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Upper-Bounding the Regularization Constant for

Convex Sparse Signal Reconstruction
Renliang Gu and Aleksandar Dogandžić

Abstract—Consider reconstructing a signal x by minimizing a
weighted sum of a convex differentiable negative log-likelihood
(NLL) (data-fidelity) term and a convex regularization term that
imposes a convex-set constraint on x and enforces its sparsity
using ℓ1-norm analysis regularization. We compute upper bounds
on the regularization tuning constant beyond which the regular-
ization term overwhelmingly dominates the NLL term so that the
set of minimum points of the objective function does not change.
Necessary and sufficient conditions for irrelevance of sparse
signal regularization and a condition for the existence of finite
upper bounds are established. We formulate an optimization
problem for finding these bounds when the regularization term
can be globally minimized by a feasible x and also develop an
alternating direction method of multipliers (ADMM) type method
for their computation. Simulation examples show that the derived
and empirical bounds match.

I . I N T R O D U C T I O N

Selection of the regularization tuning constant u > 0 in

convex Tikhonov-type [1] penalized negative log-likelihood

(NLL) minimization

fu(x) = L(x) + ur(x) (1)

is a challenging problem critical for obtaining accurate es-

timates of the signal x [2, Ch. 7]. Too little regularization

leads to unstable reconstructions with large noise and artifacts

due to, for example, aliasing. With too much regularization, the

reconstructions are too smooth and often degenerate to constant

signals. Finding bounds on the regularization constant u or

finding conditions for the irrelevance of signal regularization

has received little attention. In this paper, we determine upper

bounds on u beyond which the regularization term r(x)
overwhelmingly dominates the NLL term L(x) in (1) so that

the minima of the objective function fu(x) do not change. For

a linear measurement model with white Gaussian noise and ℓ1-

norm regularization, a closed-form expression for such a bound

is determined in [3, eq. (4)]; see also Example 4. The obtained

bounds can be used to design continuation procedures [4, 5]

that gradually decrease u from a large starting point down

to the desired value, which improves the numerical stability

and convergence speed of the resulting minimization algorithm

by taking advantage of the fact that penalized NLL schemes

converge faster for smoother problems with larger u [6]. In

some scenarios, users can monitor the reconstructions as u
decreases and terminate when the result is satisfactory.
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Consider a convex NLL L(x) and a regularization term

r(x) = IC(x) + ‖ΨHx‖1 (2)

that imposes a convex-set constraint on x, x ∈ C ⊆ R
p,

and sparsity of an appropriate linearly transformed x, where

Ψ ∈ C
p×p′

is a known sparsifying dictionary matrix. Assume

that the NLL L(x) is differentiable and lower bounded within

the closed convex set C, and satisfies

domL(x) ⊇ C (3)

which ensures that L(x) is computable for all x ∈ C. Define

the convex sets of solutions to minx fu(x), minx r(x), and

minx∈Q L(x):1

Xu ,
{

x
∣

∣ fu(x) = min
χ

fu(χ)
}

(4a)

Q ,
{

x | r(x) = min
χ

r(χ)
}

=
{

x ∈ C
∣

∣ ‖ΨHx‖1 ≤ min
χ∈C

‖ΨHχ‖1
}

(4b)

X ⋄ ,
{

x ∈ Q | L(x) ≤ min
χ∈Q

L(χ)
}

6= ∅ (4c)

where the existence of X ⋄ is ensured by the assumption that

L(x) is lower bounded in C.

We review the notation: “∗”, “T ”, “H”, “+”, ‖·‖p, |·|, ⊗,

“�”, “�”, IN , 1N×1, and 0N×1 denote complex conjugation,

transpose, Hermitian transpose, Moore-Penrose matrix inverse,

ℓp-norm over the complex vector space C
N defined by ‖z‖pp =

∑N
i=1 |zi|p for z = (zi) ∈ C

N , absolute value, Kronecker prod-

uct, elementwise versions of “≥” and “≤”, the identity matrix

of size N and the N×1 vectors of ones and zeros, respectively

(replaced by I,1, and 0 when the dimensions can be inferred).

IC(a) =

{

0, a ∈ C

+∞, otherwise
, PC(a) = argminx∈C‖x−a‖22,

and exp◦ a denote the indicator function, projection onto C,

and the elementwise exponential function: [exp◦ a]i = exp ai.

