Application of Graph Sparsification in Developing
Parallel Algorithms for Updating Connected
Components

Sriram Srinivasan, Sanjukta Bhowmick
Computer Science Department
University of Nebraska-Omaha

Email: sriramsrinivas @unomaha.edu, sbhowmick @unomaha.edu

Abstract—Analyzing large dynamic networks is an important
problem with applications in a wide range of disciplines. A key
operation is updating the network properties as its topology
changes. In this paper we present graph sparsification as an
efficient abstraction for updating the properties of dynamic net-
works. We demonstrate the applicability of graph sparsification
in updating the connected components in random and scale-
free networks on shared memory systems. Our results show
that the updating is scalable (10X on 16 processors for larger
networks). To the best of our knowledge this is the first parallel
implementation of graph sparsification. Based on these initial
results, we discuss how the current implementation can be
further improved and how graph sparsification can be applied
to updating other network properties.

Index Terms—dynamic networks, graph sparsification

I. INTRODUCTION

Analysis of large scale networks is a crucial tool for
studying systems of interacting entities that occur in diverse
disciplines including bioinformatics [15], social sciences [23]
and epidemiology [22]. The systems are modeled as networks
(or graphs), where the vertices represent the entities and the
edges, the pair-wise interactions between the entities. Analyz-
ing properties of the network can provide insights into the
properties of their underlying systems. Most real-world net-
works are dynamic, i.e. their topology and properties change
over time. Updating the properties of dynamic networks is an
important problem in network analysis.

One of the primary operations in network analysis is graph
traversal. Traversal on unstructured graphs give rise to poor
locality of access, leading to increase in computation time [13].
The problem gets exacerbated when the network is dynamic,
i.e., the structure is changing with time.

Networks that are of a smaller size and denser connections
will have more localized access patterns. They will therefore
be faster to traverse. Thus the operations can be faster if
they are performed on localized subgraphs, and then the
results aggregated to apply to the larger network. This is the
underlying principle of the very popular reduction approach
in designing parallel algorithms.

The problem then translates to expressing graph algorithms
in a reduction-like format. This can be achieved by using

Sajal Das
Computer Science Department
Missouri University of Science and Technology
Email: sdas@mst.edu

an elegant algorithmic technique known as graph sparsifica-
tion [11]. In graph sparsification, the network is divided into
subgraphs, which form the leaves of a balanced sparsification
tree. The operations are performed on the subgraphs and then
transferred across the levels of the tree to the root, which
contains the entire graph. Graph sparsification techniques have
been long studied in the theoretical context [11], [10], [8] and
on updating dense graphs. However, there has been little work
on actually implementing graph sparsification, and studying
the practical utility of this method for updating properties of
large sparse dynamic networks.

In this paper, we present graph sparsification as a useful ab-
straction for creating scalable algorithms for updating dynamic
networks. We present the theoretical analysis and preliminary
experimental results on updating connected components, and
maintaining the corresponding spanning trees. Our results
demonstrate that graph sparsification can indeed be used to
design scalable algorithms. In particular, processing multiple
edge insertions and deletions in parallel forms a bottleneck in
many updating algorithms. Due to the localized computations
in graph sparsification, large groups of edge insertions and
deletions can be handled in parallel and therefore provide a
faster update algorithm.

The remainder of this paper is organized as follows; In
Section II, we provide the background on graph terminology,
an overview of related work in dynamic networks and describe
in detail the general graph sparsification technique. In Section
III, we present the algorithmic steps for creating and updating
connected components using graph sparsification, along with
analysis of their memory requirements and computational
complexity. In Section IV, we provide our experimental
results on random and scale-free networks. We conclude in
Section V with an overview of our future research plans.

II. BACKGROUND

A. Graph Terminologies

A network (also referred to as a graph) is defined by a pair
of sets G = (V, E). Each edge e € E is represented by a
pair of vertices i.e. ¢ = (u,v). The vertices u,v are known
as the endpoints of e. A path, of length [, in a network GG



is an alternating sequence vg, ey, v1, €2, ...,e;,v; of vertices
and edges, such that for j = 1,...,l; vj_; and v; are the
endpoints of edge e;, with no edges or internal vertices. A
cycle is a path whose start and end vertices are the same, i.e.
vo = v;. A graph is defined as a tree if it has no cycles. For
our analysis we consider undirected graphs where the number
of vertices |V| = n, the number of edges |E| = m and that
n is a power of 2. The analysis will also hold if n is not a
power of 2. In that case, we simply consider the next higher
power of 2.

