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Abstract 
 

 Despite recent research efforts improving Additive Manufacturing (AM) systems, quality and reliability 
of AM built products remains as a challenge. There is a critical need to achieve process parameters optimizing 
multiple mechanical properties or geometry accuracy measures simultaneously. The challenge is that the 
optimal value of various objectives may not be achieved concurrently. Most of the existing studies aimed to 
obtain the optimal process parameters for each objective individually, resulting in duplicate experiments and 
high costs. In this study we investigated multiple geometry accuracy measures of parts fabricated by Fused 
Filament Fabrication (FFF) system. An integrated framework for systematically designing experiments is 
proposed to achieve multiple sets of FFF process parameters resulting in optimal geometry integrity. The 
proposed method is validated using a real world case study. The results show that optimal properties are 
achieved in a more efficient manner compared with existing methods. 
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Introduction 
 
Additive Manufacturing (AM), as a general term, refers to a range of production technologies which 

fabricates 3D objects from a CAD model directly in a layer upon layer manner [1]. In comparison with 
traditional subtractive production methods, AM ought to be considered as a manufacturing revolution by virtue 
of its novel advantages such as allowing for fabricating very complex-shaped and customized parts and 
handling functionally-graded materials [2, 3]. By emerging Laser-Based Additive Manufacturing (LBAM), now 
this technology is able to fabricate metal parts, namely stainless steel [4-6], Ti-6-Al-4V[7-9] and nickel-based 
alloys[10]. In fact, this almost new capacity of AM is a threshold for that to be more applicable for fabricating 
functional parts in a wide range of high-tech industries such as biomedical, automotive, aerospace and bio-
medicine. Despite of all the mentioned advantages, quality and repeatability is still a major barrier for this 
technology to be applied in a broader scale and applications [11]. In LBAM many controllable process 
parameters are reported influential on the adhesive powder deposition procedure and the consequential 
solidification heat transfer during the fabrication process. Accordingly, final part’s quality—microstructure and 
mechanical properties—are strongly dependent upon such process parameters[12]. For instance, laser power, 
layer thickness, and hatch space between adjacent paths of the laser within the same layer are reported as the 
most affective controllable process parameters for Selective Laser Melting (SLM) process [13]. 
 
 Depending on the desired application, fabricated part should possess specific qualities and mechanical 
properties (or geometric characteristics) such as acceptable level of density, yield strength, ductility, stiffness, 
elongation to failure, etc. For instance, in biomedical applications, titanium and its alloys such as Ti-6Al-4V are 
used since they fulfill the major requirements of this application namely low stiffness, high specific strength, 
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good corrosion and fatigue resistance [14]. Also, open-cell structure of new highly porous metals are recognized 
very advantageous in orthopedic implants due to their low modules of elasticity and high volumetric porosity, 
i.e. low density [15]. Additionally, titanium’s alloys are vastly employed in aerospace industry applications 
because of their  desired weight saving property resulted from high strength-to-weight ratio [16]. In dental 
prostheses applications, Ti-Ag and Ti-Cu Alloys are used owing to their relatively high strength for fabricating  
partial dentures, clasps and bridges [17]. In automotive industry, light-weight materials with acceptable and 
reliable level of density and strength are required, such as composite materials with high strength and high 
density [18]. In other cases, depending on the assembly requirements, we need to have parts possessing 
different geometric characteristics which may not be achieved in a single build. 
  
 In many cases, the relationship between various mechanical properties (or geometric characteristics) of 
the fabricated parts are reported arguably conflicting ones. In other words, the optimal values of different 
mechanical properties may not be achieved using the same experimental setup. Moreover, due to the high 
cooling rates of LBAM, the process/design parameters resulting in fabricated parts with high values for one 
mechanical property (e.g., ductility) may decrease result in low values for other properties (e.g., yield strength). 
Take Selective Laser Melting, a popular additive manufacturing system for fabricating high quality parts for 
low to medium quantity, for example. High cooling rate of SLM can cause some problems for ductility of the 
final part for any metallic powder [9]. In fact, this aspect would be more highlighted when we take the cooling 
rate’s effect on multiple mechanical properties into account. More specifically, to the best of the authors’ 
knowledge, although the high cooling rate during most LBAM processes results in high yield strength, it causes 
lower ductility or elongation to failure. Considering such existing conflicts among various mechanical 
properties, it is extremely challenging to identify the optimal process/design parameters that can be used to 
fabricate parts with acceptable level of various mechanical properties simultaneously. Hence, LBAM process 
optimization in respect to various mechanical properties should defined as a multi-objective process 
optimization. 
  
