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Abstract. We study the non-radial oscillation modes of strange quark stars with a
homogeneous core and a crust made of strangelets. Using a 2-component equation-of-state
model (core+crust) for strange quark stars that can produce stars as heavy as 2 solar masses,
we identify the high-frequency l=2 spheroidal (f , p) in Newtonian gravity, using the Cowling
approximation. The results are compared to the case of homogeneous compact stars such
as polytropic neutron stars, as well as bare strange stars. We find that the strangelet crust
only increases very slightly the frequency of the spheroidal modes, and that Newtonian gravity
overestimates the mode frequencies of the strange star, as is the case for neutron stars.

1. Introduction
The recent direct detection of gravitational waves from the inspiral and merger of a pair of
massive Black Holes by Advanced LIGO heralds a new era of compact star observations [1, 2].
It is hoped that systematic analysis of Advanced LIGO data will be able to pin down the
equation of state of dense matter relevant to compact stars. The merger and ring down phases
of colliding neutron star and black-hole binaries [3, 4] are the strongest transient events, but
they leave in their wake many different oscillations of the stellar fluid that carry information on
the equation of state (EOS) of dense matter [5, 6]. The classification of these modes is a well-
developed field, and their study is promising because the spectrum of such modes is connected
to underlying stellar structure [7, 8]. The even-parity or spheroidal modes result from density
and pressure perturbations to the star, while the odd-parity axial modes are non-trivial only for
rotating stars. The spectrum of spheroidal f, p, g modes was recently studied by Lugones and
Vasquez-Flores [9] for stars made of hadronic, self-bound and hybrid matter, in order to find
discriminating features among them. Other works have also discussed the differences in mode
frequencies between neutron stars and quark/hybrid stars [10, 11, 12, 13]. The work reported
in these proceedings considers the effect of a crust made of non-superconducting quark matter
on the spectrum of spheroidal modes in a strange star. Our 2-component model for strange
stars includes a crust made of strangelets [14, 15] and therefore differs in an essential way from
previous studies, where only homogeneous quark phases or mixed phases of quarks and hadronic
matter [16] were considered.



2. The 2-Component Model for Strange Quark Stars
The term quark star (QS), or strange quark star (SQS), commonly refers to a compact star
composed completely of self-bound strange quark matter, and is a possible consequence of the
strange quark matter hypothesis [17]. One can then describe a compact star with an appropriate
equation of state for deconfined quarks at high density, and determine if the oscillation spectra
of such a star is different from that computed with a nuclear matter EOS.

2.1. Core EOS
The core is assumed to consist of homogeneous and unpaired charge neutral 3-flavor interacting
quark matter, which we describe using the simple thermodynamic Bag model EOS [18] with
O(m4

s) corrections to account for the moderately heavy strange quark. Perturbative interactions
to non-interacting quark matter [19] are absorbed into a parameter (1 − a4) ∼ O(α2

s) ≈ 0.3 as
suggested in [18] to extend the applicability of the model to stars as heavy as ≈ 2M�. The core
EOS is
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where ε is the energy density of homogeneous quark matter (also to O(m4
s) in the Bag model)

and B the Bag constant which we fix by requiring that the first-order transition between neutral
quark matter and the vacuum (P=0) occur at a quark chemical potential μq=μcrit ≤ 310
MeV [15]. This ensures that the hypothesis of absolute stability for 3-flavor quark matter is
not violated. Corrections due to the superconducting gap Δ can be included in the EOS as
in [20], but are omitted here to avoid proliferation of parameters. In Fig.1, we show the mass-
radius relationship for homogeneous quark stars for different μcrit values at ms=100 MeV, with
B determined from the criterion for absolute stability.
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Figure 1. Mass-Radius relation for homogeneous quark stars described by the EoS (Eq. 1).
The interaction parameter a4=0.7 and ms=100 MeV. Measured limits on the mass of PSR
J1614-2230 (1.97±0.04 M�) and PSR J0348-0432 (2.01±0.04 M�) are shown.



Usually, theoretical models of quark stars consist of entirely homogeneous stars comprised of
strange quark matter or a thin nuclear crust on top of a pure strange star. These cases predict
steep drops in density as the surface is approached and the pressure goes to zero. They also
predict large electric fields at the surface (or just below, in the case of a nuclear crust). The
model we use differs from these in that it considers a heterogeneous crust on top of a fluid
quark star. When the condition of local charge neutrality is relaxed, quarks and electrons can
form a mixed phase. This model has the advantage that it reduces the density gradient near
the crust and produces negligible electric field energy at the stars surface. However, there will
be short-range (screened) electric fields inside the mixed phase, which can be tolerated if the
Gibbs free energy is lowered sufficiently by forming a mixed phase. The thickness of such a crust
would be small but on the same order as the crust of a neutron star, approximately 104 cm.
This amounts to no more than 1% of the stellar radius.