B. Related Research in Dynamic Networks

A recent special issue of Parallel Computing on “Graph
analysis for scientific discovery” [6] presents some of the
latest advances in parallel algorithms for graphs, including
dynamic networks. Connectivity-based algorithms such as
the breadth first search on static networks are available for
many HPC platforms including, distributed memory [24],
[5], multicores [2], massively multithreaded machines [21]
and GPUs [17]. Parallel implementation of a spanning tree
using the Shiloach-Vishkin approach is given in [3]. Dynamic
update of connected components on multicores is given in
[18] and on massively multithreaded machines in [19]. To
date, there are either parallel algorithms for static networks or
sequential algorithms for dynamic networks. We only know of
two projects STINGER [1], [9] and PHISH [20] that include
parallel algorithms for dynamic updates of networks.

C. Overview of Graph Sparsification

Graph sparsification, introduced by Eppstein et. al. [11], is
a divide and conquer technique to reduce the dependence on
the edges in a graph, such that the time bounds for maintaining
a graph property is commensurate to the computing time
for sparse graphs. This technique is part of a larger set of
methods, including clustering techniques [12] and randomized
algorithm [14] that were developed for obtaining strong
theoretical performance bounds on algorithms for updating
the topological properties (such as connected components
or minimum spanning tree) of dynamic graphs. However,
parallel versions of these algorithms were studied only for
a conceptual version of the parallel random access machine
(PRAM) models [8] and no empirical results were reported.
We now provide an overview of the mechanism of graph
sparsification.

In the original paper by Epstein [11], first a vertex sparsifi-
cation tree is created by recursively dividing the vertices into
two equal halves. Assuming that the vertices are ordered from
0 to n — 1 consecutively, then, at each division, two sets of
vertices numbered from 0 to n/2 — 1 and n/2 to n — 1 are
formed. Therefore, nodes at distance ¢ from the root will have
Qﬂ vertices, and the height of the tree will be i = logn.

The edge sparsification tree is created from the vertex
sparsification tree. Let a and b be two nodes in the vertex
sparsification tree, containing the vertex sets V, and V}, respec-
tively. A node at level ¢ in the edge sparsification tree F,p,
contains edges whose one endpoint is in V, and the other in

V. The parent of node E,; is the node E.4, where ¢ and d
are the parents of nodes a and b. The internal nodes will have
three to four children. The edge sparsification tree will have
the same height as the vertex sparsification tree.

Reduction Like Operations on Sparsification Trees. The
edges of the graph sparsification tree only store the sparser
subgraphs (known as certificates) that are relevant to the
property under consideration. Formally, for a property P, a
certificate for a graph G is the graph G, such that G has
property P, if and only if G has property P.

A strong certificate of the graph G is the sparser subgraph
G, if for a graph H with the same vertex set as G, the graph
GUH has property P, if and only if GUH has property P. Let
A be the function applied to the graph G to create its certificate
G,ie., A(G) = G. Ais stable if A(GUH) = A(A(G)UH)
and for a given edge e, the mapping A(G — ¢e) or A(G + ¢)
differs from A(G) by O(1) edges. A certificate is stable if it
is created using a stable mapping [11].

If the certificates in the sparsification tree are strong and
stable, then the certificates in the non-leaf nodes can be created
using reduction like operations on their children. The root will
contain the certificate for the entire graph. Furthermore, in case
of stable certificates on dynamic graphs, change in an edge
will change the certificate by at most a constant number of
edges. The update operation due to the edge occurs at only one
node and proceeds along path from the node where the change
occurred to the root. So the maximum number of updates per
changed edge is proportional to the height of the tree.

The term “graph sparsification” has also been used to to
approximate a graph by a sparse graph. One of the well
known methods is spectral partitioning [4]. The difference
from the technique proposed here is that the entire graph is
approximated to a smaller one. In the method proposed here,
we are not removing any edges only updating them across the
tree.

In the remainder of the paper, in order to distinguish
between the elements in graph and elements in the tree, we
will refer to the nodes in sparsification tree as “nodes” and
the vertices in the original graph as “vertices”.