 Multi-objective optimization methods could be grouped in two main categories—scalarization or 
aggregation methods and evolutionary algorithms [19]. Scalarization methods, which represent a classic 
approach, try to combine all the objective functions with the purpose of converting the multi-objective 
optimization problem to a single objective one and solve them by routine single-objective optimization problem 
solvers [20]. This group of methods are not applicable to LBAM multi-objective optimization in that functional 
form representing the relationship between process parameters and mechanical properties are unknown. On the 
other hand, evolutionary algorithms iteratively generate a group of potential solutions that represent an 
acceptable compromises between objective functions [21]. These techniques cannot be applied to LBAM multi-
objective problems as well because (i) explicit functional form of objective functions are unknown; and (ii) they 
need numerous evaluation of candidate solutions which means a huge number of expensive experimental runs 
in LBAM. 
 
 To tackle the aforementioned technical challenges, we propose a novel methodology to optimize LBAM 
process considering two conflicting objective functions when the objective functions are unknown. In fact, the 
ultimate goal is to provide the operator or designer with a set of optimum alternatives to select from. Despite the 
recent advances in AM technologies, it remains an open research area to develop a systematic approach to 
optimize the AM process of interest for a given material considering multiple mechanical properties required 
for potential applications. 
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Problem Definition 
 The goal of the present research is to optimize an AM process for a given material in respect to two 
potentially conflicting mechanical properties (or geometric characteristics). For convenience, the objective 
functions under the study are expressed in the form of maximization as follows: 

Max𝒀𝒀 = �𝑌𝑌1(𝒔𝒔),𝑌𝑌2(𝒔𝒔)�′ 
𝑠𝑠. 𝑡𝑡.   𝒔𝒔 ∈ 𝑺𝑺  

𝒀𝒀 denotes the vector of objective functions, 𝒔𝒔 is the vector of decision variables (i.e. process parameters); and 𝑺𝑺 
denotes the design space. The set of all possible response vectors 𝒀𝒀 corresponding to the design space is defined 
as objective space and denoted by 𝑪𝑪 = ��𝑌𝑌1(𝒔𝒔),𝑌𝑌2(𝒔𝒔)�′ ∈ 𝑅𝑅2: 𝒔𝒔 ∈ 𝑺𝑺�. Note that the optimal process parameters 
for different objective functions may be completely distinct. In other words, the optimized process parameters 
for 𝑌𝑌1 may not necessarily result in optimum 𝑌𝑌2 due to the aforementioned potential conflicts among mechanical 
properties in AM fabricated parts. Improving the response value of one objective function may result in 
worsening that in another objective function. In fact, all objective functions may not be optimized 
simultaneously. 
 
 Considering different requirements for mechanical properties in different applications, we can define 
couple of weighting coefficients for objective functions representing the associated relative importance. In that 
way, the bi-objective optimization problem can be presented as a single-objective problem. For instance, in 
application A we consider 70% and 30% relative importance for mechanical properties 𝑌𝑌1 and 𝑌𝑌2 respectively. 
In this case the single-objective optimization problem would be expressed in the form of 𝑀𝑀𝑀𝑀𝑀𝑀 �0.7 × 𝑌𝑌1(𝒔𝒔) +
0.3 × 𝑌𝑌2(𝒔𝒔)�. However, in many applications the relative importance of mechanical properties are not clearly 
quantified. In other words, the definition of such weighting coefficients could be subjective in real-world. In 
addition, considering another application and changing the corresponding relative importance for the 
mechanical properties, the optimum design parameters will change accordingly in that we have a completely 
different single-objective function. For example, considering application B with 60% and 40% relative 
importance for mechanical properties 𝑌𝑌1 and 𝑌𝑌2, the optimum solution for problem 𝑀𝑀𝑀𝑀𝑀𝑀 �0.6 × 𝑌𝑌1(𝒔𝒔) + 0.4 ×
𝑌𝑌2(𝒔𝒔)� may not be as same as that in the application A. More accurately, in many real-world cases 
simultaneously achieving the optimum solutions for two potentially conflicting mechanical properties may be 
impossible. Hence, there is no a single optimum solution in these cases. In fact, optimum solution could be a 
subset of objective space 𝑪𝑪 which can recognize and identify the best trade-off among the conflicting 
mechanical properties of interest in different applications. 
 
