
Application of Graph Sparsification in Developing

Parallel Algorithms for Updating Connected

Components

Sriram Srinivasan, Sanjukta Bhowmick

Computer Science Department

University of Nebraska-Omaha

Email: sriramsrinivas@unomaha.edu, sbhowmick@unomaha.edu

Sajal Das

Computer Science Department

Missouri University of Science and Technology

Email: sdas@mst.edu

Abstract—Analyzing large dynamic networks is an important
problem with applications in a wide range of disciplines. A key
operation is updating the network properties as its topology
changes. In this paper we present graph sparsification as an
efficient abstraction for updating the properties of dynamic net-
works. We demonstrate the applicability of graph sparsification
in updating the connected components in random and scale-
free networks on shared memory systems. Our results show
that the updating is scalable (10X on 16 processors for larger
networks). To the best of our knowledge this is the first parallel
implementation of graph sparsification. Based on these initial
results, we discuss how the current implementation can be
further improved and how graph sparsification can be applied
to updating other network properties.

Index Terms—dynamic networks, graph sparsification

I. INTRODUCTION

Analysis of large scale networks is a crucial tool for

studying systems of interacting entities that occur in diverse

disciplines including bioinformatics [15], social sciences [23]

and epidemiology [22]. The systems are modeled as networks

(or graphs), where the vertices represent the entities and the

edges, the pair-wise interactions between the entities. Analyz-

ing properties of the network can provide insights into the

properties of their underlying systems. Most real-world net-

works are dynamic, i.e. their topology and properties change

over time. Updating the properties of dynamic networks is an

important problem in network analysis.

One of the primary operations in network analysis is graph

traversal. Traversal on unstructured graphs give rise to poor

locality of access, leading to increase in computation time [13].

The problem gets exacerbated when the network is dynamic,

i.e., the structure is changing with time.

Networks that are of a smaller size and denser connections

will have more localized access patterns. They will therefore

be faster to traverse. Thus the operations can be faster if

they are performed on localized subgraphs, and then the

results aggregated to apply to the larger network. This is the

underlying principle of the very popular reduction approach

in designing parallel algorithms.

The problem then translates to expressing graph algorithms

in a reduction-like format. This can be achieved by using

an elegant algorithmic technique known as graph sparsifica-

tion [11]. In graph sparsification, the network is divided into

subgraphs, which form the leaves of a balanced sparsification

tree. The operations are performed on the subgraphs and then

transferred across the levels of the tree to the root, which

contains the entire graph. Graph sparsification techniques have

been long studied in the theoretical context [11], [10], [8] and

on updating dense graphs. However, there has been little work

on actually implementing graph sparsification, and studying

the practical utility of this method for updating properties of

large sparse dynamic networks.

In this paper, we present graph sparsification as a useful ab-

straction for creating scalable algorithms for updating dynamic

networks. We present the theoretical analysis and preliminary

experimental results on updating connected components, and

maintaining the corresponding spanning trees. Our results

demonstrate that graph sparsification can indeed be used to

design scalable algorithms. In particular, processing multiple

edge insertions and deletions in parallel forms a bottleneck in

many updating algorithms. Due to the localized computations

in graph sparsification, large groups of edge insertions and

deletions can be handled in parallel and therefore provide a

faster update algorithm.

The remainder of this paper is organized as follows; In

Section II, we provide the background on graph terminology,

an overview of related work in dynamic networks and describe

in detail the general graph sparsification technique. In Section

III, we present the algorithmic steps for creating and updating

connected components using graph sparsification, along with

analysis of their memory requirements and computational

complexity. In Section IV, we provide our experimental

results on random and scale-free networks. We conclude in

Section V with an overview of our future research plans.

