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Abstract

The Evidence and Conclusion Ontology (ECO) is a community resource for describing the various types of
evidence that are generated during the course of a scientific study and which are typically used to support
assertions made by researchers. ECO describes multiple evidence types, including evidence resulting from
experimental (i.e., wet lab) techniques, evidence arising from computational methods, statements made by
authors (whether or not supported by evidence), and inferences drawn by researchers curating the literature.
In addition to summarizing the evidence that supports a particular assertion, ECO also offers a means to
document whether a computer or a human performed the process of making the annotation. Incorporating
ECO into an annotation system makes it possible to leverage the structure of the ontology such that associ-
ated data can be grouped hierarchically, users can select data associated with particular evidence types, and
quality control pipelines can be optimized. Today, over 30 resources, including the Gene Ontology, use the
Evidence and Conclusion Ontology to represent both evidence and how annotations are made.

Key words Annotation, Biocuration, Conclusion, Confidence, Evidence, ECO, Experiment,
Inference, Literature curation, Quality control

1 Describing Evidence in Scientific Investigations

1.1 Importance Investigations in the life sciences routinely produce data from
of Documenting diverse methodologies using a wide range of tools and techniques.
Evidence Such data generated during the course of a research project con-

tribute to the pool of evidence that ultimately leads a scientific
researcher to make a particular inference or draw a given conclu-
sion. Ultimately, one goal of a scientist is to publish the conclu-
sions that are drawn from a given research project in the scientific
literature. Such conclusions typically take the form of assertions,
i.e., statements that are believed to be true, about some aspect of
biology. The process of biocuration seeks to extract from the litera-
ture the assertion that summarizes the research finding n addition
to any relevant evidence in support of the finding. Ideally, both of
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Fig. 1 Representing experimental methods and conclusions in a biological database. (a) An experiment is
performed that generates data. (b) A researcher interprets methods and data, and draws conclusions that are
published in a scientific journal and indexed in PubMed, for example. (¢) A biocurator reads that paper, inter-
prets the results presented therein, and makes an assertion. (d) The assertion is represented by associating an
ontology term with the item being studied and stored along with other data, for example a protein sequence,
at a biological database. (General summaries and related ECO classes are depicted along the bottom.)

these pieces of information will become integrated into a database
in a structured way, so that they are readily accessible to the scien-
tific community [1, 2] (Fig. 1).

Recording evidence is essential because: (1) knowing what
methodologies were used is central to the scientific method and
can impact one’s evaluation of the data or results; (2) associating
evidence with data maintained electronically allows for selective
data queries and retrieval from even the largest of databases; and
(3) a structured representation of evidence makes automated qual-
ity control possible, which is absolutely essential to managing the
ever-increasing number and size of biological databases.

1.2 Multiple Types Evidence can be associated with assertions in many ways. Manual
of Evidence and Ways curation is a common approach [ 3, 4], outlined in Fig. 1. However,
of Associating Evidence ~ text mining or other computational methods can also be used to
with Assertions extract biological assertions from the scientific literature [5, 6],

and assertions can also be made directly via bioinformatic tech-
niques [7], e.g. assigning of functional annotations as resulting
from a functional genome annotation pipeline.

Numerous types of evidence form the bases for assertions that
are made by researchers. Laboratory and field experiments are com-
mon sources of evidence, but computational (or iz silico) analysis,
whether executed by a person or an unsupervised machine, can also
generate the evidence that is used to support assertions about bio-
logical function (Fig. 2). In addition, conclusions can be synthesized
from investigator speculation or implied by known biology during
the literature curation process. We can also consider provenance, a
concept related to and sometimes conflated with evidence. A central
goal of biological data repositories is to record in a structured fash-
ion as much information as is known about the origins of a given
accession. Yet sometimes an accession is imported from another
database where the source for the annotation at that database is
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Fig. 2 Computational evidence and assertion. (@) A human or computer performs an analysis, for example
comparing the sequence of a protein of unknown function to sequences at a database. A protein of known
function is returned as a hit with corresponding alignment. (b) The alignment is analyzed and the protein
sequences are deemed to share enough similarity to be considered homologs (related through common evo-
lutionary descent). The query protein is assigned the same function as the database protein. (¢) This informa-
tion is stored at a sequence repository along with other data and metadata. (7ext in white boxes depicts
evidence and assertion methods used in this process.)