 In multi-objective optimization scope a quite different concept of optimality is defined called Pareto 
optimality. As a matter of fact, Pareto optimal solution is a set of optimum solutions representing the best 
compromises between various objective functions. Given our bi-objective optimization problem, let define each 
member of Pareto optimum as a design point 𝒔𝒔∗ ∈ 𝑺𝑺 if and only if there is no other  𝒔𝒔 ∈ 𝑺𝑺  such that 𝑌𝑌𝑘𝑘(𝒔𝒔) ≥
𝑌𝑌𝑘𝑘(𝒔𝒔∗) for 𝑘𝑘 = 1, 2. Here, 𝒔𝒔∗ is called a non-dominated design point and its corresponding response vector as 
Pareto point 𝑌𝑌𝑘𝑘(𝒔𝒔∗). We show the Pareto optimum set by 𝑬𝑬. In our bi-objective optimization problem, the 
Pareto front which is corresponding to response vectors of Pareto set in the objective space 𝑪𝑪 is defined by 𝑯𝑯, 
that is 𝑯𝑯 = ��𝑌𝑌1(𝒔𝒔),𝑌𝑌2(𝒔𝒔)�′ ∈ 𝑅𝑅2: 𝒔𝒔 ∈ 𝑬𝑬�. Given two controllable process parameters, the abovementioned concepts are 
illustrated by Fig 1. 
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Figure 1. Design Space, Objective Space and Pareto Front 

 In general, the main goal of solving a bi-objective optimization problem is to attain a reliable 
approximation of Pareto front by less function evaluation. Optimizing LBAM process for a given material in 
respect to two potentially conflicting mechanical properties is very challenging for the following reasons: 

 
• The mathematical relation between the mechanical properties of fabricated parts and the process parameters 

is unknown because of the complexity associated with the underlying thermo-mechanical dynamics of 
LBAM processes. 

• The conflicting mechanical properties may not be optimized simultaneously during the same build.  

• The experiments of LBAM are usually very expensive due to high material and machine costs. It may not be 
economically realistic to conduct a large number of experiments to optimize the process for various 
applications with different requirements. 

In light of the above, there is a great need for developing a novel methodology to achieve the process 
parameters leading to desired and reliable value of conflicting mechanical properties representing the optimum 
capacity of given material for LBAM process of interest. In the present research, a novel framework is 
developed to sequentially design experiments so as to achieve uniformly distributed number of Pareto points on 
the Pareto front using limited available resources. 

 
Methodology 

In this study we develop a novel bi-objective process optimization framework based upon the 
scalarization concept which tackles the bi-objective optimization problem by systematically solving a sequence 
of single-objective sub-problems. Master bi-objective problem is divided into various single-objective problems 
considering different values of weighting coefficients for objective functions. Considering lack of functional 
form of objective functions and high cost of LBAM experiments, each constructed single-objective sub-problem 
is optimized by Sequential Minimum Energy Design (SMED) [22]. After optimizing each single-objective 
optimization problem, updated Pareto points would be identified based on non-domination concept. Then, the 
appropriate weighting coefficients for the next sub-problem is chosen to lead the next sub-problem optimization 
in a way that covers largest un-covered part of the Pareto front. Furthermore, after solving each sub-problem, all 
the resulted experimental results are fed into SMED as prior data to accelerate optimizing of the next sub-
problem. This process will continue until the available resource is finished. The proposed method tries to 
accelerate the bi-objective optimization process by jointly solving the sub-problems in a systematic manner. In 
fact, the method attempts to map and scale experimental data resulted from previous sub-problems to achieve 
the optimum for remaining sub-problems with the purpose of efficiently use the limited available resources.  
The general scheme of the proposed method is illustrated by Fig. 2. 
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• Variable Definition 
Denote the experimental data by (𝒔𝒔𝑖𝑖 ,𝒀𝒀𝑖𝑖) for 𝑖𝑖 = 1, 2, 3, …  where 𝒔𝒔𝑖𝑖is the 𝑖𝑖th design point and 𝒀𝒀𝑖𝑖 is the 

corresponding response vector, 𝒀𝒀𝑖𝑖 = �𝑌𝑌1𝑖𝑖 ,𝑌𝑌2𝑖𝑖�
′
. Note that upper case letters are used to represent the unknown 

variables in this paper, while lower case letters are considered for known variables. 
• Sub-problems Construction 

Major bi-objective optimization problem 𝑀𝑀𝑀𝑀𝑀𝑀 𝒀𝒀 = �𝑌𝑌1(𝒔𝒔),𝑌𝑌2(𝒔𝒔)�′ is decomposed into a sequence of single-
objective functions, each of which expressed as a convex combination of the objective functions. Each sub-
problem could be mathematically expressed as follows: 

Max 𝑍𝑍ℎ(𝒔𝒔) = 𝛾𝛾1ℎ .𝑌𝑌1(𝒔𝒔) + 𝛾𝛾2ℎ .𝑌𝑌2(𝒔𝒔) 
𝑠𝑠. 𝑡𝑡.   𝒔𝒔 ∈ 𝑺𝑺    

𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒  𝛾𝛾1 + 𝛾𝛾2 = 1        
𝛾𝛾𝑘𝑘ℎ ≥ 0     𝑓𝑓𝑓𝑓𝑓𝑓    𝑘𝑘 = 1, 2 

𝛾𝛾𝑘𝑘 denotes weighting coefficient corresponding to the relative importance of the 𝑘𝑘th objective function within 
the ℎth sub-problem. In fact, each sub-problem represents process optimization in respect to a specific 
application (aerospace, biomedical etc.). 
 