Denote by N (A) and R(A) the null space and range

(column space) of a matrix A. These vector spaces are real

or complex depending on whether A is a real- or complex-

valued matrix. For a set S of complex vectors of size p,

define ReS ,
{

s ∈ R
p | s + jt ∈ S for some t ∈ R

p
}

and S ∩ R
p ,

{

s ∈ R
p | s+ j0 ∈ S

}

, where j =
√
−1. For

A ∈ C
M×N ,

N (AH) ∩ R
M = N (AT ), Re

(

R(A)
)

= R(A) (5)

1The use of “≤” in the definitions of Q and X ⋄ in (4b) and (4c) makes it
easier to identify both as convex sets.
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are the real null space and range of AT and A, respectively,

where

A ,
[

ReA ImA
]

∈ R
M×2N . (6)

If A in (6) has full row rank, we can define

A‡ , AH [Re(AAH)]−1 (7)

which reduces to A+ for real-valued A. The following are

equivalent: Re(R(Ψ)) = R
p, N (ΨH)∩R

p = {0}, and d = p,

where

d , dim(Re(R(Ψ))) ≤ min(p, 2p′). (8)

We can decompose Ψ as

Ψ = FZ (9)

where F ∈ R
p×d and Z ∈ C

d×p′

with rankF = d and

rankZ = d; Z =
[

ReZ ImZ
]

∈ R
d×2p′

, consistent with

the notation in (6). Here, R(F ) denotes the real range of the

real-valued matrix F . Clearly, d ≥ 1 is of interest; otherwise

Ψ = 0. Observe that (see (7))

Re(ΨZ‡) = F (10a)

R(F ) = Re(R(Ψ)). (10b)

The subdifferential of the indicator function NC(x) =
∂IC(x) is the normal cone to C at x [7, Sec. 5.4] and, by the

definition of a cone, satisfies

NC(x) = aNC(x), for any a > 0. (11)

Define

G(s) ,

{

{s/|s|}, s 6= 0

{w ∈ C | |w| ≤ 1}, s = 0
(12)

and its elementwise extension G(s) for vector arguments s,

which can be interpreted as twice the Wirtinger subdifferential

of ‖s‖1 with respect to s [8]. Note that sHG(s) = {‖s‖1},

and, when s is a real vector, Re(G(s)) is the subdifferential

of ‖s‖1 with respect to s [9, Sec. 11.3.4].

Lemma 1: For Ψ ∈ C
p×p′

and x ∈ R
p, the subdifferential

of ‖ΨHx‖1 with respect to x is

∂x‖ΨHx‖1 = Re
(

ΨG(ΨHx)
)

. (13)

Proof: (13) follows from

∂x|ψH
j x| = Re

(

ψjG(ψH
j x)

)

(14)

where ψj is the jth column of Ψ. We obtain (14) by

replacing the linear transform matrix in [10, Prop. 2.1] with
[

Reψj Imψj

]T
.

We now use Lemma 1 to formulate the necessary and

sufficient conditions for x ∈ Xu:

0 ∈ uRe
(

ΨG(ΨHx)
)

+∇L(x) +NC(x) (15a)

and x ∈ Q:

0 ∈ Re
(

ΨG(ΨHx)
)

+NC(x) (15b)

respectively.

When the signal vector x = vecX corresponds to an image

X ∈ R
J×K , its isotropic and anisotropic total-variation (TV)

regularizations correspond to [11, Sec. 2.1]

Ψ = Ψv + jΨh ∈ C
JK×JK (isotropic) (16a)

Ψ =
[

Ψv Ψh

]

∈ R
JK×2JK (anisotropic) (16b)

respectively, where Ψv = IK⊗DT (J) and Ψh = DT (K)⊗IJ
are the vertical and horizontal difference matrices (similar to

those in [12, Sec. 15.3.3]), and

D(L) ,

















1 −1
1 −1

. . .
. . .

1 −1
0 0 · · · 0 0

















∈ R
L×L (17)

obtained by appending an all-zero row from below to the (L−
1)×L upper-trapezoidal matrix with first row

[

1,−1, 0, . . . , 0
]

;

note that D(1) = 0. Here, d = JK − 1 and

N (ΨH) = R(1) (18)

for both the isotropic and anisotropic TV regularizations.

The scenario where

N (ΨH) ∩ C 6= ∅ (19)

holds is of practical interest: then Q = N (ΨH)∩C and x⋄ ∈
X ⋄ globally minimize the regularization term: r(x⋄) = 0. If

(19) holds and x⋄ ∈ X ⋄, then G(ΨHx⋄) = H , where

H ,
{

w ∈ C
p′×1 | ‖w‖∞ ≤ 1

}

. (20)

If, in addition to (19),

• d = p, then X ⋄ = Q = {0};

• N (ΨH)∩R
p = R(1), then Q = R(1)∩C and x⋄ ∈ X ⋄

are constant signals of the form x⋄ = 1x⋄
0, x

⋄
0 ∈ R.

