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Abstract
We study decomposition of geometrically enforced nematic topological defects bearing relatively large
defect strengths m in effectively two-dimensional planar systems. Theoretically, defect cores are analyzed
within the mesoscopic Landau - De Gennes approach in terms of the tensor nematic order parameter. We
demonstrate a robust tendency of defect decomposition into elementary units where two qualitatively differ-
ent scenarios imposing total defect strengths to a nematic region are employed. Some theoretical predictions
are verified experimentally, where arrays of defects bearing charges m = +1, and even m = +2, are en-

forced within a plane-parallel nematic cell using an AFM scribing method.

PACS numbers: 61.30.Jf, 61.30.Cz



I. INTRODUCTION

Topological defects (TDs) are an unavoidable consequence of continuous symmetry breaking
phase transitions and are therefore ubiquitous in nature [1]. They appear at all scales of physical
systems, including particle physics, condensed matter and cosmology [2]. Due to their topological
origin they display several universalities that are independent of the systems’ microscopic details.
Understanding their fundamental behavior is therefore of broad interest for all branches of physics.
For example, they might even explain stability of “fundamental particles” via the topological pro-
tection if fields represent a fundamental entity of nature [3, 4]. It is of high interest to find media in
which diverse TDs could be created relatively easily, manipulated and observed to resolve several
still open fundamental problems.

For this purpose, liquid crystal (LC) phases [5—7] represent an ideal experimental testing
ground owing to their extraordinary and unique combination of optical anisotropy, fluidity and
softness. Furthermore, they possess a rich variety of different phases and configurations that con-
tain practically all qualitatively different TDs from a symmetry perspective. Consequently, LCs
could be exploited as a convenient window into the fundamental behavior of TDs. In addition,
TDs in LCs could be employed in diverse applications. For example, it has been demonstrated
that TDs in LC phases are efficient traps [8—10] for appropriate (surface decorated) nanoparti-
cles, which opens several opportunities for applications in the realms of functional nano-devices
[11], self-assembling processes [12], and for the development of sensitive nanoparticle detectors
[13, 14].

The orientationally ordered uniaxial nematic (N) phase is the simplest LC phase [7]. In ther-
motropic LCs it is reached via the first order phase transition from the isotropic (ordinary liquid)
phase, corresponding to the SO(3)— > O(2) symmetry group change. Its local ordering is at the
mesoscopic scale presented by the nematic director field 77, where orientations £ 7/ are equiva-
lent. In bulk equilibrium s homogeneously aligned along a symmetry breaking direction. The
corresponding order parameter equilibrium manifold is the projective two-sphere Sy/Zs of unit
radius, where the antipodal points are equivalent.

The nematic phase could exhibit point or line defects, the centers of which are singular in
7, and also nonsingular fextures. The key property of TDs is their topological charge ¢ [7, 15]

which is a conserved quantity. In three dimensions (3D) ¢ reveals how many times all possible

orientations of 77 are realized while moving across a closed surface enclosing the defect. In 2D, to



which we effectively restrict our study, the topological charge is equivalent to the winding number
m, also referred to as the “Frank index” or "defect strength” [7, 15]. It is defined by m = ~/(27)
where vy is the rotation angle of 7 when one circumnavigates the defect line counter-clockwise.
Owing to the +7 symmetry of the nematic phase, m can take on values of + 1/2, +1,+3/2, £2...
The defects bearing opposite value of m are commonly referred to as the defects (m > 0) and
antidefects (m < 0). Pairs {m, —m} could annihilate each other into a defect-free state, but
isolated TDs with m # 0 could not be removed. However, in a closed system their number can be
changed via annihilation, merging or decomposition of TDs where topological charge conservation
rule must be obeyed. Note that a 3D defect, whose local structure is characterized by integer m,
could in principle avoid singularity in w by “escaping into the third dimension” [16].

For various potential applications, particular in nanotechnology, it is of interest to stabilize
diverse regular patterns of nematic TDs. Namely, templates of TDs could be exploited to create
controlled complex arrangements of nanoparticles [10], nanowires [17], or nanosheets [18]. In
pioneering studies [19-21] workers have so far succeeded in stabilizing effectively 2D networks
of m = =£1 TDs in nonchiral LCs. Networks consisting of TDs bearing stronger charges have
not until now been studied. Furthermore, due to the finite resolution of these studies it is not clear
if the cores of TDs bearing |m| > 1/2 decompose into smaller units, which is expected due to
energetic reasons [7] and allowed by topological charge conservation law.