 
Figure 2. Flowchart of the Methodology 
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• Sequential Minimum Energy Design (SMED) 
 SMED is applied for optimizing each of the sub-problems. Assuming that weighting 
coefficients �𝛾𝛾1ℎ 𝛾𝛾2ℎ� are determined, all the design points represented in response vector format, (𝒔𝒔𝑖𝑖 ,𝒀𝒀𝑖𝑖), should 
be expressed in the form of combined response data as (𝒔𝒔𝑖𝑖 ,𝑍𝑍𝑖𝑖ℎ) in the framework of SMED. In the rest of the 
SEMD method detail, the combined response form of the experimental data are applied throughout the 
algorithm, i.e. (𝒔𝒔𝑖𝑖 ,𝑍𝑍𝑖𝑖ℎ). Note that all the experimental data attained during the optimization process of prior sub-
problems (i.e. sub-problems1,2, … ,ℎ − 1) are transformed and fed into the SMED of ℎth sub-problem as prior 
data to accelerate optimization process of the current sub-problem by predicting the combined responses in a 
more accurate manner. 
 SMED is developed to balance two important properties simultaneously, i.e. optimization and space-
filling. For the sake of optimization goal, we should put more design points in the regions of  𝒔𝒔 which more 
probably can result in maximum value of the response function 𝑍𝑍ℎ(𝒔𝒔). On the other hand, to avoid being 
trapped in a local optima, space-filling property should be considered as well. Hence, the range of process 
parameters with lower chance of optimization ought to be also examined. 
 In SMED method, a positive electrical charge is assigned to each design point, i.e. 𝑞𝑞ℎ�𝒔𝒔𝑗𝑗�. Selection of 
the charge function 𝑞𝑞ℎ(𝒔𝒔) relies on the optimization objective. Considering maximization objective in our case, 
charge function 𝑞𝑞ℎ(𝒔𝒔) should be inversely proportional to the combined response values 𝑧𝑧ℎ(𝒔𝒔). In that way, 
electrical particles with higher charge would be assigned to design points with lower 𝑧𝑧ℎ(𝒔𝒔) and vice versa. 
Based on a very fundamental physics law, the charged particles repel each other apart to minimize the total 
electrical potential energy among them. Hence, design points with lower 𝑧𝑧ℎ(𝒔𝒔), i.e. with higher electrical 
charge, pushes other design points away more strongly. By contrast, design points with higher 𝑧𝑧ℎ(𝒔𝒔), i.e. with 
lower electrical charge, allows for more design points to be placed in their neighborhood. The resultant 
positions of them correspond to the minimum energy designs. In that way, more design points with higher 
𝑧𝑧ℎ(𝒔𝒔) values would be selected to sequentially maximize the objective function of interest in the current sub-
problem, i.e. 𝑍𝑍ℎ(𝒔𝒔). 
 The potential energy between any two design points 𝒔𝒔𝑖𝑖 and 𝒔𝒔𝑗𝑗 is equal to 𝑞𝑞(𝒔𝒔𝑖𝑖)𝑞𝑞�𝒔𝒔𝑗𝑗�/𝑑𝑑(𝒔𝒔𝑖𝑖 , 𝒔𝒔𝑗𝑗), where 
𝑑𝑑(𝒔𝒔𝑖𝑖 , 𝒔𝒔𝑗𝑗) represents the Euclidean distance between 𝒔𝒔𝑖𝑖 and 𝒔𝒔𝑗𝑗. Hence, total potential energy function within ℎth 
sub-problem including 𝑖𝑖th new design is formulated as follows: 

𝐸𝐸𝑖𝑖ℎ = � �
𝑞𝑞ℎ�𝒔𝒔𝑗𝑗�𝑞𝑞ℎ�𝒔𝒔𝑗𝑗′�
𝑑𝑑�𝒔𝒔𝑗𝑗 , 𝒔𝒔𝑗𝑗′�

𝑖𝑖

𝑗𝑗′=𝑗𝑗+1

𝑖𝑖−1

𝑗𝑗=1

 

The new design point can be obtained by solving 𝒔𝒔𝑖𝑖 = argmin 𝐸𝐸𝑖𝑖ℎ. 
 