In Section II, we define and explain an upper bound U on

useful regularization constants u and establish conditions under

which signal sparsity regularization is irrelevant and finite U
does not exist. We then present an optimization problem for

finding U when (19) holds (Section III), develop a general

numerical method for computing bounds U (Section IV),

present numerical examples (Section V), and make concluding

remarks (Section VI).

I I . U P P E R B O U N D D E F I N I T I O N A N D P R O P E R T I E S

Define

U , inf
{

u ≥ 0 | Xu ∩Q 6= ∅
}

. (21)

If Xu ∩ Q = ∅ for all u, then finite U does not exist, which

we denote by U = +∞.

We now show that, if u ≥ U , then the the set of minimum

points Xu of the objective function does not change.

Remark 1:

(a) For any u, Xu ∩Q = X ⋄ if and only if Xu ∩Q 6= ∅.

(b) Assuming XU ∩ Q 6= ∅ for some U ≥ 0, Xu = X ⋄ for

u > U .
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Proof: We first prove (a). Necessity follows by the exis-

tence of X ⋄; see (4c). We argue sufficiency by contradiction.

Consider any xu ∈ Xu∩Q; i.e., xu minimizes both fu(x) and

r(x). If xu /∈ X ⋄, there exists a y ∈ X ⋄ with L(y) < L(xu)
that, by the definition of X ⋄, also minimizes r(x). Therefore,

fu(y) = L(y) + ur(y) < fu(xu), which contradicts the

assumption xu ∈ Xu. Therefore, Xu ∩Q ⊆ X ⋄. If there exists

a z ∈ X ⋄ ⊆ Q such that z /∈ Xu, then fu(z) > fu(xu) which,

since both z and xu are in Q, implies that L(z) > L(xu) and

contradicts the definition of X ⋄. Therefore, X ⋄ ⊆ Xu.

We now prove (b). By (a), XU∩Q = X ⋄, which confirms (b)

for u = U . Consider now u > U , a y ∈ XU ∩Q = X ⋄, and

any x ∈ Xu. Then,

L(x) + Ur(x) ≥ L(y) + Ur(y) (22a)

L(y) + ur(y) ≥ L(x) + ur(x). (22b)

By summing the two inequalities in (22) and rearranging, we

obtain r(y) ≥ r(x). Since y ∈ Q, x is also in Q; i.e., Xu ⊆ Q,

which implies Xu = X ⋄ by (a).

As u increases, Xu moves gradually towards Q and, accord-

ing to the definition (21), Xu and Q do not intersect when

u < U . Once u = U , the intersection of the two sets is X ⋄,

and, by Remark 1(b), Xu = X ⋄ for all u > U .

A. Irrelevant Signal Sparsity Regularization

Remark 2: The following claims are equivalent:

(a) X ⋄ ∩ X0 6= ∅; i.e., there exists an x⋄ ∈ X ⋄ such that

0 ∈ ∇L(x⋄) +NC(x
⋄); (23)

(b) X ⋄ ⊆ X0; and

(c) U = 0; i.e., X0 ∩Q 6= ∅.

Proof: (c) follows from (a) because X ⋄ ⊆ Q. (b) follows

from (c) by applying Remark 1(a) to obtain X0 ∩ Q = X ⋄,

which implies (b). Finally, (b) implies (a).

Having ∇L(x⋄) = 0 for at least one x⋄ ∈ X ⋄ implies (23)

and is therefore a stronger condition than (23).

Example 1: Consider L(x) = ‖x‖22 and C =
{

x ∈ R
2 |

‖x − 12×1‖2 ≤ 1
}

. (Here, L(x) could correspond to the

Gaussian measurement model with measurements equal to

zero.) Since C is a circle within R
2
+, the objective functions

for the identity (Ψ = I2) and 1D TV sparsifying transforms

are

fu(x) = x2
1 + x2

2 + u(x1 + x2) + IC(x), (identity) (24a)

fu(x) = x2
1 + x2

2 + u|x1 − x2|+ IC(x), (1D TV) (24b)

respectively, where Xu = X ⋄ = Q = {x⋄} and x⋄ =
(

1 −√
2/2

)

1. Here, ∇L(x⋄) = (2 −
√
2)12×1 and NC(x

⋄) =
{a1 | a ≤ 0}, which confirms that (23) holds.

B. Condition for Infinite U and Guarantees for Finite U

Remark 3: If there exists x⋄ ∈ X ⋄ such that

[∇L(x⋄) +NC(x
⋄)] ∩ Re(R(Ψ)) = ∅. (25)

then U = +∞. When (19) holds, the reverse is also true with

a stronger claim: U = +∞ implies (25) for all x⋄ ∈ X ⋄.