unclear. Even in this case it might be useful for the importing data-
base to note the source of the statement/annotation along with a
description of “imported information,” indicating that nothing else
is known about the evidence or provenance of that particular anno-
tation. Thus there are numerous advantages to capturing scientific
evidence and provenance, from describing specific methodologies to
representing chains of custody.

2 The Evidence and Conclusion Ontology (ECO)

2.1 The Argument
for an Ontology
of Evidence

Due to the diversity of ways that exist to describe the multitude of
scientific research methodologies, a means of representing evidence
in a descriptive but structured way is required in order to maximize
utility. The most efficient way to achieve this is to use an ontology,
a controlled vocabulary where each term is well-defined and linked
to other terms via defined relationships [8, 9]. In an ontological
framework, evidence descriptions are represented not as free text,
but rather as networked ontology classes where each child term is
more specific (granular) than its parent [10]. High-level descrip-
tions of types of evidence (such as “experimental evidence”) are
contained in more basal classes closest to the root class evidence.
Increasingly specific terms that are grouped under the more general
classes describe particular sub-types of evidence (such as “chroma-
tography evidence”). The most specific terms, the so-called “leaf
nodes” that contain no child terms, represent the most granular
types of evidence generated during the course of a scientific investi-
gation (for example “thin layer chromatography evidence”). The
Evidence and Conclusion Ontology (ECO) (http://eviden-
ceontology.org) was created to enable the structured description of
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History of ECO

experimental, computational, and other evidence types to support
the assertions captured by scientific databases [11].

As described throughout this book, the Gene Ontology (GO) uses
terms organized into controlled vocabularies, and the relationships
among these terms, to capture functional information about gene
products. The need to systematically document evidence while
curating annotations was recognized from the inception of the GO
[12]and a set of “evidence codes” was created for this purpose [13].
In time it was realized that a better-structured and more compre-
hensive way to represent evidence was required. Thus, the set of
initially created GO codes, along with terms created by two model
organism databases, FlyBase [14] and The Arabidopsis Information
Resource [15], evolved into the first version of ECO, the “Evidence
Code Ontology”. Since then, the use of ECO by other resources has
continued to grow and the ontology has shifted its focus beyond
GO in order to become a generalized ontology for the capture of
evidence information. The official name of ECO is now the
“Evidence and Conclusion Ontology”. ECO is presently being
developed to define and broaden its scope, normalize its content,
and enhance interoperability with related resources. The GO remains
an active user and participant in developing ECO. It is anticipated
that soon the three letter GO evidence codes to which so many are
accustomed will be replaced by ECO term identifiers.

evidence assertion method
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Fig. 3 Simplified representation of ECO, depicting general structure. ECO comprises two root classes along
with their respective hierarchies, evidence (terms in black) and assertion method (terms in pink). A given type
of evidence can be applied to (used_in; dotted lines) automatic assertion or manual assertion, which neces-
sitated the creation of ECO leaf nodes that are evidence x assertion method cross products. For simplicity, most
ECO classes are not displayed in the figure, including, for example, five of eight direct subclasses of evidence
or three of four types of similarity evidence and so on
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Evidence terms descend from the root class “evidence”, which is defined
as “a type of information that is used to support an assertion” (Fig. 3).
Most evidence terms are either experimental or computational in nature,
e.g., “chromatography evidence” or “sequence similarity evidence”,
respectively (Fig. 3). However, ECO also comprises other types of evi-
dence, such as “curator inference” and “author statement”.