II. BACKGROUND

A. Graph Terminologies

A network (also referred to as a graph) is defined by a pair

of sets G = (V,E). Each edge e ∈ E is represented by a

pair of vertices i.e. e = (u, v). The vertices u, v are known

as the endpoints of e. A path, of length l, in a network G

is an alternating sequence v0, e1, v1, e2, . . . , el, vl of vertices

and edges, such that for j = 1, . . . , l; vj−1 and vj are the

endpoints of edge ej , with no edges or internal vertices. A

cycle is a path whose start and end vertices are the same, i.e.

v0 = vl. A graph is defined as a tree if it has no cycles. For

our analysis we consider undirected graphs where the number

of vertices |V | = n, the number of edges |E| = m and that

n is a power of 2. The analysis will also hold if n is not a

power of 2. In that case, we simply consider the next higher

power of 2.

B. Related Research in Dynamic Networks

A recent special issue of Parallel Computing on “Graph

analysis for scientific discovery” [6] presents some of the

latest advances in parallel algorithms for graphs, including

dynamic networks. Connectivity-based algorithms such as

the breadth first search on static networks are available for

many HPC platforms including, distributed memory [24],

[5], multicores [2], massively multithreaded machines [21]

and GPUs [17]. Parallel implementation of a spanning tree

using the Shiloach-Vishkin approach is given in [3]. Dynamic

update of connected components on multicores is given in

[18] and on massively multithreaded machines in [19]. To

date, there are either parallel algorithms for static networks or

sequential algorithms for dynamic networks. We only know of

two projects STINGER [1], [9] and PHISH [20] that include

parallel algorithms for dynamic updates of networks.

C. Overview of Graph Sparsification

Graph sparsification, introduced by Eppstein et. al. [11], is

a divide and conquer technique to reduce the dependence on

the edges in a graph, such that the time bounds for maintaining

a graph property is commensurate to the computing time

for sparse graphs. This technique is part of a larger set of

methods, including clustering techniques [12] and randomized

algorithm [14] that were developed for obtaining strong

theoretical performance bounds on algorithms for updating

the topological properties (such as connected components

or minimum spanning tree) of dynamic graphs. However,

parallel versions of these algorithms were studied only for

a conceptual version of the parallel random access machine

(PRAM) models [8] and no empirical results were reported.

We now provide an overview of the mechanism of graph

sparsification.

In the original paper by Epstein [11], first a vertex sparsifi-

cation tree is created by recursively dividing the vertices into

two equal halves. Assuming that the vertices are ordered from

0 to n − 1 consecutively, then, at each division, two sets of

vertices numbered from 0 to n/2 − 1 and n/2 to n − 1 are

formed. Therefore, nodes at distance i from the root will have
n
2i vertices, and the height of the tree will be i = logn.

The edge sparsification tree is created from the vertex

sparsification tree. Let a and b be two nodes in the vertex

sparsification tree, containing the vertex sets Va and Vb respec-

tively. A node at level i in the edge sparsification tree Eab,

contains edges whose one endpoint is in Va and the other in

Vb. The parent of node Eab is the node Ecd, where c and d
are the parents of nodes a and b. The internal nodes will have

three to four children. The edge sparsification tree will have

the same height as the vertex sparsification tree.

Reduction Like Operations on Sparsification Trees. The

edges of the graph sparsification tree only store the sparser

subgraphs (known as certificates) that are relevant to the

property under consideration. Formally, for a property P , a

certificate for a graph G is the graph Ḡ, such that G has

property P , if and only if Ḡ has property P .

A strong certificate of the graph G is the sparser subgraph

Ḡ, if for a graph H with the same vertex set as G, the graph

G∪H has property P , if and only if Ḡ∪H has property P . Let

A be the function applied to the graph G to create its certificate

Ḡ, i.e., A(G) = Ḡ. A is stable if A(G∪H) = A(A(G)∪H)
and for a given edge e, the mapping A(G − e) or A(G + e)
differs from A(G) by O(1) edges. A certificate is stable if it

is created using a stable mapping [11].

If the certificates in the sparsification tree are strong and

stable, then the certificates in the non-leaf nodes can be created

using reduction like operations on their children. The root will

contain the certificate for the entire graph. Furthermore, in case

of stable certificates on dynamic graphs, change in an edge

will change the certificate by at most a constant number of

edges. The update operation due to the edge occurs at only one

node and proceeds along path from the node where the change

occurred to the root. So the maximum number of updates per

changed edge is proportional to the height of the tree.