• Predicting Combined Response at New Design Points 
Due to some real-world applications, we design the experiments in the form of batch to enhance the 

efficiency of the optimization process in terms of time. Here, the batch size is represented by 𝑏𝑏 which is an 
integer number. In SMED, Inverse Distance Weighting (IDW) formula is applied for predicting 𝑧𝑧ℎ(𝒔𝒔) values 
for new design points [22]. Predicted combined responses,𝑍̂𝑍𝑖𝑖ℎ, depend on actual combined response values from 
previous batch of experiments, i.e. 𝑧𝑧1ℎ, 𝑧𝑧2ℎ , … , 𝑧𝑧

�𝑖𝑖−1𝑏𝑏 �𝑏𝑏
ℎ . Note that �𝑖𝑖−1

𝑏𝑏
� 𝑏𝑏 is an index showing the number of 

resulted design points before 𝑖𝑖th one. Assume that in the current stage of the ℎth sub-problem a number of prior 
experimental data are available represented by (𝒔𝒔𝑖𝑖 ,𝒚𝒚𝑖𝑖) for 𝑖𝑖 = 1, 2, 3, … ,𝑛𝑛𝑝𝑝, where 𝑛𝑛𝑝𝑝 is the number of available 
data. Clearly, 𝑛𝑛𝑝𝑝is not a fixed number and increases after designing a new batch of experiments by 𝑏𝑏. By IDW, 
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predicted combined response of the next batch of experiments are calculated, i.e. 𝑍̂𝑍𝑖𝑖ℎ for 𝑖𝑖 = 𝑛𝑛𝑝𝑝 + 1,𝑛𝑛𝑝𝑝 +
 2, … ,𝑛𝑛𝑝𝑝 + 𝑏𝑏. 𝑍̂𝑍𝑖𝑖ℎcould be calculated as follows: 

𝑍̂𝑍𝑖𝑖ℎ =
∑ |𝒔𝒔𝑖𝑖 − 𝒔𝒔𝑖𝑖′|−2
�𝑖𝑖−1𝑏𝑏 �𝑏𝑏
𝑖𝑖′=1  𝑧𝑧𝑖𝑖′

ℎ

∑ |𝒔𝒔𝑖𝑖 − 𝒔𝒔𝑖𝑖′|−2
�𝑖𝑖−1𝑏𝑏 �𝑏𝑏
𝑖𝑖′=1

 

 
where |𝒔𝒔𝑖𝑖 − 𝒔𝒔𝑖𝑖′|−2is a coefficient which determines the effect of 𝒔𝒔𝑖𝑖′ and its response value 𝑧𝑧𝑖𝑖′

ℎ  on 𝑍̂𝑍𝑖𝑖ℎ. Then, 
predicted combined response for all untested design points are used for calculating the magnitude of the 
corresponding charged particle and consequently total potential energy 𝐸𝐸𝑖𝑖ℎ. 

 
• Charge Function 

In general, there is not any universal guideline for choosing charge function. However, a positive and 
decreasing function of the combined response values, 𝑧𝑧ℎ(𝒔𝒔), could be a reasonable choice. Assuming that 
combined single response values are normalized and fit in the interval [0,1], a possible choice is 𝑞𝑞ℎ(𝒔𝒔) =

�1 − 𝛼𝛼𝑧𝑧ℎ(𝒔𝒔)�
𝛽𝛽

, where 𝛼𝛼 and 𝛽𝛽 are positive tuning constants with 𝛼𝛼 ≤ [𝑚𝑚𝑚𝑚𝑚𝑚𝒔𝒔𝑧𝑧ℎ(𝒔𝒔)]−1[22]. Here we assume 
that optimum value of each objective is known. This assumption is consistent with our geometric accuracy 
optimization since there is always an acceptable tolerance in design which ought to be met. Since combined 
single response values are normalized we can fix 𝛼𝛼 = 𝑚𝑚𝑚𝑚𝑚𝑚𝒔𝒔𝑧𝑧ℎ(𝒔𝒔) = 1. 
 

• Stopping Criteria 
At one stage of designing experiments within the ℎth sub-problem the algorithm should automatically 

shift to the next one by introducing next appropriate vector of weighting coefficients, i.e. 𝜸𝜸𝑘𝑘ℎ+1. To do so, 
contribution of designing experiments within the ℎth sub-problem should be quantified at first. There are many 
performance indicators in the multi-objective optimization literature to measure or compare the quality of the 
resulted Pareto points [23]. In the present methodology, we employ Hyper-Volume (𝐻𝐻𝐻𝐻) metric as measure of 
the resulted Pareto points’ attainment. By definition, 𝐻𝐻𝐻𝐻 is the volume in objective space dominated by resulted 
Pareto points. In the bi-objective case, 𝐻𝐻𝐻𝐻 is the stair-stepped region covered by resulted Pareto points in the 
objective space. Fig.3. illustrates 𝐻𝐻𝐻𝐻 concept in bi-objective case. Light gray area is 𝐻𝐻𝐻𝐻 associated with gray 
Pareto points. ∆𝐻𝐻𝐻𝐻 representing area of dark gray rectangle is contribution of new Pareto point in terms of 
improvement in 𝐻𝐻𝐻𝐻. Taking the concept of ∆𝐻𝐻𝐻𝐻 into account, the presented algorithm continues designing 
experiments within the ℎth sub-problem till we do not see 𝑁𝑁𝐶𝐶ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 times improvement in ∆𝐻𝐻𝐻𝐻.  

