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Abstract—Sparse reconstruction algorithms aim to retrieve
high-dimensional sparse signals from a limited number of mea-
surements. A common example is LASSO or Basis Pursuit where
sparsity is enforced using an 1-penalty together with a cost
function ||p — Hx|| 2. For random design matrices , a sharp
phase transition boundary separates the ‘good’ parameter region
where error-free recovery of a sufficiently sparse signal is possible
and a ‘bad’ regime where the recovery fails. However, theoretical
analysis of phase transition boundary of the correlated variables
case lags behind that of uncorrelated variables. Here we use
replica trick from statistical physics to show that when an N -
dimensional signal x is K -sparse and $ is M XN dimensional
with the covariance E[H io Hjp]= ;+Cj Do, withall Daa =1,
the perfect recovery occurs at M~y x (D)K log(N/M)  in the
very sparse limit, where Yx (D) >1 , indicating need for more
observations for the same degree of sparsity.

Index Terms—Compressed sensing, structured matrices,
replica method, Basis Pursuit.

1. INTRODUCTION

Compressed sensing [1], [2] plays an important role in
modern signal processing, and is based on the idea that  the
observed signal is sparse in a suitable basis. Recovering the
signal from measurements in a compressed sensing framework
requires employing a sparse retrieval  algorithm. The signal
is modeledas Yy =#Hx , where Y is generated by X o,
isan M -dimensional measurement vector, 5 isan M * N
design matrix, and X is the N dimensional vector to be
retrieved from the knowledge of p and $ . It is a priori known
that X¢ has at most K nonzero components and M N
Algorithms such as Least absolute shrinkage and selection
operator (LASSO) [3], the Elastic Net [4] as well as greedy
algorithms [5] guarantee such recovery with high probability
for sufficiently sparse signals.

Much of the theory concerning guaranteed performance
bounds for CS is based on random design matrices correspond-
ing to uncorrelated dependent variables. In particular, for de-
sign matrices that have independent and identically distributed
Gaussian entries, the CS systems can robustly recover K-
sparse signal from just M = O(K log(N/K))  measurements
[1], [2]. Previous analyses show that the performance failure
of the 1 norm minimization method and other ~ analogous
algorithms with polynomial time complexity occurs at a sharp
boundaryas N — © | with % and fr being held fixed,
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analogous to a second-order (continuous) phase transition [6]—
[9].

In practice, the typical design matrices are not I.I.D Gaus-
sian, but can have very specific structure.  In this case, the
treatment of correlated design matrices is limited [10]-[13],
and the reconstruction algorithm may not recover the original
signal even in the noise-free case [14].  So far, most studies
have focused on the constructions of design matrices with the
goal of establishing performance bounds that are comparable
to those of random matrices, for instance by satisfying the
restricted isometry property (RIP) [15]. However, fewer an-
alytical results on the behavior of the sparse recovery phase
transition in the presence of correlations is available.

The replica method has  been previously used in other
contexts to study the behavior  of design matrices witha
factorized/Kronecker correlation structure [16]-[18].  In the
case of compressed sensing, the authors of [12] employed
this analytical technique to achieve perfect recovery close to
the theoretical bound in linear time. However, this paper treat
quasi-one dimensional correlations. To our knowledge, there
are as of yet no analytical formulae for the phase boundary for
general correlated design matrices. We provide a derivation of
such formulae in this article, for the extremely sparse limit.

Outline of the Paper: We begin in Section II ~ witha
formalization of the problem setup and we propose the self-
consistency mean field equations using replica method when
the correlated design matrices are present. The derivation
of these mean field equations is outlined in Appendix A.
As acheck, we solve these equations for  the well studied
example of Basis Pursuit in Section III. In the Section IV, we
generalize the calculations to the case of  correlated random
design matrices in the very sparse limit. ~ We then present
numerical results for the special case of a symmetric Toeplitz
matrix for the correlations.