III. GRAPH SPARSIFICATION FOR UPDATING CONNECTED
COMPONENTS

We now present our main contribution; updating the con-
nected components of a network using graph sparsification.
Our goal is to identify the vertices in the same connected
component and also maintain a spanning forest connecting
vertices in the same components. The main steps to the process
are as follows; (i) creating the sparsification tree, (ii) creating
the initial certificates; i.e. the spanning tree and identifying
the connected components and (iii) maintaining the connected
components and spanning trees as the network changes.

A. Creating the Sparsification Tree.

We modify the original sparsification tree into a binary
tree. This modification simplifies the implementation while
retaining the operational advantages. To convert the original



Subgraph on Vertex Set
(0,1,2,3,4,5,6,7)

Level 2

Subgraph
On Vertex
Set
(0,1,2,3)

Subgraph
On Vertex
Set
(4,5,6,7)

Bipartite Edge
Set Connecting
Sibling Subgraphs
(0123 and 4567)

Level 1

5657
4-6,4-7

01X45) 45X67

01 X23

i 01X67

23%45 23X67
(b) Edge Sparsification Tree: Level 2 to Level 0 (Root)

>

(a) Original Graph

q°

Level 0

Level 2
5-6,5-7
4-6,4-7
Level 1
& é Level 0

(¢) Binary Sparsification Tree: Level 2 to Level O(Root)

Fig. 1: Creation of Sparsification Trees. (a) The original graph. (b) Original form of edge sparsification tree. (¢) Modification

i

Connected Components from Original Graph

to binary sparsification tree

tree to the binary form, we term the nodes in the sparsification
tree that contain a bipartite set of edges connecting two
disconnected subgraphs as bridge nodes and the other nodes
as non-bridge nodes. Then in each bridge node we store the
union of the edges from their non-bridge descendants. After
the union, the sparsification tree becomes binary and all nodes
are non-bridge nodes. The number of nodes in the tree are n—1
, where the number of vertices is n.

Although the original sprasification method only stores the
edges relevant to the property, in our implementation, we
store all the edges of the network. We classify the edges
into two types. We term the first set as key edges. These
edges form the subgraphs that are relevant to the property
under consideration, such as the edges that form the spanning
tree in each of the connected components. We term the other
edges in the network as remainder edges. We assume that the
initial spanning trees have already been computed by some
other efficient algorithm, and so we already have the key
and remainder edges marked accordingly. Therefore, this stage
consists of creating the binary sparsification tree and assigning
the edges, along with their type, in the appropriate node.

The second part in creating the tree is to allocate the edges
at the proper nodes. Each node in the tree is identified by
two indices: the level index [,( starting from O at the leaves
to logn — 1 the root), and the position index p (the leftmost
node per level is marked as position 0, and the numbers keep
increasing towards the right). Assuming that the vertices are
numbered consecutively from 0 to n — 1, an edge with end
points having id v and v will be placed in node with level
I — 1 and position s — 1 if |57| = |5] = s. Figure 1
shows an example of a graph and the original and the binary
sparsification tree with key and remainder edges.

B. Creating the Graph Certificate.

The next step is to create the certificates from the key
edges. We maintain two adjacency lists, one for the network
formed by the remainder edges ( the remainder graph) and
the other for the network formed by the key edges ( the
certificate graph). We create one remainder graph and one

Binary Sparsification Tree: Key Edges (White), Remainder Edges (Black)

Fig. 2: Key and Remainder Edges in Sparsification Tree
Sparsification trees from the network in Figure 1. The bottom
figure shows the key and remainder edges at each node.

certificate graph at each level of the tree consisting of only
the edges found at that level. The union of the remainder
(certificate) graph from all the levels gives the complete
remainder (certificate) graph. The vertices that are in the
same spanning tree in the certificate graph are in the same
component. Union of the complete remainder and certificate
graph gives the entire network. The subgraphs at each tree
node do not overlap. Therefore creating the adjacency list can
be done in parallel over all the tree-nodes.

If we want to know whether two vertices are in the same
component we can traverse the certificate graph over the
different levels. However, as discussed earlier, traversal is an
expensive operation. We therefore also list the component of
the vertex, and keep an updated list of the components across
the levels.

At each level the component of a vertex is updated if it
is connected by a key edge to another vertex with a lower
numbered component. This process can be done in parallel
over the nodes in the same level, because the subgraphs in
the same level do not overlap. However, the update from one



level to the next has to be done sequentially, since the update
at a parent node is dependent upon the components formed at
its children. Because of the structure of the tree, the scope for
parallelization decreases as we go further up, i.e. less number
of nodes. Therefore, having more edges in the lower levels
and fewer edges in the top of the tree can reduce the time to
update the components. Figure 2 shows an example of how
the key and remainder edges are stored.