2.2. Crust EOS
We assume that the crust is in a non-superconducting, globally neutral mixed phase of strangelets
and electrons, so we can choose the configuration described in [14] which has ungapped 3-flavor
quark matter with massive strange quark. The composition of the crust changes with depth as
the quark phase fraction x increases from zero at the surface to one in the homogeneous phase.
Phase coexistence with stable strangelets requires that (in the absence of surface tension) the
pressure inside and outside the strangelet be the same, hence the quark pressure Pq(µq, µ̃e) in
the mixed phase is zero, and the pressure is only due to electrons which depends on the electron
chemical potential µ̃e as
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where nQ(µq,ms) and χQ(µq,ms) represent the quark charge and quark susceptibility (both
slowly varying in the mixed phase) and P0 is the pressure of quarks without electrons, which
varies considerably in the mixed phase. These generic relations can be applied to a specific
model of quark matter, so long as we work to second order in the (small) electron chemical
potential. This is a well-justified and useful approximation since µ̃e/µq ≈ 0.05. Just as for the
core, we adopt the Bag model EOS to describe the crust strangelets with O(m4

s) corrections,
from which it follows that to the same order: nQ(µq) = m2

sµq/(2π
2) and χQ(µq) = (2µ2q)/(π

2).
Homogeneous quark matter gives way to the mixed phase crust at a radius r=rc where ξ|r=rc=1.
The models with crust have their surface at µq = µcrit, so they have very nearly the same mass
and radius as the bare strange star models. A sketch of the constituents in the mixed phase is
given in Fig.2.

3. Method for Computing Oscillation Spectra
In order to perform a perturbative analysis of compact star oscillations, we first must model
their equilibrium structure. The Tolman-Oppenheimer-Volkoff (TOV) equations are used to
provide the equilibrium structure of a compact star. We approach the non-radial oscillation
problem in Newtonian gravity and employ the Cowling approximation, which allows one to
neglect perturbations in the gravitational potential [21]. Under the Cowling approximation, the
metric is stationary and matter is decoupled from space-time. While it is impossible to generate
gravitational waves in Newtonian gravity, this approximation is justified as a first approximation
since it simplifies the system considerably. However, the f and p mode frequencies computed
from general relativistic calculations may differ significantly. To describe the fluid pulsations, we
choose a reference frame in which the unperturbed fluid velocity is zero and search for oscillating
solutions by writing the displacement as ~u = ~ξ(x)eiσt which describes a wave with frequency σ



Figure 2. Diagram of a mixed-phase crust with net-positive nuggets of quark matter in a
neutralizing electron background (voids). Pressure and density increase toward the center of
the star, causing the nuggets to deform and fuse, and nuggets of negatively charged electrons
embed in a positive quark background (voids). Deeper into the star, at very high pressure, quark
matter becomes homogeneous.

and amplitude �ξ(x). In spherical coordinates we make the radial and angular dependencies of

the displacement explicit �ξ(x) = (ξr, ξθ, ξφ) and identify the fluid pulsation variables
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where U(r) and V (r) are the radial and transverse displacement eigenfunctions. In general, the
perturbation equations we solve for a 1-component (homogeneous) star are [22]:
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where δP is the Eulerian pressure perturbation, Mr is the mass contained in radius r, M� and
R� are the mass and radius of the star and A is the Schwarzschild gradient for local convective
stability. In our analysis, we setA=0 for the bare strange star, although finite temperature effects
or composition gradients can change the situation. This system of pulsation equations is solved
numerically to find the oscillation eigenfrequencies (σ) that obey the boundary conditions that
solutions y1 and y2 are regular at the origin (r=0) and the Lagrangian variation of the pressure
vanishes at the surface (r=R�). In addition, the solutions are normalized such that the relative
radial displacement y1(R�)=1. For a 2-component star, the crust eigenfunctions are connected
to those in the core through suitable continuity conditions. The complete and lengthier set of
4 equations (2 for the fluid displacement and 2 for the tractions) and the relevant boundary
conditions are written down in [22, 23], so we do not reproduce them here. We use these to
obtain results for the 2-component strange star with a crust.

4. Results: Oscillation Spectra for Strange Quark Stars
In Table 1, we show the mode period values for the l=2 f , p and core g modes for a neutron
star modeled as a single component, fluid, non-rotating core described by a polytropic EOS.
We consider three different values of the polytropic index (n=1.0, 1.5, 2.0), keeping stellar mass
and radius fixed at M=1.4M� and R=10 km. Mode frequencies and periods are related in the



usual way, f=1/Π. The f modes are short period, corresponding to a few kHz and the p modes
are higher in frequency still. The core g modes are in the range of a few Hz to few tens of Hz.
This is as analytically predicted by Cox [24] and the trend with increasingly relativistic models
is as found by Andersson & Kokkotas [25] and McDermott et al [22], although their exact values
are somewhat different due to different choices of neutron star model. For neutron stars, the f
mode frequency increases as the square root of the mean density as expected, and hence also
stellar mass.