II. PROBLEM FORMULATION

Sparse retrieval can be accomplished by penalized regres-
sion with suitable penalties.  This leads to estimates of  the
form (=20 2)=argmin 5> (p - Hx) 2 +AV(x) . U is
a non-negative parameter giving relative weight between the
first and sec?_-nd term and V is the penalty function. We focus
on V(x)= , U(xa) that is convex and separable and also
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on the noise-free case where ¢ — 0" . This is equivalent to the
constrained optimization problem of minimizing V (x) subject
to the constraint $x ¢ = Hx . To understand the properties of
the estimation error, we study the optimization of the function

E(u) in terms of the error variable ©=x — x ¢, where

E(u) = ﬁ(m) ZHAV(u+X o) (1)

We consider the Gaussian distributed design matrices ~ P(f)
with the matrix elements correlated in a “factorized" manner,
a special case that appears in many practical problems [16]—
[18]. More precisely, the distribution P(#) has mean zero
and covariance HicHjp]® = {-Cij Dap. We use : 3;3
for quenched averages, with the relevant quenched variables
indicated in the subscript, ~ when necessary. Here €. are
positive semidefinite symmetric matriqﬁs. The vector Xg is
drawn from a distribution Pg(xo) = 4 Po(xa0). We choose
the sparsity promoting distribution Pp(x q0) which has a con-
tinuous part and a delta function at origin: Po(xa) = pri(x a)+
(1 -p)8(xa).

Using replica mean field theory we show that the optimiza-
tion of Eq. (1) reduces to the minimization of the following
self-consistency equations (see Appendix A):

Proposition 1 the Correlated

Matrices).

(Effective Optimization for

1 > >
=min (U Du-2E " Du)+AVv(u+x o) » (2
v 205
We define

LS
q= [0 DU e 3)

The Gaussian quenched vector ¢ has mean zero and the

covariance matrix

n tr(® x) 01,
q Dlry € Iyo2+ T80 ¢ /M
Cov(§, 9 =( 3)

L] _ U1 2
tru € Invo2+ Y80 ¢ /M
4)
and 92; can be obtained from
1 _ 1 n tr(iD x) ©-1
@ = HtrM C ZM 02 + (MX) «: (5)
€

The symbol trum is atrace applying tothe M dimensional
space. The local susceptibility X is an N XN matrix obtained
from the relation &u=xf  with fo — O in which, Qa(f)
is obtained by minimizing muin 2715;(”> Du - 28~ Du) +
AV (u+x o) - f u . Averaging over all the instances of the
design matrix is expected to be self  averaging in the large
M, N limit yielding the average susceptibility matrix, X [19].
We summarize the symbols used in the next section in the
Table I.

III. BASIS PURSUIT WITH UNCORRELATED DESIGN
MATRIX

In this section, we consider the well-studied case where the
penalty function is the 1-norm of X and each element of the

TABLE I: Symbols that are being used in this article.

Symbol Description
Uq Measure of residual error Xa ~ X g
q 0T D) 0. (MSE for Proposition 2)
a Measure for the number of constraints, A]\/,’—
p Measure for the sparsity, f@—
A *4-norm regression coefficient
a2 Error variance on the constraint 9 = Hx
b} Ao 2
02, Effective 02 given in the large M, N limit
Ao 2
o? I (In the uncorrelated case)
T2 w?
q

matrix $ is L1D. normally distributed as N(0, 1/M ) [1], [2],
[20]. In this limit, optimization of Eq. (1) gives rise to a set
of uncoupled univariate optimization problems:

Proposition 2 (Effective Individual Optimization).

1
Ha=rTLin{22 Uz - 2&Ua +Alua+xodlt  (6)

Oeif
Q= [UERe (7
2\ wi 2= 4
¢a € N(0, 0f) witho £ = P (8)
_ X _ 1 X
Géffzaz"'g &x= F X )

a

where the asymptotic estimates of the local susceptibilities
are given by
-1 av

00 1
(Alua +xoq]) Oab + o7
eff

“ () = (10)
To determine 02, we look at the local susceptibilities in
Proposition 2. In this case Uoo(x) is zero everywhere except
at x = 0, where it is formally infinite. Consequently,

X =0, ifxXa=0

X" =02 otherwise.