In addition to describing evidence, ECO can also describe the
means by which assertions are made, i.e., by a human or a machine.
ECO calls this the “assertion method” and defines it as “a means
by which a statement is made about an entity” (Figs. 1c and 2b).
For example, whether a curator makes an annotation after reading
about an experimental result in a scientific paper or after manually
evaluating pairwise sequence alignment results, ECO can express
that a manual curation method was used (3,8). Conversely, if an
algorithm was used to assign a predicted function to a protein,
ECO can express that an automated computational method was
used. Thus “assertion method” forms a second root class with two
branches: “manual assertion” and “automatic assertion” (Fig. 3).

The current version of ECO comprises 630 terms that describe
“evidence”, “assertion method”, or “evidence x assertion method”
cross products. Ontology architecture of ECO was recently
described in Chibucos et al. [11].

Recent development efforts of ECO have emphasized meeting the
needs of a larger research community; see for example [11, 16],
while still capturing the needed information for GO annotation,
such as by adding comments and synonyms to a term. Many high-
level ECO term definitions were written with explicit GO usage
notes contained therein because ECO originated during early
efforts of the GO. However, in order to increase overall usability of
ECO by resources other than the GO, such verbiage has been
removed, while retaining the essence of the term’s meaning and
applicability to GO. As ECO has been developed, more and more
granular terms have been created to represent increasingly com-
plex laboratory, computational, and even inferential techniques.

A discussion of ECO and GO would not be complete without
mention of the GO evidence code IEA or “inferred from electronic
annotation”. IEA is used to connote that an annotation was
assigned through automated computational means, e.g., transfer-
ring annotations from one protein to another. Because IEA
describes how an annotation was assigned, rather than the specific
type of supporting evidence, this term belongs as a subclass of
“assertion method”. As described above, “assertion method” has
two child terms, “manual assertion” and “automatic assertion”,
with the latter being equivalent to IEA. Now it is possible to more
accurately model evidence and the annotation process using ECO.

Aside from rewording definitions and creating a second root class,
the biggest conceptual modification of ECO is reflected by removal of
the prefix “inferred from” from every term name (see the GO codes
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for a sense of how ECO terms were previously labeled). This was done
because ECO considers not just inferences made during the curation
process, per se, but other aspects of evidence documentation, such as
what research methodologies were performed.

3 Fundamentals of Evidence-Based GO Annotation

3.1 ECO Terms
Versus GO Codes

Creating an association between a GO term and a gene product
is the fundamental essence of the GO annotation process.
Documenting the evidence for any given GO annotation is a critical
component of this annotation process, and an annotation would be
incomplete without the requisite evidence. In fact, evidence capture
by the GO requires both a “GO evidence code” that describes in
detail the type of work or analysis that was performed in support of
the annotation, as well as a citation for the reference from which the
evidence was derived. Curators go to great lengths to understand
and properly apply the correct “evidence code” to a given annota-
tion, and an online guide exists to explain the often-subtle distinc-
tions between multiple related evidence types (http: / /geneontology.
org/page/guide-go-evidence-codes) [4, 13].

The GO gene association file (GAF) format contains required
columns for both evidence code and reference. Each GO evidence
code maps directly to an ECO term. ECO maintains database cross
references to the GO codes for easy mapping between systems. GO
codes therefore represent a subset of the Evidence and Conclusion
Ontology. Since independent development of ECO was undertaken,
a number of new GO evidence codes have been created, e.g., IBA,
IBD, IKR, IRD. Equivalent terms have been instantiated in ECO
(Fig. 4a), which will continue to develop such terms for the GO.