Proof: First, we prove sufficiency by contradiction. If a

finite U exists, then X ⋄ ⊆ Xu for all u ≥ U . Therefore, (15a)

holds with x being any x⋄ ∈ X ⋄, which contradicts (25).

In the case where (19) holds, we prove the necessity by

contradiction. If (25) does not hold for all x⋄ ∈ X ⋄, there

exist t ∈ NC(x
⋄) and w ∈ C

p′

such that

0 = ∇L(x⋄) + Re(Ψw) + t. (26)

Since (19) holds, ΨHx⋄ = 0 and G(ΨHx⋄) = H; see

(20). When u ≥ ‖w‖∞, w ∈ uH and Re(Ψw) ∈
uRe

(

ΨG(ΨHx⋄)
)

. Therefore, (15a) holds at x = x⋄ for all

u ≥ ‖w‖∞, which contradicts U = +∞.

Example 2: Consider L(x) = x1 + IR+
(x1), Ψ = I2,

and C =
{

x ∈ R
2 | ‖x − 12×1‖2 ≤ 1

}

. (Here, L(x)
could correspond to the Poisson(x1) measurement model with

measurement equal to zero.) Since C is a circle within R
2
+,

the objective function is

fu(x) = (1 + u)x1 + ux2 + IC(x) (27)

with Xu = {xu}, X ⋄ = Q = {x⋄}, and

xu = 12×1 −
1

√

2 + 2/u+ 1/u2

[

1 + 1/u
1

]

(28a)

x⋄ =
(

1−
√
2/2

)

12×1 (28b)

which implies U = +∞, consistent with the observation that

Xu∩Q = ∅. Here, (19) is not satisfied: (25) is only a sufficient

condition for U = +∞ and does not hold in this example.

Example 3: Consider L(x) = ‖x‖22, 1D TV sparsifying

transform with Ψ = DT (2), and C =
{

x ∈ R
2 |

∥

∥x −
[

2, 0
]T∥

∥

2

2
≤ 2

}

. Since C is a circle with x1 − x2 ≥ 0, the

objective function is

fu(x) = ‖x‖22 + u|x1 − x2|+ IC(x) (29a)

= ‖x− 1
2 [u −u]T ‖22 − u2/2 + IC(x) (29b)

with Xu =
{[

2 − (1 + 4/u)/q(u), 1/q(u)
]T}

, q(u) ,
√

1 + 4/u+ 8/u2, and X ⋄ = Q = {12×1}, which implies

U = +∞. Since (19) holds in this example, (25) is necessary

and sufficient for U = +∞. Since −1
T∇L(x⋄) = −4 and

NC(x
⋄) = {(−a, a)T | a ≥ 0}, (25) holds.

1) Two cases of finite U : If d = p and (19) holds, then U
must be finite: in this case, condition (25) in Remark 3 cannot

hold, which is easy to confirm by substituting Re(R(Ψ)) = R
p

into (25).

U must also be finite if

X ⋄ ∩ intC 6= ∅. (30)

Indeed, (30) implies (19) and that for x⋄ ∈ X ⋄ ∩ intC,

NC(x
⋄) = {0} (31a)

∇L(x⋄) ∈ Re(R(Ψ)) (31b)

and hence (25) cannot hold upon substituting (31a) and (31b).

Here, (31b) follows from 0 ∈ ∇L(x⋄)+NQ(x
⋄), the condition

for optimality of the optimization problem minx∈Q L(x) that

defines X ⋄, by using the fact that NQ(x
⋄) = Re(R(Ψ)) when

x⋄ ∈ X ⋄ ∩ intC.

If (30) holds then, by Remark 2, U = 0 if and only if

∇L(x⋄) = 0.
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I I I . B O U N D S W H E N (19) H O L D S

We now present an optimization problem for finding U when

(19) holds.

Theorem 1: Assume that (19) holds and that the convex

NLL L(x) is differentiable within X ⋄. Consider the following

optimization problem:

(P0): U0(x
⋄) = min

a∈Rp, t∈Cp′
‖p(x⋄,a, t)‖∞ (32a)

subject to a ∈ NC(x
⋄) (32b)

∇L(x⋄) + a ∈ R(F ) (32c)

with

p(x,a, t) , t+ Z‡
{

F+[∇L(x) + a]− Re(Zt)
}

. (33)

Then, U0(x
⋄) = U for all x⋄ ∈ X ⋄ and U in (21).

Here, U = +∞ if and only if the constraints in (32b) and (32c)

cannot be satisfied for any a, which is equivalent to x⋄ ∈ X ⋄

satisfying (25) in Remark 3.