C. Maintaining the Components.

The final part is updating the certificate as edges are
added or deleted to the network. This process consists of the
following two steps;

Identifying Edges When a new edge (u,v) is inserted, we
check whether v and v have the same component. If so, then
the edge is a remainder edge and is added to the remainder
graph at the appropriate tree node. If the edge is a key
edge, then it is stored in an array for insertion edges, at the
appropriate tree node, to be added later. We do not insert new
key edges immediately because simultaneous addition of edges
can cause a cycle in the spanning tree.

When a new edge (u,v) is deleted, we check the certificate
graph at the appropriate tree node, to see if the edge was a key
edge. If so, it is deleted from the certificate graph, otherwise
it is deleted from the remainder graph. If the edge was a key
edge, we store it in an array for deleted edges. We will use
this information later to update the components. This process
of identifying the edges can be done in parallel at all the tree
nodes.

Updating the Components Once the edges have been clas-
sified, we update the components and the certificate graph
at each level. This process has to be done sequentially level
by level since the certificates at the lower levels affect the
certificates at the higher level. At each level we check whether
the components for the nodes marked for insertion have
already been connected at a lower level. If the components
are still disconnected, the edge is added to the certificate
graph, otherwise it is added to the remainder graph. Note that
since we are adding the edges level by level, we remove the
possibility of creating a cycle in the spanning tree.

Note that this insertion process is different from the hook”
and “graft” operations in the Shiloach-Vishkin algorithm. This
is because we do not “hook” by connecting the roots of two
trees, but can connect any two of the vertices. The vertices at
the lower levels of the sparsification tree have a higher priority
of getting connected. Because we do not use hook, therefore,
grafting the tree also does not reduce the computation.

We now have to identify and separate the components due
to edge deletion. To do this, we consider the certificate at the
next lower level from where the deleted edge is allocated, since
this was the last level where the components were separated.
We traverse the certificate in that level with each end point of
the deleted edge as the source. The vertices reached through
the traversal will be in the component of the respective end
point. This information is updated across the levels of the

sparsification tree. This operation is done in parallel at each
level and then updated across the levels sequentially.

Finally there is a possibility that the deleted components
can be joined again by a remainder edge. This process is the
most expensive since we might have to check all the remainder
edges. We use the following scheme for “repairing” the deleted
components as follows; In the level that the edge is deleted,
we traverse the network represented by all the remainder and
union edges upto that level, to see if there is a remainder edge
that connects the two components. This process reduces the
search space because we are considering only the remainder
edges that are connected to one of the components, however
as we go up the higher levels the time for traversal increases.
Moreover, the edge connecting the two components can be
at a higher level, therefore to correctly repair the break in
components we should check all the levels. Currently, to lower
the computation costs, we are only checking for edges at
one level only. Figure 3 shows an example of insertion and
deletion in the network

D. Memory Requirements and Time Complexity

Every edge, key or remainder, is stored at one and only
one of the tree nodes, requiring a total storage of O(m). The
components of the vertices are stored at each level requiring
a storage of O(nlogn). Most of the operations are on the
certificates, therefore it is important to keep the number of
key edges low.

Creating the Sparsification Tree. Each edge(u,v) requires
O(log(u)) operations to find the appropriate tree nodes, where
the numerical value of u is greater than that of v. However,
the major portion of the time is dependent on the I/O time for
reading the network data.

Creating the Graph Certificate.The time for adding the
edges to their respective graphs is constant and can be done in
parallel over all the tree nodes. Assume we have p processors.
If we assume that the edges are evenly distributed across the
tree nodes, then the time to add them to the remainder and
certificate graphs is O(m/n)/p.

The time for updating the components is done level by level.
At each level the vertices in the key edges are assigned a
new component , in parallel, if they are connected to a vertex
that has a lower component. This process is repeated over
several iterations, until at that level, the components can no
longer be changed. If we assume that there are m/n edge
at ¢ach node, then with p processors, the time taken will be
Zzg’g(")_l(%), where ¢ = p if p > 57 and ¢ =
2,7% otherwise, and ¢ is the number of iterations.