(11)

The fact that X “ is the same for all non-zero values makes the
analysis particularly simple. We define P to be the detection
rate or estimated sparsity, 1i.e. the fraction of estimated Xqa’s
that are non-zero. Therefore ¥ = "P02, (\y="pf) and 02, =
02+ X implying

o(1 - §)=0.

(12)
Thus when U goes to zero, we either have 6 =0 (p 6= a) or
p=a (66=0. These two conditions correspond to the two
phases of the system, the first being the perfect reconstruction
phase and the second, the error phase. In terms of average
local susceptibility, the first phase has ¥ = "p0 = 0, while the
second one has y 6= 0.

Computation of the mean squared error (MSE), g (i.e. @0 52)
using the soft-threshholding properties of  the "4-norm, and
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Fig. 1: Thered curve is the theoretical ~ phase boundary in

the very sparse limit  for the uncorrelated case obtained by
solving Eq. (14) and (15). Numerical data for ‘transition
points’ € =0, 0.2, 0.3, 0.4, 0.5 corresponds to blue, green,
yellow, magenta, and black markers for the Toeplitz matrix

with entries €7

using Eq. (8), 02 = g/a , leads to a parametric expression in
the perfect reconstruction phase:

a=2(1-p) (1+1%)®@)-t9() +p(1+13?), (13)

where ®(r) = R,m dz ¢(z) , and ¢(r) = %eﬂ 2 To
determine P, one can notice that if X5 = 0, we have to have

[§| >0 to obtain a false positive.  On the other hand, as 0
goes to zero, anon-zero Xg remains non-zero with the false

negative probability approaching zero. Counting all sources of
positive detections we have p = 2(1-p)®(r )+p .' Recall that
in the error phase p = a . Equating these expressions at the

phase transition line we obtain the parametric form for the
boundary:
a=2(1-p) (1+5)O@)-t9(t) +p(1+1?) (14
a=2(1-p)dP(r) +p. (15)

Thus, Eq. (14) and (15) provide a parametric representation
of @ and P at the phase boundary, leading to the red curve
depicted in Fig. 1.

IV. EXTREME SPARSE LIMIT
In this section, we reconsider the case of the extremely

sparse limit, in which p, @ << 1 . In this limit T is large and

"Note that P > P, even in the perfect reconstruction phase. That is because
a fraction of Xa’s remain non-zero as long as ¥ > 0, and vanish only in the
U - 0 limit.

the dominant contributions are the first term, 2(1 — p)®(t),
from Eq. (15) which yields

r T2

. 2e 7
a~ — T 5 (16)
and the second term, p(1 + 1 2), from Eq. (14) giving
a

Eq. (16) implies that T2 » 2 log(1/a) . Plugging this result
into Eq. (17) we obtain p ~ o/(2 log(1/a)) . This relation is
identical to the bound that is found in [21] in the limit o — O.
Moreover, apart from a coefficient, it has a similar form to the
RIP bounds [22].

From the above approximation, it is clear that in the very
sparse limit near the transition we can make two observations,

1) The dominant contribution to the error comes from the
shrinkage of the non-zero variables, namely from the term
Pt 2, with the false negative rate being negligible.

2) The false positives contribute to P and influence the phase
boundary whichis p=a .