Proof: Observe that G(ΨHx⋄) = H for all x⋄ ∈ X ⋄ and

Re
(

Ψp(x,a, t)
)

= ∇L(x) + a. (34)

due to (19) and (10a), respectively.

We first prove that X ⋄ ⊆ Xu if u ≥ U0(x
⋄). Consider any

x⋄ ∈ X ⋄ and denote by (ã, t̃) a pair (a, t) that solves the

minimization problem (P0). Since u ≥ U0(x
⋄), there exists an

h̃ ∈ H such that p(x⋄, ã, t̃)+ uh̃ = 0. Using (34), we obtain

0 = Re{Ψ[p(x⋄, ã, t̃) + uh̃]} = uRe(Ψh̃) +∇L(x⋄) + ã

(35)

which implies x⋄ ∈ Xu according to (15a).

Second, we prove that if u < U0(x
⋄) for any x⋄ ∈ X ⋄, then

X ⋄ ∩ Xu = ∅. We employ proof by contradiction. Suppose

X ⋄ ∩Xu 6= ∅; then, there exists an x⋄ ∈ X ⋄ ∩Xu. According

to (15a), there exist an ȟ ∈ H and an ǎ ∈ NC(x
⋄) such that

0 = uRe(Ψȟ) +∇L(x⋄) + ǎ. Using (34), we have

0 = Re
(

Ψ[uȟ+ p(x⋄, ǎ,−uȟ)]
)

. (36)

Note that

uȟ+ p(x⋄, ǎ,−uȟ) = Z‡
{

F+[∇L(x⋄) + ǎ] + uRe(Zȟ)
}

.

(37)

Inserting (37) into (36) and using (10a) and the fact that F has

full column rank leads to 0 = F+[∇L(x⋄) + ǎ] + uRe(Zȟ);
thus

0 = uȟ+ p(x⋄, ǎ,−uȟ). (38)

Now, rearrange and use the fact that ‖ȟ‖∞ ≤ 1 (see (20)) to

obtain

‖p(x⋄, ǎ,−uȟ)‖∞ = u‖−ȟ‖∞ ≤ u < U0(x
⋄) (39)

which contradicts (32), where U0(x
⋄) is the minimum.

Finally, we prove by contradiction that U0(x
⋄) is invariant

within X ⋄ if X ⋄ has more than one element. Assume that there

exist x⋄
1,x

⋄
2 ∈ X ⋄ and u such that U0(x

⋄
1) ≤ u < U0(x

⋄
2).

We obtain contradictory results: x⋄
1 ∈ Xu and X ⋄ ∩ Xu 6= ∅

because u ≥ U0(x
⋄
1) and u < U0(x

⋄
2), respectively. Therefore,

U = U0(x
⋄) is invarant to x⋄ ∈ X ⋄.

The constraints on a in (32b) and (32c) are equivalent to

stating that (25) does not hold for any x⋄ ∈ X ⋄; see also (10b).

If an a does not exist that satisfies these constraints, (25) holds

and U = +∞ according to Remark 3.

We make a few observations: (P0) is a linear programming

problem with linear constraints and can be solved using

CVX [13] and Matlab’s optimization toolbox upon identifying

NC(x
⋄) and R(F ) in (32b) and (32c), respectively. Theorem 1

requires differentiability of the NLL only at x = x⋄ ∈ X ⋄. If

Ψ is real, then Z is real as well, the optimal t in (P0) has zero

imaginary component and the corresponding simplified version

of Theorem 1 follows and requires optimization in (P0) with

respect to real-valued t ∈ R
p′

.

If Ψ is real and d = p′, then we can select Z = I , which

leads to Z‡ = I and cancellation of the variable t in (32a) and

simplification of (P0).

We now specialize Theorem 1 to two cases with finite U .

Corollary 1 (d = p): If d = p and if (19) holds, then U in

(21) can be computed as

U = min
a∈NC(0), t∈Cp′

∥

∥t+Ψ‡[∇L(0) + a− Re(Ψt)]
∥

∥

∞
. (40)

Proof: Theorem 1 applies, X ⋄ = {0}, and U must be

finite. Setting F = I in (32) leads to (40).

If C = R
p
+, then NC(0) = R

p
− and the condition a ∈ NC(0)

reduces to a � 0.

Corollary 2 (X ⋄ ∩ intC 6= ∅): If (30) holds, then U in (21)

can be computed as

U = min
t∈Cd

∥

∥t+ Z‡[F+∇L(x⋄)− Re(Zt)]
∥

∥

∞
(41)

with any x⋄ ∈ X ⋄ ∩ intC.