 
Figure 3. Hyper Volume (HV) and ∆𝐻𝐻𝐻𝐻 
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Similarly, proposed algorithm stops continuing introducing further sub-problems and designing more 
experiments when we do not observe any improvement in ∆𝐻𝐻𝐻𝐻 after designing experiments within 𝑁𝑁𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹ℎ sub-
problems. There is no any universal guideline for fixing appropriate 𝑁𝑁𝐶𝐶ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 and 𝑁𝑁𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹ℎ, hence they should be 
adjusted depending on the available resources, complexity of the true Pareto front, design space size and the 
required quality of resulted Pareto points. 
 

• Weighting Coefficient 
As it has been mentioned before, our final goal is to achieve a uniform coverage of front by solving a 

sequence of sub-problems. Based on the resulted Pareto points after terminating each sub-problem optimization, 
weighting coefficients for next sub-problem, 𝜸𝜸ℎ, is calculated as follows. To initialize the algorithm, weighting 
coefficients should be predefined for the first two sub-problems as 𝜸𝜸𝟏𝟏 = (0,1), 𝜸𝜸𝟐𝟐 = (1,0). By the following 
procedure, weighting coefficients for the rest of the sub-problems, i.e. 𝜸𝜸ℎ for ℎ = 3,4,5, …, would be resulted. 
Assume that after solving (ℎ − 1)th sub-problem Pareto set 𝚽𝚽ℎ−1 = �(𝒔𝒔∗𝟏𝟏 ,𝒚𝒚∗𝟏𝟏), (𝒔𝒔∗𝟐𝟐 ,𝒚𝒚∗𝟐𝟐), … , (𝒔𝒔∗𝒎𝒎 ,𝒚𝒚∗𝒎𝒎)� 
including 𝑚𝑚 non-dominated design points and corresponding actual response vector is achieved. Then all the 
existing optimum parameter setups should be sorted in increasing order of 𝑦𝑦1(𝒔𝒔) and relabeled as 𝚿𝚿ℎ−1 =
{𝒔𝒔1∗ , 𝒔𝒔2∗ , … , 𝒔𝒔𝑚𝑚∗ }. At this stage, Euclidian distance between all of the neighboring Pareto points should be 
calculated as follows: 

𝛿𝛿𝑗𝑗 = �𝒚𝒚�𝒔𝒔𝑗𝑗+1∗ � − 𝒚𝒚(𝒔𝒔𝑗𝑗∗)�  for  𝑗𝑗 = 1, … , (𝑚𝑚 − 1) 
 
Then, maximum existing gap on the existing Pareto front is determined by ∆= 𝑚𝑚𝑚𝑚𝑚𝑚𝑗𝑗=1,…,(𝑚𝑚−1)𝛿𝛿𝑗𝑗. Two 
neighboring Pareto points corresponding to ∆ are 𝒔𝒔𝑎𝑎 and 𝒔𝒔𝑏𝑏 where  𝑦𝑦1(𝒔𝒔𝑎𝑎) <  𝑦𝑦1(𝒔𝒔𝑏𝑏). Then, the weighting 
coefficients for the next sub-problem could be computed as: 
𝜸𝜸ℎ = 𝑐𝑐ℎ�𝑦𝑦2(𝒔𝒔𝑎𝑎) − 𝑦𝑦2(𝒔𝒔𝑏𝑏) ,  𝑦𝑦1(𝒔𝒔𝑏𝑏) − 𝑦𝑦1(𝒔𝒔𝑎𝑎)�, where 𝑐𝑐ℎ is a constant leading to 𝛾𝛾1ℎ + 𝛾𝛾2ℎ = 1. In that way, 
algorithm tries to lead forthcoming sub-problems dynamically and intelligently in a path to design more 
potential experiments in terms of improving resulted Pareto points in an efficient manner. 
 

Numerical Studies 
To evaluate and demonstrate effectiveness of the proposed method a series of numerical studies are 

conducted hereunder. In the simulation study section, the developed methodology is applied to a bi-objective 
optimization test problem. Furthermore, a real-world case study is done to identify and minimize deviations of 
major components in geometrical characteristics of Fused Filament Fabrication (FFF) parts. It should be noted 
that we fixed 𝛾𝛾 = 3 in charge function 𝑞𝑞(𝒔𝒔) = (1 − 𝑦𝑦(𝒔𝒔))𝛾𝛾for all simulations and case study as the tuned 
parameter in that it is recommended by [22, 24]. Additionally, stopping criteria parameters are fixed as 
(𝑁𝑁𝐶𝐶ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 10, 𝑁𝑁𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹ℎ = 1) and (𝑁𝑁𝐶𝐶ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 2, 𝑁𝑁𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹ℎ = 1) for simulations and case study respectively. 