Although GO evidence codes are useful in themselves because they
represent detailed descriptions of evidence types, they are main-
tained as a controlled vocabulary with a shallow hierarchical struc-
ture that lacks the advantages of a formal ontology like ECO. Further,
the full set of terms within ECO provides the ability to capture
more breadth and depth of evidence information than the GO evi-
dence codes do. Additionally, as the field of biocuration evolves and
the kinds of evidence being curated from the literature continue to
grow both more detailed and nuanced, the number of two- and
three-letter acronyms (e.g., IEA, IMP, EXP, and ISS) available for
new terms will hit an upper limit (there are only 676 possibilities
using all 26 two-letter combinations, as the first letter of the three-
letter GO codes often stands for “inferred”). In fact, ECO develop-
ers have already received requests from different users to develop
new, but unrelated, terms that had the same suggested three-letter
acronyms. For all of these reasons, there are discussions underway
about transitioning GO evidence storage to use ECO terms rather
than GO evidence codes. Such a shift would combine the
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Fig. 4 Applications of ECO to GO. (a) ECO evidence classes are hierarchical such that broader classes parent
more granular ones; depicted here are evidence types that support a phylogenetic tree-based approach for
generating manually reviewed, homology-based annotations. (b) When a protein is annotated based on
sequence similarity to another annotated protein, the identity of that protein must be recorded in the annota-
tion file along with the evidence. (¢) Quality control assessment; Expression pattern evidence is only allowable
for annotations to the GO Biological Process ontology. (d) Evidence is used to prevent circular annotations
based solely on computational predictions. Chains of evidence are computationally evaluated to ensure that
inferential annotations are linked to experimental evidence

advantages of both systems and would still provide a mechanism for
filtering evidence annotations by the previous codes if desired. If
ECO terms were to be fully adopted by GO, the GAF format would
change to require “ECO term” instead of “evidence code.” Since
most GO evidence codes have a one-to-one mapping to ECO terms
(while the remainder, i.e., IEA, IGC, ISS, map, in conjunction with
various GO standard references [http://purl.obolibrary.org/obo/
eco/gat-eco-mapping.txt], to specific ECO terms), GO data depos-
itors could use a straightforward replacement based on the map-
pings. Other resources outside of GO have modeled their annotation
capture systems on the GAF format. For example, the Ontology of
Microbial Phenotypes [17] uses a modified version of the GO GAF,
but employs ECO terms instead of GO evidence codes. The full use
of ECO terms by the GO would enhance the integration of data
derived from such diverse sources.
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4 Benefits of ECO and Applications for the GO

There are currently over 365 million annotations in the GO reposi-
tory linked to an evidence term, and these can be queried and main-
tained better with the help of an ontology by leveraging its hierarchical
structure. One of the most direct applications for using an ontology of
evidence is selective data query, i.e., to query a database for records
associated with a particular evidence type. For example, searching for
“thin layer chromatography evidence” (at present a leaf term with no
subclasses) would return only the records associated with that evi-
dence type and no others. But grouping annotations is also possible
with this approach. A query for “chromatography evidence” will
return data associated not only with “chromatography evidence” but
also its more specific subtypes including “thin layer chromatography
evidence” and “high performance liquid chromatography evidence”.
But there are further benefits to be derived from an ontology of
evidence beyond simple structured queries (Fig. 4). For example:

1. To amplify the benefits of experimental knowledge that cura-
tors capture, the GO Consortium is using a phylogenetic tree-
based approach to generate manuallyreviewed,homology-based
annotations for a range of species [18]. This phylogenetic
annotation methodology necessitated a new set of evidence
terms to capture the inference process (Fig. 4a). Currently
over 150,000 annotations are associated with these new terms
and the number continues to grow.

2. The GO curatorial process uses evidence to support comput-
able rules about the kinds of information that must be associ-
ated with different evidence types. For example, one rule states
that annotation of a protein based on alignment with another
protein requires that the identity of the matching protein be
captured, along with the evidence type “protein alignment evi-
dence” (Fig. 4b). If such an evidence type were missing, this
would flag the annotation for review.

3. The GO uses evidence as a quality control mechanism for
annotation consistency. For example, expression pattern evi-
dence is restricted to annotations for terms from the “biologi-
cal process” ontology. Annotations to terms from either of the
other two GO ontologies (“molecular function” or “cellular
component”) would be flagged as suspect (Fig. 4c).

4. Evidence is used to prevent circular annotations based solely
on computational predictions (Fig. 4d). Chains of evidence are
computationally evaluated to ensure that inferential annota-
tions are linked to experimental evidence. For example, anno-
tations supported by “sequence alignment evidence” require
the inclusion of a database identifier for the matching gene



Supporting GO Annotations with Evidence 253

i

a
AmiIGO 2

Hint: add a space after completing a word to
narrow the search.

proteclysis

Search

Text search document selection ©

The following results were found for proteolysis using a general search over all text fields.