Proof: Thanks to (30), (19) and (31a)–(31b) are satisfied,

Theorem 1 applies, U must be finite, and a = 0 (by (31a)).

By using these facts, we simplify (32) to obtain (41).

If d = p and 0 ∈ intC, then both Corollaries 1 and 2 apply

and the upper bound U can be obtained by setting a = 0 and

NC(0) = {0} in (40) or by setting x⋄ = 0 and F = I in

(41).

Example 4: Consider a real invertible Ψ ∈ R
p×p.

(a) If C = R
p
+, Corollary 1 applies and (40) becomes

U = min
a�0

‖Ψ−1[∇L(0) + a]‖∞. (42a)

In this case, U = 0 and signal sparsity regularization is

irrelevant if ∇L(0) � 0, which follows by inspection

from (42a), as well as from (23) in Remark 2. If Ψ = I ,

(42a) further reduces to U = −min
(

0,mini[∇L(0)]i
)

.

(b) If 0 ∈ intC, Corollaries 1 and 2 apply and the bound U
simplifies to

U = ‖Ψ−1∇L(0)‖∞. (42b)

For Ψ = I and a linear measurement model with white

Gaussian noise, (42b) reduces to the expressions in [3,

eq. (4)] and [5, Sec. III], used in [5] to design its

continuation scheme; [3] and [5] also assume C = R
p.
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Example 5 (One-dimensional TV regularization): Consider

1D TV regularization with Ψ = DT (p) ∈ R
p×p obtained by

setting K = 1, J = p in (16a); note that d = p− 1. Consider

a constant signal x⋄ = 1x⋄
0 ∈ X ⋄. Then Theorem 1 applies

and yields

U = min
a∈NC(1x⋄

0
)
max
1≤j<p

∣

∣

∣

∣

j
∑

i=1

[

∇L(1x⋄
0) + a

]

i

∣

∣

∣

∣

(43a)

where we have used the factorization (9) with F obtained by

the block partitioning Ψ =
[

F 0p×1

]

, Z =
[

Ip−1 0(p−1)×1

]

,

and the fact that F+ is equal to the (p−1)×p lower-triangular

matrix of ones. When (30) holds, 1x⋄
0 ∈ X ⋄∩intC, Corollary 2

applies, a = 0 (see (31a)), and (43a) reduces to:

U = max
1≤j<p

∣

∣

∣

∣

j
∑

i=1

[

∇L(1x⋄
0)
]

i

∣

∣

∣

∣

. (43b)

The bounds obtained by solving (P0) are often simple but

restricted to the scenario where (19) holds. In the following

section, we remove assumption (19) and develop a general

numerical method for finding U in (21).

I V. A D M M A L G O R I T H M F O R C O M P U T I N G U

We focus on the nontrivial scenario where (23) does not

hold and assume u > 0. We also assume that an x⋄ ∈ X ⋄ is

available, which will be sufficient to obtain the U in (21). We

use the duality of norms [14, App. A.1.6]:

‖ΨHx‖1 = max
‖w‖∞≤1

Re(wHΨHx) (44)

to rewrite the minimization of (1) as the following min-max

problem (see also (20)):

min
x

max
w

L(x) + uRe(wHΨHx) + IC(x)− IH(w). (45)

Since the objective function in (45) is convex with respect to x

and concave with respect to w, the optimal (x,w) = (xu,wu)
is at the saddle point of (45) and satisfies

0 ∈ ∇L(xu) + uRe(Ψwu) +NC(xu) (46a)

wu ∈ G(ΨHxu). (46b)

Now, select U as the smallest u for which (46a)–(46b) hold

with xu = x⋄:

U =
1

v⋄
‖∇L(x⋄)‖2 (47)

where (v⋄,w⋄, t⋄) is the solution to the following constrained

linear programming problem:

(P1): minimize
v,w,t

−v + IG(ΨHx⋄)(w) + INC(x⋄)(t) (48a)

subject to vg +Re(Ψw) + t = 0 (48b)

obtained from (46a)–(46b) with xu and wu replaced by x⋄

and w. Here,

g , ∇L(x⋄)
/

‖∇L(x⋄)‖2 (49)

is the normalized gradient (for numerical stability) of the NLL

at x⋄; ∇L(x⋄) 6= 0 because (23) does not hold. Due to (15b),

v = 0 is a feasible point that satisfies the constraints (48b),

which implies that v⋄ ≥ 0. When (25) holds, v has to be zero,

implying U = +∞.