The term ”graph sparsification” has also been used to to

approximate a graph by a sparse graph. One of the well

known methods is spectral partitioning [4]. The difference

from the technique proposed here is that the entire graph is

approximated to a smaller one. In the method proposed here,

we are not removing any edges only updating them across the

tree.

In the remainder of the paper, in order to distinguish

between the elements in graph and elements in the tree, we

will refer to the nodes in sparsification tree as ”nodes” and

the vertices in the original graph as ”vertices”.

III. GRAPH SPARSIFICATION FOR UPDATING CONNECTED

COMPONENTS

We now present our main contribution; updating the con-

nected components of a network using graph sparsification.

Our goal is to identify the vertices in the same connected

component and also maintain a spanning forest connecting

vertices in the same components. The main steps to the process

are as follows; (i) creating the sparsification tree, (ii) creating

the initial certificates; i.e. the spanning tree and identifying

the connected components and (iii) maintaining the connected

components and spanning trees as the network changes.

A. Creating the Sparsification Tree.

We modify the original sparsification tree into a binary

tree. This modification simplifies the implementation while

retaining the operational advantages. To convert the original

Fig. 1: Creation of Sparsification Trees. (a) The original graph. (b) Original form of edge sparsification tree. (c) Modification

to binary sparsification tree

tree to the binary form, we term the nodes in the sparsification

tree that contain a bipartite set of edges connecting two

disconnected subgraphs as bridge nodes and the other nodes

as non-bridge nodes. Then in each bridge node we store the

union of the edges from their non-bridge descendants. After

the union, the sparsification tree becomes binary and all nodes

are non-bridge nodes. The number of nodes in the tree are n−1
, where the number of vertices is n.

Although the original sprasification method only stores the

edges relevant to the property, in our implementation, we

store all the edges of the network. We classify the edges

into two types. We term the first set as key edges. These

edges form the subgraphs that are relevant to the property

under consideration, such as the edges that form the spanning

tree in each of the connected components. We term the other

edges in the network as remainder edges. We assume that the

initial spanning trees have already been computed by some

other efficient algorithm, and so we already have the key

and remainder edges marked accordingly. Therefore, this stage

consists of creating the binary sparsification tree and assigning

the edges, along with their type, in the appropriate node.

The second part in creating the tree is to allocate the edges

at the proper nodes. Each node in the tree is identified by

two indices: the level index l,(starting from 0 at the leaves

to logn − 1 the root), and the position index p (the leftmost

node per level is marked as position 0, and the numbers keep

increasing towards the right). Assuming that the vertices are

numbered consecutively from 0 to n − 1, an edge with end

points having id u and v will be placed in node with level

l − 1 and position s − 1 if b u
2l c = b v

2l c = s. Figure 1

shows an example of a graph and the original and the binary

sparsification tree with key and remainder edges.

B. Creating the Graph Certificate.

The next step is to create the certificates from the key

edges. We maintain two adjacency lists, one for the network

formed by the remainder edges (the remainder graph) and

the other for the network formed by the key edges (the

certificate graph). We create one remainder graph and one

Fig. 2: Key and Remainder Edges in Sparsification Tree

Sparsification trees from the network in Figure 1. The bottom

figure shows the key and remainder edges at each node.

certificate graph at each level of the tree consisting of only

the edges found at that level. The union of the remainder

(certificate) graph from all the levels gives the complete

remainder (certificate) graph. The vertices that are in the

same spanning tree in the certificate graph are in the same

component. Union of the complete remainder and certificate

graph gives the entire network. The subgraphs at each tree

node do not overlap. Therefore creating the adjacency list can

be done in parallel over all the tree-nodes.

If we want to know whether two vertices are in the same

component we can traverse the certificate graph over the

different levels. However, as discussed earlier, traversal is an

expensive operation. We therefore also list the component of

the vertex, and keep an updated list of the components across

the levels.