Updating the Certificate. Let the number of edges changed
in the network be k. In practice the number of edges in the
spanning tree is much lower than the total number of edges
and this ratio is also reflected in the type of changed edges.
We assume of the & changed edges, only » < k edges are
identified as key edges to be inserted or deleted. We also
assume that the edges are evenly distributed among the nodes
of the sparsification tree, so that there are k/n new edges per
node and out of them r/n edges are key edges. Checking



4>

Insert Edge 1-3

Mark Edge 1-3 as a Key Edge

i<

Delete Key Edge 4-7

Connect Components by Making 5-7 a Key Edge

Fig. 3: Example of Inserting and Deleting Edges. Left: Edge 1-3 is inserted and identified as a key edge connecting two
components. Right: Edge 4-7 is deleted, but a remainder edge 5-7 replaces it as the connecting key edge.

12
HRMAT18
10 WRMATI9

RMAT20
8 —

6 T -

wdddd

Number of Cores

Time in Seconds

12

10

WLFR18
WLFR19
LFR20

j].l.l.l.L

Number of Cores

8

Time in Seconds

Fig. 4: Time to Create the Certificates Left: RMAT graphs; Right: LFR graphs

whether the edges should be included in the certificate or the
remainder graph can be done in parallel over the tree nodes.
This requires time of the order of O(k/n)/p for insertions
(since checking for same components is a constant operation).
For deletions we potentially have to check all the edges in the
certificate at that level. The maximum size of the certificate
at a given level is equal to the number of vertices per node
in that level, therefore at level ¢ the size of the certificate is
5i+7- Thus the time to identify whether a deleted edge is key
or not is O(% 5+)/p.

Updating the components due to edge insertion is a
similar operation to creating the certificates in the second
stage, except fewer iterations are needed and requires time
Shi=hs (m=1(£x0(r/n)y The traversal to separate the compo-
nents can be done in parallel for each end points at each level.
The number of end points per level is proportional to the
number of key edges at that level, which is r/n. The time to
traverse all the certificates, and update the components after
deleting key edges, will be zzgog(n%l O(L+51)/q.

For the repairing step, the traversal has to be done over the
entire network at that level, not just the certificate. If the edge
density of the network is d, then the size of the network at level
i will be approximately d57+7. The total time to traverse the
networks at all the levels will be ié”g (n)-1 O(dr5+)/q.

The number of sequential steps is only logn, and the

graphs at the lower levels are smaller in size and can be
traversed quickly. These properties render update using graph
sparsification a very fast operation. However, the opportunity
for parallelization decreases at the higher levels of the tree to
being sequential at the root. Thus if most of the edges are at the
higher levels, then the advantages due to graph sparsification
are diminished. We have also assumed in the analysis that
the edges and the corresponding work across the nodes to be
evenly distributed. This is rarely the case in practice. However,
the most effective utilization of graph sparsification will be
when the vertices are numbered such that most edges are in
the lower levels of the tree and the work load evenly distributed
across the nodes at the lower levels.

IV. EXPERIMENTAL RESULTS

We now present our experimental results for updating
connected components on a shared memory system. Our test
suite consists of three Erdos-Reyni networks, created using
the RMAT [7] code, and three scale-free networks using the
LFR code [16]. The RMAT networks were created by setting
parameters as a = b = ¢ = d = .25. The LFR networks
were created by setting the mixing parameter . = .1, which
ensured that they had well defined communities. The number
of edges and vertices of the size graphs are given in Table I.
Both the LFR and RMAT network of the same scale (18,19,20)



25

=#R18-40K
<"R18-80K
R18-320K

o
©
c
g 0.76
vy
£
@
E
B
037
034
03
1 2 4 8 16
Number of Cores
4.51
4 4. N
412
2 “>=R19-40K
g “R19-80K
o R19-320K
w
£
= 1.05
E
i
0.62
0.50
0.4
1 2 4 8 16
Number of Cores
8.
7 3
=#=R20-40K
w
H “@-R20-80K
o
o
2 R20-320K
=
@
E
= 1.29

0.7

Number of Cores

=#=LFR18-40K
<@-LFR18-80K

LFR18-320K

i 058

Time in Seconds

02 -

Number of Cores

=*=LFR19-40K

“EFLFR19-80K

LFR19-320K

Time in Seconds

0.5

=#LFR20-40K

=&-LFR20-80K

LFR20-320K

Time in Seconds

157

08

Number of Coress

Fig. 5: Time for Updating the Networks Left: RMAT Network; Right: LFR Network; From Top to Bottom: Scale 18,19, 20.
Each chart has three plots showing the time to update 40K, 80K and 320K edges.