 
• Simulation Studies 

To simulate experimental condition, a design space from a common bi-objective optimization test 
problems is chosen to simulate the real-world AM process. Note that in reality the functional forms of 
objectives (𝑌𝑌1(𝒔𝒔) and 𝑌𝑌2(𝒔𝒔)) are unknown and here we are just presenting them to simulate the real 
experimentation. We measure the efficiency of the proposed methodology using General Distance (𝐺𝐺𝐺𝐺) and 
Proportional 𝐻𝐻𝐻𝐻 (𝑃𝑃𝑃𝑃𝑃𝑃) defined as follows: 
 

• 𝐺𝐺𝐺𝐺 (General Distance) shows that how far the resulted Pareto points are from the true ones. Assuming that at 
the end of simulation 𝑁𝑁 Pareto points are resulted, 𝐺𝐺𝐺𝐺 could be calculated as follows [25]: 
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𝐺𝐺𝐺𝐺 =  
�∑ 𝜀𝜀𝑖𝑖2𝑁𝑁

𝑖𝑖=1

𝑁𝑁
 

Where 𝜀𝜀𝑖𝑖 represents the minimum Euclidian distance between 𝑖𝑖th resulted Pareto point and true Pareto points. 
Hence, 𝐺𝐺𝐺𝐺 = 0 represents the best situation in which all the resulted Pareto points are exactly true Pareto 
points. 
 

• 𝑃𝑃𝑃𝑃𝑃𝑃 (Proportional Hyper-Volume) represents proportion of 𝐻𝐻𝐻𝐻 associated with all true Pareto points 
achieved by resulted Pareto points: 

𝑃𝑃𝑃𝑃𝑃𝑃 =
𝐻𝐻𝐻𝐻(𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃)
𝐻𝐻𝐻𝐻(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃)

 

 
By definition, 𝑃𝑃𝑃𝑃𝑃𝑃 is a measure within the range of [0, 1] and in the ideal case 𝑃𝑃𝑃𝑃𝑃𝑃 = 1. 
The results of the proposed method is benchmarked against an existing and common design-of-experiments 
method, i.e. Full Factorial Design. 
The relationship between process parameters and two objective functions are as follows [26]: 

Max𝒇𝒇 = �𝑌𝑌1(𝒔𝒔),𝑌𝑌2(𝒔𝒔)� 
𝑌𝑌1(𝒔𝒔) = 4𝑠𝑠1 

𝑌𝑌2(𝒔𝒔) = 𝑔𝑔(𝒔𝒔) × h�𝑓𝑓1(𝒔𝒔),𝑔𝑔(𝒔𝒔)� 

𝑔𝑔(𝒔𝒔) = 4 − 3exp �− �
𝑠𝑠2 − 0.2

0.02
�
2

� 

h�𝑌𝑌1(𝒔𝒔),𝑔𝑔(𝒔𝒔)� = �1 − �
𝑌𝑌1(𝒔𝒔)
𝑔𝑔(𝒔𝒔)�

4

         𝑖𝑖𝑖𝑖        𝑌𝑌1(𝒔𝒔) ≤ 𝑔𝑔(𝒔𝒔)

0                                            𝑂𝑂𝑂𝑂ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
 

 
where 𝑠𝑠1 ∈ [0, 1] , 𝑠𝑠2 ∈ [0, 1]. A potential design space including 1027 design points is chosen to make a well-
spread objective space. Objective space with normalized objective values consists of 25 true Pareto points 
represented by black dots in Fig. 4. Two black squares represent initial experiments (prior data) in this 
simulation which are selected randomly. Intentionally initial prior data are chosen from regions very far from 
Pareto points. The objective space includes convex set of Pareto points with highly dense aggregation of points 
close to them. Ultimate goal of the simulation study is achieving a set of uniformly spread Pareto points 
representing the true ones. 
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Figure 4. Objective Space, Initial Experiments and True Pareto Points 

The conducted sequential experiments by the proposed methodology are illustrated on the objective space by 
Fig. 5. As it is represented very few of the true Pareto points are not achieved in the test problem. 

 
Figure 5. Conducted Simulation Experiments. 

We compare our approach with the full factorial design, which is a common technique for optimizing AM 
processes. Note that experiments of the full factorial design are performed simultaneously, as opposed to our 
sequential attitude. We vary the number of levels for each of two factors (i.e. 𝑠𝑠1 and 𝑠𝑠2) to generate a full 
factorial design resulting in the best possible Pareto points. Note that to fairly compare the performance of the 
methods we fixed the design space of full factorial designs to the number of experimental runs conducted by the 
proposed methodology (i.e. 56). 
 