At each level the component of a vertex is updated if it

is connected by a key edge to another vertex with a lower

numbered component. This process can be done in parallel

over the nodes in the same level, because the subgraphs in

the same level do not overlap. However, the update from one

level to the next has to be done sequentially, since the update

at a parent node is dependent upon the components formed at

its children. Because of the structure of the tree, the scope for

parallelization decreases as we go further up, i.e. less number

of nodes. Therefore, having more edges in the lower levels

and fewer edges in the top of the tree can reduce the time to

update the components. Figure 2 shows an example of how

the key and remainder edges are stored.

C. Maintaining the Components.

The final part is updating the certificate as edges are

added or deleted to the network. This process consists of the

following two steps;

Identifying Edges When a new edge (u, v) is inserted, we

check whether u and v have the same component. If so, then

the edge is a remainder edge and is added to the remainder

graph at the appropriate tree node. If the edge is a key

edge, then it is stored in an array for insertion edges, at the

appropriate tree node, to be added later. We do not insert new

key edges immediately because simultaneous addition of edges

can cause a cycle in the spanning tree.

When a new edge (u, v) is deleted, we check the certificate

graph at the appropriate tree node, to see if the edge was a key

edge. If so, it is deleted from the certificate graph, otherwise

it is deleted from the remainder graph. If the edge was a key

edge, we store it in an array for deleted edges. We will use

this information later to update the components. This process

of identifying the edges can be done in parallel at all the tree

nodes.

Updating the Components Once the edges have been clas-

sified, we update the components and the certificate graph

at each level. This process has to be done sequentially level

by level since the certificates at the lower levels affect the

certificates at the higher level. At each level we check whether

the components for the nodes marked for insertion have

already been connected at a lower level. If the components

are still disconnected, the edge is added to the certificate

graph, otherwise it is added to the remainder graph. Note that

since we are adding the edges level by level, we remove the

possibility of creating a cycle in the spanning tree.

Note that this insertion process is different from the ”hook”

and ”graft” operations in the Shiloach-Vishkin algorithm. This

is because we do not ”hook” by connecting the roots of two

trees, but can connect any two of the vertices. The vertices at

the lower levels of the sparsification tree have a higher priority

of getting connected. Because we do not use hook, therefore,

grafting the tree also does not reduce the computation.

We now have to identify and separate the components due

to edge deletion. To do this, we consider the certificate at the

next lower level from where the deleted edge is allocated, since

this was the last level where the components were separated.

We traverse the certificate in that level with each end point of

the deleted edge as the source. The vertices reached through

the traversal will be in the component of the respective end

point. This information is updated across the levels of the

sparsification tree. This operation is done in parallel at each

level and then updated across the levels sequentially.

Finally there is a possibility that the deleted components

can be joined again by a remainder edge. This process is the

most expensive since we might have to check all the remainder

edges. We use the following scheme for ”repairing” the deleted

components as follows; In the level that the edge is deleted,

we traverse the network represented by all the remainder and

union edges upto that level, to see if there is a remainder edge

that connects the two components. This process reduces the

search space because we are considering only the remainder

edges that are connected to one of the components, however

as we go up the higher levels the time for traversal increases.

Moreover, the edge connecting the two components can be

at a higher level, therefore to correctly repair the break in

components we should check all the levels. Currently, to lower

the computation costs, we are only checking for edges at

one level only. Figure 3 shows an example of insertion and

deletion in the network

D. Memory Requirements and Time Complexity

Every edge, key or remainder, is stored at one and only

one of the tree nodes, requiring a total storage of O(m). The

components of the vertices are stored at each level requiring

a storage of O(nlogn). Most of the operations are on the

certificates, therefore it is important to keep the number of

key edges low.

Creating the Sparsification Tree. Each edge(u, v) requires

O(log(u)) operations to find the appropriate tree nodes, where

the numerical value of u is greater than that of v. However,

the major portion of the time is dependent on the I/O time for

reading the network data.

Creating the Graph Certificate.The time for adding the

edges to their respective graphs is constant and can be done in

parallel over all the tree nodes. Assume we have p processors.

If we assume that the edges are evenly distributed across the

tree nodes, then the time to add them to the remainder and

certificate graphs is O(m/n)/p.

The time for updating the components is done level by level.