have the same number of vertices, but the edges in the LFR
networks is slightly larger. For each network we generated a
set of updated edges of size 40K, 80K and 160K. All the edges
in the updated set were unique. We ran the experiments on the
Tusker machine available at Holland Computing Center. The
machine consists of 6,784 cores interconnected with Mellanox
QDR Infiniband along with 523TB of Lustre storage. Each
compute node is an R815 server with at least 256 GB RAM
and 4 Opteron 6272 (2.1 GHz) processors.

Since the time for creating the sparsification tree is primarily
dependent of the I/O we analyze time to create the initial
certificates (Figure 4) and the time to update them (Figure 5).

We see from Figure 4 that the time for creating the the
initial certificate does not scale well with increasing number
of processors. This is because there is no parallelization op-

TABLE I: Test Suite of Networks.

Name Vertices Edges
RMAT18 262,144 4,194,128
RMAT19 524,288 8,388,438
RMAT20 | 1,048,576 | 16,777,196

LFR18 262,144 5,121,908

LFR19 524,288 10,262,022

LFR20 1,048,576 | 20,507,134

portunity at the top levels of the sparsification tree. Moreover
neither the random nor the scale-free networks were easily
partitionable into equal divisions with low number of cut-edges
across them. Therefore the time at the top levels dominate the
computation cost. The reduction of the computation cost is
due to the parallelization at the lower levels.



However, as seen in Figure 5, updating the certificate is
very scalable, and the scalability improves with the size of
the network. We obtain 10X speedup on 16 processors for
the scale 20 networks and 40K edges We also note that
increasing the set of updates only causes a slight increase
in the update time. We believe that this scalability is due to
two reasons. First most of the updated edges are remainder
edges, and therefore can be processed in parallel over all the
tree nodes. Of the key edges, the insertions take at most logn
steps, and the deletions also need to traverse over relatively
small networks. The only expensive operation is the repairing.
However, in this implementation we have restricted it to only
one level. Increasing the number of levels to be checked for
repairing can hamper the scalability.

V. DISCUSSION AND FUTURE RESEARCH

In this paper we presented graph sparsification as an effi-
cient abstraction for updating dynamic networks. Our experi-
ments on random and scale-free networks show that updating
connected components using graph sparsification is indeed
scalable. However, the step for creating the initial certificate
is not as scalable. This is because of the uneven distribu-
tion of the edges in the tree nodes. We plan to investigate
different graph partitioning techniques to develop a method
for distributing the edges evenly, and thereby improving the
scalability of this step.

Although our initial experiments were on shared memory
machines, graph sparsification is general enough to be used on
any parallel platform, and also on heterogenous systems. The
main issue in designing an effective algorithm is to determine
how the edges are distributed across the tree nodes. Graph
sparsification can be used to update other network properties
(for example theoretical work on updating minimum spanning
trees already exist), so long as efficient data structures are
maintained to quickly process the updates. We believe that
due to its flexibility graph sparsification can be an useful
building block for dynamic network algorithms. In particular,
the operations on creating the sparsification tree and creating
the initial certificates will be similar across most algorithms.
Identifying efficient data structures for maintaining the results
at each level can further point to other common building
blocks. As part of our future research we plan to develop
graph sparsification based algorithms for updating other net-
work properties and also explore techniques to improve the
performance and scalability of those algorithms.

ACKNOWLEDGMENT

This research was funded by NSF-CCF; award numbers
1533918 and 1533881.

REFERENCES

[1] Stinger-streaming graph analytics. http://www.stingergraph.com/, 2015.

[2] V. Agarwal, F. Petrini, D. Pasetto, and D. A. Bader. Scalable graph
exploration on multicore processors. In Proceedings of the 2010
ACM/IEEE International Conference for High Performance Computing,
Networking, Storage and Analysis, SC ’10, pages 1-11, Washington,
DC, USA, 2010. IEEE Computer Society.

[3]

[4]

[5]

[6]

[7]
[8]
[9]

[10]

(11]

(12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

(22]

[23]

[24]

D. A. Bader and G. Cong. A fast, parallel spanning tree algorithm
for symmetric multiprocessors (smps). J. Parallel Distrib. Comput.,
65(9):994-1006, Sept. 2005.