To solve (P1) and find v⋄, we apply an iterative algorithm

based on alternating direction method of multipliers (ADMM)

[15, 16]

w(i+1) = arg min
w∈G(ΨHx⋄)

‖v(i)g +Re(Ψw) + t(i) + z(i)‖22 (50a)

v(i+1) = ρ− gT
[

Re(Ψw(i+1)) + t(i) + z(i)
]

(50b)

t(i+1) = PNC(x⋄)

(

−v(i+1)g − Re(Ψw(i+1))− z(i)
)

(50c)

z(i+1) = z(i) +Re(Ψw(i+1)) + v(i+1)g + t(i+1) (50d)

where ρ > 0 is a tuning parameter for the ADMM iteration and

we solve (50a) using the Broyden-Fletcher-Goldfarb-Shanno

optimization algorithm with box constraints [17] and projected

Nesterov’s proximal-gradient (PNPG) algorithm [18] for real

and complex Ψ, respectively. We initialize the iteration (50)

with v(0) = 1, t(0) = 0, z(0) = 0, and ρ = 1, where

ρ is adaptively adjusted thereafter using the scheme in [15,

Sec. 3.4.1].

In special cases, (50) simplifies. If (19) holds, then ΨHx⋄ =
0 and the constraint in (50a) simplifies to ‖w‖∞ ≤ 1; see (20).

If Re(ΨΨH) = cI, c > 0, and Ψ ∈ R
p×p or Ψ ∈ C

p×p/2,

(50a) has the following analytical solution:

w(i+1) = PG(ΨHx⋄)

(

−1

c
ΨH

(

v(i)g + t(i) + z(i)
)

)

. (51)

When (30) holds, (50c) reduces to t(i) = 0 for all i, thanks to

(31a).

When Ψ is real, the constraints imposed by IG(ΨHx⋄)(w)
become linear and (P1) becomes a linear programming problem

with linear constraints.

V. N U M E R I C A L E X A M P L E S

Matlab implementations of the presented examples are

available at https://github.com/isucsp/imgRecSrc/uBoundEx. In

all numerical examples, the empirical upper bounds U were

obtained by a grid search over u with Xu = {xu} obtained

using the PNPG method [18].

A. Signal reconstruction for Gaussian linear model

We adopt the linear measurement model with white Gaussian

noise and scaled NLL L(x) = 0.5‖y − Φx‖22, where the

elements of the sensing matrix Φ ∈ R
N×p are independent,

identically distributed (i.i.d.) and drawn from the uniform

distribution on a unit sphere. We reconstruct the nonnegative

“skyline” signal xtrue ∈ R
1024×1 in [18, Sec. V-B] from noisy

linear measurements y using the discrete wavelet transform

(DWT) and 1D TV regularizations, where the DWT matrix

Ψ is orthogonal (ΨΨT = ΨTΨ = I), constructed using the

Daubechies-4 wavelet with three decomposition levels. Define

the signal-to-noise ratio (SNR) as

SNR (dB) = 10 log10
‖Φxtrue‖22

Nσ2
(52)

where σ2 is the variance of the Gaussian noise added to Φxtrue

to create the noisy measurement vector y.
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C = R
p
+

, DWT C = Rp, DWT C = R
p
+

, TV C = Rp, TV

SNR/dB theoretical empirical theoretical empirical theoretical empirical theoretical empirical

30 8.87 8.87 9.43 9.43 101.55 101.54

same as
C = R

p
+

, TV

20 8.91 8.91 9.47 9.47 100.21 100.21
10 9.03 9.03 9.59 9.59 96.47 96.47
0 9.43 9.43 9.98 9.98 87.49 87.49

−10 11.88 11.89 14.03 14.02 152.07 152.07
−20 27.77 27.78 43.28 43.28 361.56 361.56
−30 88.78 88.82 139.67 139.66 1024.04 1024.04
−30 77.29 77.31 123.91 123.90 683.43 683.43 909.50 909.48

TABLE I: Theoretical and empirical bounds U for the linear Gaussian model.

DWT Anisotropic TV Isotropic TV

1
TΦxtrue theoretical empirical theoretical empirical theoretical empirical

101 9.660 × 10−1 9.662 × 10−1 7.550 × 10−2 7.544 × 10−2 7.971 × 10−2 7.937 × 10−2

103 1.155 × 102 1.156 × 102 4.154 × 100 4.153 × 100 4.888 × 100 4.877 × 100

105 1.153 × 104 1.153 × 104 3.951 × 102 3.950 × 102 4.666 × 102 4.656 × 102

107 1.145 × 106 1.145 × 106 3.947 × 104 3.946 × 104 4.661 × 104 4.651 × 104

109 1.153 × 108 1.154 × 108 3.950 × 106 3.949 × 106 4.665 × 106 4.654 × 106

TABLE II: Theoretical and empirical bounds U for the PET example.