At each level the vertices in the key edges are assigned a

new component , in parallel, if they are connected to a vertex

that has a lower component. This process is repeated over

several iterations, until at that level, the components can no

longer be changed. If we assume that there are m/n edge

at each node, then with p processors, the time taken will be∑i=log(n)−1
i=0 (t∗O(m/n)

q), where q = p if p ≥ n
2i+1 and q =

n
2i+1 otherwise, and t is the number of iterations.

Updating the Certificate. Let the number of edges changed

in the network be k. In practice the number of edges in the

spanning tree is much lower than the total number of edges

and this ratio is also reflected in the type of changed edges.

We assume of the k changed edges, only r � k edges are

identified as key edges to be inserted or deleted. We also

assume that the edges are evenly distributed among the nodes

of the sparsification tree, so that there are k/n new edges per

node and out of them r/n edges are key edges. Checking

Fig. 3: Example of Inserting and Deleting Edges. Left: Edge 1-3 is inserted and identified as a key edge connecting two

components. Right: Edge 4-7 is deleted, but a remainder edge 5-7 replaces it as the connecting key edge.

Fig. 4: Time to Create the Certificates Left: RMAT graphs; Right: LFR graphs

whether the edges should be included in the certificate or the

remainder graph can be done in parallel over the tree nodes.

This requires time of the order of O(k/n)/p for insertions

(since checking for same components is a constant operation).

For deletions we potentially have to check all the edges in the

certificate at that level. The maximum size of the certificate

at a given level is equal to the number of vertices per node

in that level, therefore at level i the size of the certificate is
n

2i+1 . Thus the time to identify whether a deleted edge is key

or not is O(k
n

n
2i+1)/p.

Updating the components due to edge insertion is a

similar operation to creating the certificates in the second

stage, except fewer iterations are needed and requires time∑i=log(n)−1
i=0 (t∗O(r/n)

q). The traversal to separate the compo-

nents can be done in parallel for each end points at each level.

The number of end points per level is proportional to the

number of key edges at that level, which is r/n. The time to

traverse all the certificates, and update the components after

deleting key edges, will be
∑i=log(n)−1

i=0 O(r
n

n
2i+1)/q.

For the repairing step, the traversal has to be done over the

entire network at that level, not just the certificate. If the edge

density of the network is d, then the size of the network at level

i will be approximately d n
2i+1 . The total time to traverse the

networks at all the levels will be
∑i=log(n)−1

i=0 O(d r
n

n
2i+1)/q.

The number of sequential steps is only logn, and the

graphs at the lower levels are smaller in size and can be

traversed quickly. These properties render update using graph

sparsification a very fast operation. However, the opportunity

for parallelization decreases at the higher levels of the tree to

being sequential at the root. Thus if most of the edges are at the

higher levels, then the advantages due to graph sparsification

are diminished. We have also assumed in the analysis that

the edges and the corresponding work across the nodes to be

evenly distributed. This is rarely the case in practice. However,

the most effective utilization of graph sparsification will be

when the vertices are numbered such that most edges are in

the lower levels of the tree and the work load evenly distributed

across the nodes at the lower levels.

IV. EXPERIMENTAL RESULTS

We now present our experimental results for updating

connected components on a shared memory system. Our test

suite consists of three Erdos-Reyni networks, created using

the RMAT [7] code, and three scale-free networks using the

LFR code [16]. The RMAT networks were created by setting

parameters as a = b = c = d = .25. The LFR networks

were created by setting the mixing parameter µ = .1, which

ensured that they had well defined communities. The number

of edges and vertices of the size graphs are given in Table I.

Both the LFR and RMAT network of the same scale (18,19,20)

Fig. 5: Time for Updating the Networks Left: RMAT Network; Right: LFR Network; From Top to Bottom: Scale 18,19, 20.

Each chart has three plots showing the time to update 40K, 80K and 320K edges.

have the same number of vertices, but the edges in the LFR

networks is slightly larger. For each network we generated a

set of updated edges of size 40K, 80K and 160K. All the edges

in the updated set were unique. We ran the experiments on the

Tusker machine available at Holland Computing Center. The

machine consists of 6,784 cores interconnected with Mellanox

QDR Infiniband along with 523TB of Lustre storage. Each

compute node is an R815 server with at least 256 GB RAM

and 4 Opteron 6272 (2.1 GHz) processors.