J. Batson, D. A. Spielman, N. Srivastava, and S.-H. Teng. Spectral
sparsification of graphs: Theory and algorithms. Commun. ACM,
56(8):87-94, Aug. 2013.

A. Bulug and K. Madduri. Parallel breadth-first search on distributed
memory systems. In Proceedings of 2011 International Conference for
High Performance Computing, Networking, Storage and Analysis, SC
’11, pages 65:1-65:12, New York, NY, USA, 2011. ACM.

A. Bulug, L. Oliker, and J. Gilbert. Special issue on graph analysis for
scientific discovery. Parallel Computing, 47:1 — 2, 2015. Graph analysis
for scientific discovery.

D. Chakrabarti, Y. Zhan, and C. Faloutsos. R-MAT: A recursive model
for graph mining. In In SDM, 2004.

S. Das and P. Ferragina. An erew pram algorithm for updating minimum
spanning trees. volume 9, pages 111-122, 1999.

D. Ediger, R. McColl, E. J. Riedy, and D. A. Bader. STINGER: high
performance data structure for streaming graphs. In IEEE Conference
on High Performance Extreme Computing, HPEC 2012, Waltham, MA,
USA, September 10-12, 2012, pages 1-5, 2012.

D. Eppstein, Z. Galil, and G. F. Italiano. Dynamic graph algorithms,
1999.

D. Eppstein, Z. Galil, G. F. Italiano, and A. Nissenzweig. Sparsifica-
tion&mdash;a technique for speeding up dynamic graph algorithms. J.
ACM, 44(5):669-696, Sept. 1997.

G. N. Frederickson. Data structures for on-line updating of minimum
spanning trees. In Proceedings of the Fifteenth Annual ACM Symposium
on Theory of Computing, STOC ’83, pages 252-257, New York, NY,
USA, 1983. ACM.

B. Hendrickson and J. W. Berry. Graph analysis with high-performance
computing. Computing in Science and Engineering, 10(2):14-19, 2008.
M. R. Henzinger and V. King. Randomized dynamic graph algorithms
with polylogarithmic time per operation. In Proceedings of the Twenty-
seventh Annual ACM Symposium on Theory of Computing, STOC ’95,
pages 519-527, New York, NY, USA, 1995. ACM.

B. H. Junker and F. Schreiber. Analysis of Biological Networks (Wiley
Series in Bioinformatics). Wiley-Interscience, New York, NY, USA,
2008.

A. Lancichinetti, S. Fortunato, and F. Radicchi. Benchmark graphs for
testing community detection algorithms. Phys. Rev. E, 78(046110), 2008.
L. Luo, M. Wong, and W.-m. Hwu. An effective gpu implementation
of breadth-first search. In Proceedings of the 47th Design Automation
Conference, DAC ’10, pages 52-55, New York, NY, USA, 2010. ACM.
K. Madduri and D. A. Bader. Compact graph representations and
parallel connectivity algorithms for massive dynamic network analysis.
In Proceedings of the 2009 IEEE International Symposium on Paral-
lel&Distributed Processing, IPDPS ’09, pages 1-11, Washington, DC,
USA, 2009. IEEE Computer Society.

R. McColl, O. Green, and D. A. Bader. A new parallel algorithm
for connected components in dynamic graphs. High Performance
Computing (HiPC), pages 246-255, 2013.

J. Plimpton and T. Shead.  Streaming data analytics via mes-
sage passing with application to graph algorithms.  Available at
http://www.sandia.gov/ sjplimp/phish/papers.html.

E. J. Riedy and D. A. Bader. Massive streaming data analytics: a graph-
based approach. ACM Crossroads, 19(3):37-43, 2013.

E. Stattner and N. Vidot. Social network analysis in epidemiology:
Current trends and perspectives. In Research Challenges in Information
Science (RCIS), 2011 Fifth International Conference on, pages 1-11,
May 2011.

S. Wasserman and K. Faust. Social network analysis: Methods and
applications, volume 8. Cambridge university press, 1994.

A. Yoo, E. Chow, K. Henderson, W. Mclendon, B. Hendrickson, and mit
atalyrek. A scalable distributed parallel breadth-first search algorithm on
bluegene/l. In In SC 05: Proceedings of the 2005 ACM/IEEE conference
on Supercomputing, page 25. IEEE Computer Society, 2005.