Table 1. Simulation Results 

 Number of Conducted Experiments GD PHV PHV Improvement 
Proposed Methodology 56 0.001 0.99 7.6 % 

Full Factorial Design 56 0.013 0.92 
 
Based on the results summarized by Table 1, by applying the proposed methodology we achieve 𝐺𝐺𝐺𝐺 very close 
to zero. Furthermore, 𝑃𝑃𝑃𝑃𝑃𝑃 achieved by the proposed method is very close to one, which is the ideal case. Also, 
we see significant 𝑃𝑃𝑃𝑃𝑃𝑃 improvement by applying the proposed methodology compared with full factorial 
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design. Hence, it could be concluded that the proposed methodology outperforms full factorial design in bi-
objective process optimization problems. 

 
Case Study 

In this section we apply the proposed method to a real case study which is optimizing deviations in five 
important geometric features of circle-diamond-square test artifact, Fig.6. The targeted geometric features are as 
follows: Flatness, Circularity, Cylindricity, Concentricity and Thickness. Two controllable process parameters 
are considered for design experiments: Infill (%) and Temperature (°C).  

 

 
Figure 6. Circle-diamond-square Test Artifact 

At the first stage, using experimental data from full factorial design major components within geometrical 
characteristics of the part is identified by applying Principle Component Analysis (PCA). As the results show, 
more than 88% variability within the data is captured by the first two principle components (i.e. 𝑃𝑃𝑃𝑃1 and 𝑃𝑃𝑃𝑃2). 
Hence, absolute value of these two 𝑃𝑃𝑃𝑃s are chosen as the objective functions and the ultimate goal is to 
minimize them. 

Min𝑷𝑷𝑷𝑷 = (|𝑃𝑃𝑃𝑃1(𝒔𝒔)|, |𝑃𝑃𝑃𝑃2(𝒔𝒔)|)′ 
𝑠𝑠. 𝑡𝑡.   𝒔𝒔 ∈ 𝑺𝑺 

𝑷𝑷𝑷𝑷 denotes the vector of principle components within geometrical characteristics of the part, 𝒔𝒔 is the vector of 
process parameters; and 𝑺𝑺 denotes the design space. 
 

Table 2. Proportional Variabillity within Principle Components 

 𝑷𝑷𝑷𝑷𝟏𝟏 𝑷𝑷𝑷𝑷𝟐𝟐 𝑷𝑷𝑷𝑷𝟑𝟑 𝑷𝑷𝑷𝑷𝟒𝟒 𝑷𝑷𝑷𝑷𝟓𝟓 
Standard deviation 1.576 1.3866 0.58981 0.46713 0.16190 

Proportion of Variance 0.497 0.3845 0.06958 0.04364 0.00524 

Cumulative Proportion 0.497 0.8815 0.95112 0.99476 1 
 

 
Table 3. PCA Loadings 

Rotation 𝑷𝑷𝑷𝑷𝟏𝟏 𝑷𝑷𝑷𝑷𝟐𝟐 𝑷𝑷𝑷𝑷𝟑𝟑 𝑷𝑷𝑷𝑷𝟒𝟒 𝑷𝑷𝑷𝑷𝟓𝟓 
Flatness 0.5046 0.2895 -0.7181 -0.3824 0.0481 

Circularity 0.5854 -0.1598 0.4859 -0.1831 0.6016 
Cylindricity 0.5607 -0.3161 0.1710 0.0901 -0.7404 

Concentricity 0.0650 -0.6677 -0.4659 0.5000 0.2877 
Thickness 0.2895 0.5895 0.0425 0.7496 0.0687 
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Figure 7. Graphical Demonstration of Proportional Variation within Principle Components 

We randomly picked one initial experiment which is very far from the true Pareto points, Fig. 8. By 
applying the proposed methodology, after conducting 16 experiments in total we achieved three Pareto points. 
However, to achieve these three Pareto points we need to conduct 20 experiments by applying Full Factorial 
Design. Hence, 4 experiments are saved compared to Full Factorial Design, i.e. 20% of resources which is a 
significant improvement. Fig.9 represents the design space including tested and untested experiments by the 
proposed method compared to Full Factorial Design. Gray design points on the design space represent untested 
experiments by the proposed methodology. 

 

 
Figure 8. Applying the Proposed Methodology for the Case Study 
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Figure 9. Design Space. 

 
Conclusion 

In this paper, a methodology is developed to systematically optimize Additive Manufacturing for multiple 
objectives (such as different mechanical properties or different geometric characteristics). By jointly solving a 
sequence of process optimization sub-problems, a set of optimum experimental setups representing the best 
compromises between mechanical properties (or geometric characteristics) of interest are achieved. Simulation 
studies and real case study show that our methodology is able to achieve optimum design with significantly less 
number of experiments compared with Full Factorial Design. 
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