For C = R
p
+ and C = R

p with DWT regularization, X ⋄ =
{0} and Example 4 applies and yields the upper bounds (42a)

and (42b), respectively.

For TV regularization, we apply the result in Example 5.

For C = R
p and C = R

p
+, we have X ⋄ = {1x0} and X ⋄ =

{1max(x0, 0)}, respectively, where

x0 , argmin
x∈R

L(1x) = 1
TΦTy/‖Φ1‖22. (53)

If 1x0 ∈ intC, which holds when C = R
p or when C = R

p
+

and x0 > 0, then the bound U is given by (43b). For C = R
p
+

and if x0 ≤ 0, then X ⋄ = {0} and (43a) applies. In this case,

U = 0 if [∇L(0)]i ≥ 0 for i = 1, . . . , p − 1, which occurs

only when [∇L(0)]i = 0 for all i.

Table I shows the theoretical and empirical bounds for DWT

and TV regularizations and C = R
p
+ and C = R

p; we

decrease the SNR from 30 dB to −30 dB with independent

noise realizations for different SNRs. The theoretical bounds

in Sections III and IV coincide. For DWT regularization, X ⋄

is the same for both convex sets C and thus the upper bound U
for C = R

p
+ is always smaller than its counterpart for C = R

p,

thanks to being optimized over variable a in (42a). For TV

regularization, when x0 > 0, the upper bounds U coincide for

both C because, in this case, X ⋄ is the same for both C and

X ⋄ ∈ intC. In the last row of Table I we show the case where

x0 ≤ 0; then, X ⋄ differs for the two convex sets C, and the

upper bound U for C = R
p
+ is smaller than its counterpart for

C = R
p, thanks to being optimized over variable a in (43a):

compare (43a) with (43b).

B. PET image reconstruction from Poisson measurements

Consider positron emission tomography (PET) reconstruc-

tion of the 128× 128 concentration map xtrue in [18, Fig. 3a],

which represents simulated radiotracer activity in a human

chest, from independent noisy Poisson-distributed measure-

ments y = (yn) with means [Φxtrue + b]n. The choices of

parameters in the PET system setup and concentration map

xtrue have been taken from the Image Reconstruction Toolbox

(IRT) [19, emission/em_test_setup.m]. Here,

L(x) = 1
T (Φx+ b− y) +

∑

n,yn 6=0

yn ln
yn

[Φx+ b]n
(54a)

and

Φ = w diag
(

exp◦(−Sκ+ c)
)

S ∈ R
N×p
+ (54b)

is the known sensing matrix; κ is the density map needed to

model the attenuation of the gamma rays [20]; b = (bi) is

the known intercept term accounting for background radiation,

scattering effect, and accidental coincidence;2 c is a known

vector that models the detector efficiency variation; and w > 0
is a known scaling constant, which we use to control the

expected total number of detected photons due to electron-

positron annihilation, 1
T E(y − b) = 1

TΦxtrue, an SNR

measure. We collect the photons from 90 equally spaced

directions over 180◦, with 128 radial samples at each direction.

Here, we adopt the parallel strip-integral matrix S [21, Ch. 25.2]

and use its implementation in the IRT [19].

We now consider the nonnegative convex set C = R
p
+,

which ensures that (3) holds, and 2D isotropic and anisotropic

TV and DWT regularizations, where the 2D DWT matrix

Ψ is constructed using the Daubechies-6 wavelet with six

decomposition levels.

For TV regularizations, X ⋄ = {1max(0, x0)}, where

x0 = argminx∈R L(1x), computed using the bisection method

that finds the zero of ∂L(1x)/∂x, which is an increasing

function of x ∈ R+. Here, no search for x0 is needed when

∂L(1x)/∂x|x=0 > 0, because in this case x0 < 0.

We computed the theoretical bounds using the ADMM-type

algorithm in Section IV.

Table II shows the theoretical and empirical bounds for

DWT and TV regularizations and the SNR 1
TΦxtrue varying

from 101 to 109, with independent measurement realizations

for different SNRs.

2The elements of the intercept term have been set to a constant equal to
10 % of the sample mean of Φxtrue: b = [1TΦxtrue/(10N)]1.
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Denote the isotropic and anisotropic 2D TV bounds by Uiso

and Uani, respectively. Then, it is easy to show that when

(19) holds, Uani ≤ Uiso ≤
√
2Uani, which follows by using

the inequalities
√
2
√
a2 + b2 ≥ |a| + |b| ≥

√
a2 + b2 and is

confirmed in Table II.

V I . C O N C L U D I N G R E M A R K S

Future work will include obtaining simple expressions for

upper bounds U for isotropic 2D TV regularization, based on

Theorem 1.
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