To narrow your search, select the type of document that you would like to search for and
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Ontology Gene Ontology Term, Synonym, or Definition. 416

GO Models (ALPHA) An individual unit within LEGO. This is ALPHA software. o

Genes and gene products Genes and gene products associated with GO

terms.

Associations between GO terms and genes or gene products. m

Protein families Information about protein (PANTHER) families. o

A generic search document to get a general overview of everything. @

Noctua meta A generic capture of light Noctua metadata in realtime. L0

Fig. 5 AmiGO 2 query and results. (a) User has typed “proteolysis” into the search box. (b) Number of hits (right
gray box) shown for each document category (blue boxed texd). Clicking on “Annotations” will open a new page
with more detailed results

product that is itself linked to an annotation supported by
experimental evidence.

Yet another application of ECO for the GO has been realized in
the UniProt-Gene Ontology Annotation (UniProt-GOA) project.
Arguably, UniProt is the most comprehensive and best-curated pro-
tein database available to the research community. ECO terms have
replaced the original UniProtKB [19] evidence types and are available
in UniProtKB XML [11]. Novel ways of mapping and extending
ontologies have been discussed with ECO and the GO Consortium
to ensure appropriate development for UniProtKB annotation. The
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on filters. (b) To the right, each annotation row is shown for a given protein

4.1 Exercise

UniProt-GOA project provides >169 million manual and electronic
evidence-based associations between GO terms and 26.5 million
UniProtKB proteins covering >411,000 taxa [20]. Of these, manual
annotation provides 1.4 million annotations to ~260,000 proteins.
Since 2010, UniProt-GOA has supplied GO annotations in a Gene
Product Association Data (GPAD) file format, which allows inclusion
of ECO terms. Because ECO terms are cross referenced to corre-
sponding GO codes, even if evidence for annotations was supplied to
UniProt as GO codes, the GPAD file will display the appropriate
equivalent ECO term. Thus, UniProt annotations can be grouped by
leveraging the structure of ECO.

Once the reader has gained a basic understanding of ECO and its
connection to GO, we can perform the following simple exercise
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Fig. 7 Selected ECO terms in use by the GO Consortium that are related to the
present query. The number of annotations supported by a given evidence type is
shown in parentheses

that displays a faceted query using ECO in AmiGO 2 (http://
amigo2.geneontology.org,/amigo).

User types “proteolysis” into the query box (Fig. 5a) and sees a
number ofhitsreturned (Fig. 5b). Next, after clicking on “Annotations”
in the blue rectangle, the user sees all the annotation-related terms
that had hits to “proteolysis” (Fig. 6a, b), split into two parts here for
easier viewing. Clicking on “Evidence” in the filter box (Fig. 6a) will
expand it to display all constituent evidence types (Fig. 7). Clicking on
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Fig. 8 Filtering on evidence.

After filtering on “traceable author statement used in manual assertion”, only

annotations supported by that evidence type are displayed, shown as “TAS” in the “Evidence” column. Number
of annotations associated with that evidence type is shown at the fop /eft

“traceable author statement used in manual assertion” will open a
subset of the results that match that more restrictive filter (Fig. 8).
The evidence filter box now says “Nothing to filter” (Fig. 9).

5 The Future of ECO

What else can an ontology of evidence do? One aspect of active
exploration for ECO is the evaluation of confidence or quality of
evidence. Work has begun [21] to develop a mechanism to incor-
porate quality information into ECO or, as needed, to create a
standalone system. It might one day be possible to use ECO to
describe the guality of the evidence supporting an annotation in
addition to the #ype of evidence that supports the annotation.

In summary, the Evidence and Conclusion Ontology can be
used to support faceted queries of data, to establish computable
rules about required types of evidence, as a quality control check
for annotation consistency, and as a mechanism to prevent circular
annotations rooted only in computational predictions. GO is
already benefitting from these applications of ECO, and the future
promises both additional new applications of ECO as well as
advancements to current ones.
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