Since the time for creating the sparsification tree is primarily

dependent of the I/O we analyze time to create the initial

certificates (Figure 4) and the time to update them (Figure 5).

We see from Figure 4 that the time for creating the the

initial certificate does not scale well with increasing number

of processors. This is because there is no parallelization op-

TABLE I: Test Suite of Networks.

Name Vertices Edges

RMAT18 262,144 4,194,128

RMAT19 524,288 8,388,438

RMAT20 1,048,576 16,777,196

LFR18 262,144 5,121,908

LFR19 524,288 10,262,022

LFR20 1,048,576 20,507,134

portunity at the top levels of the sparsification tree. Moreover

neither the random nor the scale-free networks were easily

partitionable into equal divisions with low number of cut-edges

across them. Therefore the time at the top levels dominate the

computation cost. The reduction of the computation cost is

due to the parallelization at the lower levels.

However, as seen in Figure 5, updating the certificate is

very scalable, and the scalability improves with the size of

the network. We obtain 10X speedup on 16 processors for

the scale 20 networks and 40K edges We also note that

increasing the set of updates only causes a slight increase

in the update time. We believe that this scalability is due to

two reasons. First most of the updated edges are remainder

edges, and therefore can be processed in parallel over all the

tree nodes. Of the key edges, the insertions take at most logn
steps, and the deletions also need to traverse over relatively

small networks. The only expensive operation is the repairing.

However, in this implementation we have restricted it to only

one level. Increasing the number of levels to be checked for

repairing can hamper the scalability.

V. DISCUSSION AND FUTURE RESEARCH

In this paper we presented graph sparsification as an effi-

cient abstraction for updating dynamic networks. Our experi-

ments on random and scale-free networks show that updating

connected components using graph sparsification is indeed

scalable. However, the step for creating the initial certificate

is not as scalable. This is because of the uneven distribu-

tion of the edges in the tree nodes. We plan to investigate

different graph partitioning techniques to develop a method

for distributing the edges evenly, and thereby improving the

scalability of this step.

Although our initial experiments were on shared memory

machines, graph sparsification is general enough to be used on

any parallel platform, and also on heterogenous systems. The

main issue in designing an effective algorithm is to determine

how the edges are distributed across the tree nodes. Graph

sparsification can be used to update other network properties

(for example theoretical work on updating minimum spanning

trees already exist), so long as efficient data structures are

maintained to quickly process the updates. We believe that

due to its flexibility graph sparsification can be an useful

building block for dynamic network algorithms. In particular,

the operations on creating the sparsification tree and creating

the initial certificates will be similar across most algorithms.

Identifying efficient data structures for maintaining the results

at each level can further point to other common building

blocks. As part of our future research we plan to develop

graph sparsification based algorithms for updating other net-

work properties and also explore techniques to improve the

performance and scalability of those algorithms.

ACKNOWLEDGMENT

This research was funded by NSF-CCF; award numbers

1533918 and 1533881.

REFERENCES

[1] Stinger-streaming graph analytics. http://www.stingergraph.com/, 2015.

[2] V. Agarwal, F. Petrini, D. Pasetto, and D. A. Bader. Scalable graph
exploration on multicore processors. In Proceedings of the 2010

ACM/IEEE International Conference for High Performance Computing,

Networking, Storage and Analysis, SC ’10, pages 1–11, Washington,
DC, USA, 2010. IEEE Computer Society.

[3] D. A. Bader and G. Cong. A fast, parallel spanning tree algorithm
for symmetric multiprocessors (smps). J. Parallel Distrib. Comput.,
65(9):994–1006, Sept. 2005.

[4] J. Batson, D. A. Spielman, N. Srivastava, and S.-H. Teng. Spectral
sparsification of graphs: Theory and algorithms. Commun. ACM,
56(8):87–94, Aug. 2013.

[5] A. Buluç and K. Madduri. Parallel breadth-first search on distributed
memory systems. In Proceedings of 2011 International Conference for

High Performance Computing, Networking, Storage and Analysis, SC
’11, pages 65:1–65:12, New York, NY, USA, 2011. ACM.

