226, 2012.

[5] J. S. Dibangoye, C. Amato, A. Doniec, and F. Charpillet.

Producing efficient error-bounded solutions for transition

independent decentralized MDPs. In Proceedings of AAMAS,

pages 539–546, 2013.

[6] H. Fargier, J. Lang, and T. Schiex. Mixed constraint

satisfaction: A framework for decision problems under

incomplete knowledge. In Proceedings of AAAI, pages

175–180, 1996.

[7] A. Farinelli, A. Rogers, and N. Jennings. Agent-based

decentralised coordination for sensor networks using the

max-sum algorithm. Autonomous Agents and Multi-Agent

Systems, 28(3):337–380, 2014.

[8] Y. Hamadi, C. Bessière, and J. Quinqueton. Distributed

intelligent backtracking. In Proceedings of ECAI, pages

219–223, 1998.

[9] E. A. Hansen, D. S. Bernstein, and S. Zilberstein. Dynamic

programming for partially observable stochastic games. In

Proceedings of AAAI, pages 709–715, 2004.

[10] A. Holland and B. O’Sullivan. Weighted super solutions for

constraint programs. In Proceedings of AAAI, pages

378–383, 2005.

[11] A. Kumar, B. Faltings, and A. Petcu. Distributed constraint

optimization with structured resource constraints. In

Proceedings of AAMAS, pages 923–930, 2009.

[12] R. Lass, E. Sultanik, and W. Regli. Dynamic distributed

constraint reasoning. In Proceedings of AAAI, pages

1466–1469, 2008.

[13] T. Léauté and B. Faltings. Coordinating logistics operations

with privacy guarantees. In Proceedings of IJCAI, pages

2482–2487, 2011.

[14] R. Maheswaran, J. Pearce, and M. Tambe. Distributed

algorithms for DCOP: A graphical game-based approach. In

Proceedings of PDCS, pages 432–439, 2004.

[15] R. Maheswaran, M. Tambe, E. Bowring, J. Pearce, and

P. Varakantham. Taking DCOP to the real world: Efficient

complete solutions for distributed event scheduling. In

Proceedings of AAMAS, pages 310–317, 2004.

[16] S. Miller, S. Ramchurn, and A. Rogers. Optimal

decentralised dispatch of embedded generation in the smart

grid. In Proceedings of AAMAS, pages 281–288, 2012.

[17] P. Modi, W.-M. Shen, M. Tambe, and M. Yokoo. ADOPT:

Asynchronous distributed constraint optimization with

quality guarantees. Artificial Intelligence, 161(1–2):149–180,

2005.

[18] R. Nair, M. Tambe, M. Yokoo, D. Pynadath, and S. Marsella.

Taming decentralized POMDPs: Towards efficient policy

computation for multiagent settings. In Proceedings of

IJCAI, pages 705–711, 2003.

[19] R. Nair, P. Varakantham, M. Tambe, and M. Yokoo.

Networked distributed POMDPs: A synthesis of distributed

constraint optimization and POMDPs. In Proceedings of

AAAI, pages 133–139, 2005.

[20] D. T. Nguyen, W. Yeoh, H. C. Lau, S. Zilberstein, and

C. Zhang. Decentralized multi-agent reinforcement learning

in average-reward dynamic DCOPs. In Proceedings of AAAI,

pages 1447–1455, 2014.

[21] F. Oliehoek, M. Spaan, C. Amato, and S. Whiteson.

Incremental clustering and expansion for faster optimal

planning in Dec-POMDPs. Journal of Artificial Intelligence

Research, 46:449–509, 2013.

[22] A. Petcu and B. Faltings. A scalable method for multiagent

constraint optimization. In Proceedings of IJCAI, pages

1413–1420, 2005.

[23] A. Petcu and B. Faltings. Superstabilizing, fault-containing

multiagent combinatorial optimization. In Proceedings of

AAAI, pages 449–454, 2005.

[24] A. Petcu and B. Faltings. Optimal solution stability in

dynamic, distributed constraint optimization. In Proceedings

of IAT, pages 321–327, 2007.

[25] S. Seuken and S. Zilberstein. Memory-bounded dynamic

programming for DEC-POMDPs. In Proceedings of IJCAI,

pages 2009–2015, 2007.

[26] D. Szer, F. Charpillet, and S. Zilberstein. MAA*: A heuristic

search algorithm for solving decentralized POMDPs. In

Proceedings of UAI, pages 576–590, 2005.

[27] S. A. Tarim, S. Manandhar, and T. Walsh. Stochastic

constraint programming: A scenario-based approach.

Constraints, 11(1):53–80, 2006.

[28] S. Ueda, A. Iwasaki, and M. Yokoo. Coalition structure

generation based on distributed constraint optimization. In

Proceedings of AAAI, pages 197–203, 2010.

[29] R. Wallace and E. Freuder. Stable solutions for dynamic

constraint satisfaction problems. In Proceedings of CP,

pages 447–461, 1998.

[30] T. Walsh. Stochastic constraint programming. In Proceedings

of ECAI, pages 111–115, 2002.

[31] S. Witwicki and E. Durfee. Towards a unifying

characterization for quantifying weak coupling in

Dec-POMDPs. In Proceedings of AAMAS, pages 29–36,

2011.

[32] W. Yeoh, A. Felner, and S. Koenig. BnB-ADOPT: An

asynchronous branch-and-bound DCOP algorithm. Journal

of Artificial Intelligence Research, 38:85–133, 2010.

[33] W. Yeoh, P. Varakantham, X. Sun, and S. Koenig.

Incremental DCOP search algorithms for solving dynamic

DCOPs. In Proceedings of IAT, pages 257–264, 2015.

[34] W. Yeoh and M. Yokoo. Distributed problem solving. AI

Magazine, 33(3):53–65, 2012.

[35] M. Yokoo, editor. Distributed Constraint Satisfaction:

Foundation of Cooperation in Multi-agent Systems. Springer,

2001.

[36] R. Zivan, H. Yedidsion, S. Okamoto, R. Glinton, and

K. Sycara. Distributed constraint optimization for teams of

mobile sensing agents. Autonomous Agents and Multi-Agent

Systems, 29(3):495–536, 2015.