Table 1. The f, p, g oscillation mode frequencies for a single-component neutron star are listed
below. n refers to the polytropic index and azimuthal mode number l = 2. The mass is fixed at
1.4 M� and radius at 10 km in all cases.

l = 2 f−mode [kHz] p1−mode [kHz] g1−mode [Hz]
n = 1.0 3.59 8.23 4.63
n = 1.5 4.28 9.85 13.4
n = 2.0 5.11 11.5 24.4

Next we compute the f and p modes for a homogeneous quark star having an EOS defined
as in Eq. 1, and study their dependence on the stellar mass. The mass of the strange quark,
the value of the critical quark chemical potential, and the interaction parameters a4 are tunable
features in the equation of state. Although the oscillation spectra are normally shown as a
function of stellar mass for fixed B (by changing central density), one should note that the Bag
“constant” is really an effective parameter of the model, and not an actual physical quantity. We
therefore keep the value of quark mass fixed at 100 MeV and hold the central density constant,
but vary the value of the Bag constant and µcrit self-consistently from the equation of state
to generate different mass configurations. In Fig.3, we show how the stellar mass varies with
the Bag constant. As seen in Fig.5, the trend of the f modes is that as the bag constant is
decreased (i.e, stellar mass increased), the frequencies gradually decrease, suggesting that the
f modes scale with the Bag constant rather than stellar mass. The f mode lies in the 4-5
kHz range while the p1-mode lies in the 25-35 kHz range for M ∼ (1.2 − 2)M�. This range
of frequencies for the f and p mode of strange quark stars is higher than found in the work of
[9] who used general relativistic fluid equations, so the differences could be attributed to our
Newtonian approximations to the fluid equations, since their results for hadronic stars also show
a similar difference from Newtonian models. In addition, each pair of data corresponding to a
fixed mass in Fig.5 represents a different EOS within the same family parametrized by Eq. 1,
whereas the results of [9] were plotted against mass keeping the EOS the same. The Newtonian
approximation to the oscillation equations appears to yield mode frequencies for strange stars
similar to the n=2 polytropic neutron star (see Table 1), reflecting the fact that strange stars
are more compact in comparison to the average neutron star. Furthermore, the longitudinal
sound speed in quark stars is higher. These properties of the quark star are reflected in the
slightly higher f and p-mode frequencies compared to, say, the n=1 polytrope for neutron stars.

The oscillation spectra for the two-component quark star (core+crust) was computed taking
into account the shear modulus of the strangelet crust, which is estimated in [26]. The effect of
the crust on the f modes is only a few Hz, since the mean density is hardly affected by adding
the crust on top of the bare strange star. The p modes are modified to a slightly larger extent
than the f mode, due to the shear modulus of the crust, but since the shear speed is numerically
small compared to the longitudinal sound speed, the effect is not large (about 2% change). An
important EOS parameter for the strangelet crust’s properties is the strange quark mass. In
Fig. 4, we show how the crust thickness depends on the strange quark mass for a fixed µcrit, along
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Figure 3. Stellar mass vs Bag constant B from
Eq.1 for fixed central density of 3 x nuclear
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values above µcrit=310 MeV are excluded due
to the requirement of self-bound quark matter.
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Figure 4. Crust thickness and stellar mass
as a function of strange quark mass. The
strangelet crust is constructed as a globally
charge neutral phase atop the homogeneous
phase which has zero pressure at µcrit=310
MeV.

with the corresponding stellar mass. In Fig. 6, we show the f and p-mode of the 2-component
strange star with varying stellar mass keeping µcrit (and hence also the Bag constant) fixed, but
changing the central density. The mode frequencies now have a similar trend to [9], although
the values differ due to reasons mentioned previously.
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frequencies for 2-component strange quark
stars (core+strangelet crust) with ms=100
MeV and µcrit=310 MeV. Bag constant is held
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5. Conclusions
In this proceedings article, we have presented some preliminary work on the spheroidal non-radial
oscillation modes of strange quark stars that are composed of a homogeneous core and a crust of
strangelets in a globally neutral phase (Gibbs construction). In the Newtonian approximation to
the fluid equations, and assuming the fluid perturbations obey the same equation of state as the
background fluid, the f modes are in the range of 4-5 kHz while the p-modes are in the range of
25-35 kHz. Due to the small size of the crust and its low shear modulus, the impact on the modes
from the case of a bare strange star is minimal. However, an extreme choice of parameters in the
quark model can lead to a much thicker crust (hundreds of meters), and this affects the mode
frequencies at almost the 10% level. Including a distinct EOS for the perturbations, considering a
crystalline superconducting crust, rotation effects, or high temperature can all change the results
presented here. In this work, we have not presented the results for the shear modes (s modes)
or the interfacial modes (i modes) that arise as a result of the mixed phase crust, and which
would have much smaller frequencies than the f, p modes. To resolve these modes, one needs a
qualitatively new set of boundary conditions at the crust-core interface, since the energy density,
and consequently the EOS varies sharply in that region. These modes are typically expected to
lie between the f, p modes and the core g modes (few Hz to tens of Hz). Those findings and their
comparison to the case of a neutron star with a crust or strange star with a nuclear crust, will
be reported separately. The Newtonian approximation also appears to overestimate the mode
frequencies when compared to including the perturbations in the gravitational potential [27].
A full general relativistic treatment along the lines in [27, 28] is currently underway, which
will yield the damping time and the amplitude of the modes for generating templates of the
gravitational wave signal from pulsating strange stars.
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