In the case of the full-rank matrices €, 1 in Eqs. (4) and
(5), as we send 02 . 0" limit, only the terms with coefficient
tr( x)/M stay relevant. Therefore, noise-free limit results in
a significant simplification as the € terms cancel each other
out:

1 _
0% = 3t x),
-1

(18)

Cov(, § = 1 (19)

We assume that if we choose 1 close to In, the nature of
the solution does not change drastically. From the observation
1, since the major contribution to the error 4 comes from
the shrinkage of  the non-zero variables, we minimize the
expression in Eq. (2), with V (x) = |ju +x oll4, ignoring the
term involving with €. Considering the contributions of only
true positives components, we get

(04

Ga =20 2;(Da) "sgn(x oa) (20)

where A is the set of indices of the non-zero variables and the
subscript A inQa, Da, xgs referto @, I, x o restricted to the
indices in A. Therefore

1 50 1 .5
q= [0 DU e = FloaDatali;

62 X -1 av
WL sgn(x 0)asgn(x o)as(Da )0 -
62 1, av
= @) 3 Q1)
We define Yk (D) = tr(® ") §’ and rewrite
q=pb Yk (D) (22)
implying ’
q p
27 a0z - gVK D). (23)
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which is the generalization of Eq.  (17) for correlated design
matrices. From observation 2, to determine the position of the
phase boundary we should minimize Eq.  (2). Thus we get
(Du) « = (DE) o« F 0 implying that if Xq = 0, we should have
|(DE) ol >0 tolead to anon-zero X. It is straightforward
to show that the variance of (&) a equals 73 aa. Therefore,
counting the average number of false positives gives

2 X

azi

P —
N (D(T/ IDaa )

24

a

In the extremely sparse limit, T is large and Eq. (24) becomes:

r_ __1?
X e Pa

o 21X epe o5
nN . D aa

which generalizes Eq. (16) to the correlated case. Therefore,
by solving Egs. (23) and (25) self-consistency, one can obtain
the asymptotic relation for the correlated design matrix in the
very sparse limit.

For the specific case which all  the Daa’sare 1, Eq. (25)
suggests T2 ~ 2 In( 1). Combining this result and Eq. (23),
we get

alp) ~ 20 K D)o In( ).

We can show, that in this case, Yk (D) > 1 (using the fact that
[tr(D a)]3[g-tr(@ 2")]3Y >1 ). Thus, in the presence of
correlations, the number of measurements required for perfect
reconstruction usually increases, as one would intuitively
expect.

As an example we consider the case when the matrix D is
the symmetric Toeplitz matrix with Das = ¢ ™1 (c < 1), and
a,b=1,2,...,N. This result isrelevant when correlations
between sites decay as a function of the difference between
their distance, e.g. spatial frequency or spatial location. For
small p, Uk (D) =1+ 2pc 2/(1 — c?) + - - -. Note that unless
C is very close to one, so that p/(1 — ¢) isnot insignificant,
we donot get a big correction. This condition is related to
the average spacing between indices in the active set A being
comparable to the correlation length for the Toeplitz matrix.
We could alternatively consider block-correlated matrices. The
simplest example wouldbe Dap =8 ap +(1 =& ab). In that
problem, ¥k (D) =1/1 -) , showing once more an increase
in Oc,

To investigate numerically the effect on the reconstruction
limit ®c, we use the homotopy method [23] to solve the '
norm optimization of (1). We obtain the M X N matrix £ is
filled with correlated entries E[H iaHjp] = #Cij Da» where
B is the symmetric Toeplitz matrix and € is the identity
matrix. Inthe example shown, the size of the vector X is
N=2x10 *, and are chosen to have two different  values,
K=20, and K=60 randomly placed elements driven from
a standard Gaussian distribution. The failure is decided when
MSE > 10 “*. For afixed P, @c increases with increasing
correlation ( €), as illustrated in the Fig. 1. Unfortunately,
because the relatively small value of K | we have to deal, we
do not expect to see quantitative agreement in this limit.