[6] A. Buluç, L. Oliker, and J. Gilbert. Special issue on graph analysis for
scientific discovery. Parallel Computing, 47:1 – 2, 2015. Graph analysis
for scientific discovery.

[7] D. Chakrabarti, Y. Zhan, and C. Faloutsos. R-MAT: A recursive model
for graph mining. In In SDM, 2004.

[8] S. Das and P. Ferragina. An erew pram algorithm for updating minimum
spanning trees. volume 9, pages 111–122, 1999.

[9] D. Ediger, R. McColl, E. J. Riedy, and D. A. Bader. STINGER: high
performance data structure for streaming graphs. In IEEE Conference

on High Performance Extreme Computing, HPEC 2012, Waltham, MA,

USA, September 10-12, 2012, pages 1–5, 2012.
[10] D. Eppstein, Z. Galil, and G. F. Italiano. Dynamic graph algorithms,

1999.
[11] D. Eppstein, Z. Galil, G. F. Italiano, and A. Nissenzweig. Sparsifica-

tion—a technique for speeding up dynamic graph algorithms. J.

ACM, 44(5):669–696, Sept. 1997.
[12] G. N. Frederickson. Data structures for on-line updating of minimum

spanning trees. In Proceedings of the Fifteenth Annual ACM Symposium

on Theory of Computing, STOC ’83, pages 252–257, New York, NY,
USA, 1983. ACM.

[13] B. Hendrickson and J. W. Berry. Graph analysis with high-performance
computing. Computing in Science and Engineering, 10(2):14–19, 2008.

[14] M. R. Henzinger and V. King. Randomized dynamic graph algorithms
with polylogarithmic time per operation. In Proceedings of the Twenty-

seventh Annual ACM Symposium on Theory of Computing, STOC ’95,
pages 519–527, New York, NY, USA, 1995. ACM.

[15] B. H. Junker and F. Schreiber. Analysis of Biological Networks (Wiley

Series in Bioinformatics). Wiley-Interscience, New York, NY, USA,
2008.

[16] A. Lancichinetti, S. Fortunato, and F. Radicchi. Benchmark graphs for
testing community detection algorithms. Phys. Rev. E, 78(046110), 2008.

[17] L. Luo, M. Wong, and W.-m. Hwu. An effective gpu implementation
of breadth-first search. In Proceedings of the 47th Design Automation

Conference, DAC ’10, pages 52–55, New York, NY, USA, 2010. ACM.
[18] K. Madduri and D. A. Bader. Compact graph representations and

parallel connectivity algorithms for massive dynamic network analysis.
In Proceedings of the 2009 IEEE International Symposium on Paral-

lel&Distributed Processing, IPDPS ’09, pages 1–11, Washington, DC,
USA, 2009. IEEE Computer Society.

[19] R. McColl, O. Green, and D. A. Bader. A new parallel algorithm
for connected components in dynamic graphs. High Performance

Computing (HiPC), pages 246–255, 2013.
[20] J. Plimpton and T. Shead. Streaming data analytics via mes-

sage passing with application to graph algorithms. Available at

http://www.sandia.gov/ sjplimp/phish/papers.html.
[21] E. J. Riedy and D. A. Bader. Massive streaming data analytics: a graph-

based approach. ACM Crossroads, 19(3):37–43, 2013.
[22] E. Stattner and N. Vidot. Social network analysis in epidemiology:

Current trends and perspectives. In Research Challenges in Information

Science (RCIS), 2011 Fifth International Conference on, pages 1–11,
May 2011.

[23] S. Wasserman and K. Faust. Social network analysis: Methods and

applications, volume 8. Cambridge university press, 1994.
[24] A. Yoo, E. Chow, K. Henderson, W. Mclendon, B. Hendrickson, and mit

atalyrek. A scalable distributed parallel breadth-first search algorithm on
bluegene/l. In In SC 05: Proceedings of the 2005 ACM/IEEE conference

on Supercomputing, page 25. IEEE Computer Society, 2005.