(26)

V. CONCLUSION

In this paper, we developed scheme to evaluate the typical
reconstruction limit of LASSO with the correlated design
matrix. When the dependent variables have strong correlations,
as is often the case in real applications, LASSO can arbitrarily
pick one out of a group of strongly correlated variables,
rather than identifying the whole group.  This is considered
undesirable behavior and has led to the proposal of alternative
algorithms. Here we employed the replica trick from statistical
mechanics and provided analytical results of an effective
optimization problem emerged by taking the average over the
ensemble of the design matrix. In particular, we showed that
when the N -dimensional signal x is K -sparse and the random
design matrix $ is M X N dimensional with the covariance
E[H iaHjp1= -Cij Dap, the perfect recovery phase transition
occurs at M~y g (D)K log(N/M) in the very sparse limit
§§r — 0. Numerical experiments show qualitatively the same
behavior.
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APPENDIX

In order to make a connection between the optimizations
problem and statistical mechanics, one could choose a proba-
bility distribution of X parametrized by B, i.e. Pg(x|p, ) =
Jexp - BE(x) . The cost function E(x) is given by Eq. (1)
and the normalization factor  Z = Z(B3, 9, ) , known as
the partition function. If wesend B to ®, the probability
gets concentrated at the minimum of the cost function. Here
we define B to be dimensionless. We will consider averages
of the function O(X, xo) containing both the original sparse
signal and the variable related to the estimate. The ‘ther-
mal’ average of the function O(x, xo) over the distribution
Dp(x]p, ) is represented by < O(x,x o) ~, depends on
the random variables Xo and . For certain self averaged
quantities we compute a further  average over X and £,
denoted by  hO(x, xo)i i\; 5, - Computation of the quenched
averages is complicated by the presence of  the partition Z
in the denominator of hO(x, x¢)i. Formally, the denominator
is handled by introducing " non-interacting replicas of the
system and taking n - O , as shown below. E(x) depends
on x as well as on Xg> H. To emphasize those additional
dependences, we write E(x) as E(xy, Xo, $) in the next few
equations.

R N
d* xO(x, x o) exp — BE(x, X o, H)

ho 3 i = LI
: ;O)lx d¥x exp ~ BE(x, X o, )
Y
=lim ~ O(x+,%o) d" x, exp — BE(X y, Xo, D)

u=1
27
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Thus, we need the replicated ensemble with partition function

n av
Z XQ,ﬁ)
Xt 2 av
= du,exp — B ("?)2”‘7"2)”‘\/(““;,“)
p=1 u=1 o X0,
(28)

rewritten in terms of the error variables Uy =X y =X, u =
1,..,n. After averaging over P($), introducing auxilliary
variables ® and R, and evaluating the saddle point @, R in
the limit M, N - © _holding a = YI\?Ir fixed, we arrive at

2" e = exp(-BEa(R)+ RwQu)  (29)
— Z }J’ —
exp(-BF n (R)) = d" u, exp Ry u, Du,
p=1 mv
X av
B AV +x0) (30)
M X0
Qu = Nihhu; Du i, 31
2= P vu cor (v ®In + ict:@@)‘1 32
252 M n(im nt o2 (32)

The trace try is a trace only applying to the M dimensional
space. The expectation hhy, Du,ii depends on R via

OF » (R) .

hing, Duvii = B —=—
)%

(33)

If V (x) is a convex function, we expect a unique minimum
and a replica symmetric solution [8], _ [24] for ®,R. This
implies va = (Q - q)5 w tq and Ryv = (R - r)6 w tr.
Using this ansatz in Egs. (31) and (32) and eliminating R by
introducing another quenched variable &, one can rewrite the
ri'ght hand side of Eq. (30) as

Y . 1 X . .
{d uupexp B —  (uyDuy - 28 Duy)
- 205,
X #av
+2 V(uy +x9) - (34)
H §x o

In order to study the regularized least-squares reconstruction,
one should take the limits B = % | and then ¢ — 0. However,
o gﬁ and the second moment of the Gaussian quenched vector
¢ depend on BAQ . This makes the computation of these
quantities unnecessarily nontrivial. As it is shown in [19], one
can resolve this issue by identifying BAQ as [x] 3’ where X
is the local susceptibility matrix. Therefore, the optimization
of E(x) corresponds to the optimization in Proposition 1.
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