In this paper we study the decomposition of nematic topological defects in effectively 2D LC
patterns. Using a mesoscopic approach we analyze theoretically equilibrium nematic structures
in regions to which we impose geometrically different total defect strengths. We also examine
the effect of perturbations at the defect core from that of an ideally patterned defect. Finally, we
present experimental results in which we pattern defect arrays with an Atomic Force Microscope
(AFM) stylus in very thin cells to verify key theoretical predictions.

The plan of the paper is as follows. In Sec. II we describe the mesoscopic Landau-de Gennes
model that we use. Numerical outcomes of the modelling are presented in Sec. III. In Sec. IV
the experimental set-up, designed to verify theoretical predictions, is described. Key experimental
results are assembled and discussed in Sec. V. In the last section we summarize the results and

present our future plans.



II. THEORETICAL BACKGROUND

Patterns of nematic topological defects within a flat two-dimensional film, defined by Cartesian

coordinates (z, y), can be in general well described by

o (z,y) = }mitanl)y_yi [ —i—ciz (1)
i=1,N =%

Here N is the number of TDs, and the i-th defect located at the point (x;, y;) is characterized by the

defect strength m,; and constant ¢;. This expression solves the Euler-Lagrange equation [7] if one

describes nematic ordering solely in terms of the uniaxial nematic director field it parametrized

by the angle ¢, assuming equal Frank elastic constants.

For a single isolated defect the local elastic free energy penalty outside the core scales as [7]
AF o m?. Consequently, it is in general energetically advantageous that the defects decompose
into elementary units bearing charges my = +1/2. For example, in the case of a single m = 1
defect it holds AF oc m? = 1, while if it decomposes into two mo = 1/2 elementary units it
follows that AF" < 411 + % = %

The focus of our study is to analyze decomposition of topological defects into elementary
topological defects, both theoretically and experimentally. We set that the LC is confined within a
plane-parallel cell where the cell plates are placed at = = 0 and z = h. In the experimental part of
the work we scribe, using an AFM stylus [21], a defect pattern obeying Eq.(1) at the bottom plate.
At the top plate the azimuthally degenerate planar alignment is enforced. We consider cases where
1) nematic structures within the cell are predominantly influenced by the bottom “master” plate,
and ii) the cell thickness A is small enough so that spatial variations in nematic ordering along the
z-coordinate could be neglected. Therefore, systems of interest are assumed to be well modelled in
two-dimensions. Consequently, we limit the theoretical modelling to nematic structures exhibiting
only (z, y) spatial variations. In the theoretical part we use a minimal model to match experimental

and theoretical results, where we allow the LC also to locally exhibit biaxial states.



A. Mesoscopic model

We describe the nematic ordering by a tensor nematic order parameter () represented in its

eigenframe as [7]
~3

Q= X\N¢. 07, 2)

=1
where \; are the eigenvalues and ¢, the eigenvectors.

For the case of uniaxial nematic ordering, () can be expressed as

Q@=S)ﬁ®ﬁ—§4, 3)

1s the nematic director field, ® marks the tenso-

where S is the uniaxial scalar order parameter, o
rial product, and [ stands for the identity tensor. The unit vector w points along the local uniaxial
ordering direction and the scalar order parameter .S expresses the magnitude of fluctuations about
7.

Importantly, if elastic distortions are present nematic ordering could exhibit some degree of

biaxial ordering. The degree of biaxiality is measured by the scalar parameter [22]

- 6(trQ3)2
pr=1- (trQ—2)37 “4)

where tr stands for the trace operator and 32 ranges in the interval [0, 1]. Uniaxial configurations
correspond to 32 = 0. On the other hand, the maximum degree of biaxiality corresponds to
3% = 1. The equality trQ3 = 3Det) = 31 \2\3 reveals that, in the latter case, () has at least one
vanishing eigenvalue.

We express the free energy density of the nematic LC as f = f. + f., where the condensation

(f.) and elastic (f.) contribution are expressed as [7, 23]

fo = Ao(T — T)trQ* — Btr@Q® + C(trQ%)*, (5)
L
fo = SIVQP. (6)

Here Ay, B, and C' are material constants, 7}, is the supercooling temperature of the isotropic
phase, 7" stands for the temperature, and L is the nematic elastic constant in the one-constant ap-
proximation. In bulk the condensation term enforces the Isotropic-Nematic (I-N) phase transition

at the critical temperature 77y = T, + B?/(24A4,C).



We mimic a confining surface with imposed local orientational ordering by the field-like term

[24]

2 - -

The strength of surface imposed anchoring is measured by a positive anchoring constant w and Qs

ff:EtT)Q—QS(z- ™)

describes the nematic ordering imposed by the confining substrate. In the strong anchoring limit
w — 00, it holds that () = QS. For example, if a uniaxial orientational ordering is enforced along

a unit vector ?S, then

1
Qi“)=55)?s®?s—§1[, ©)

where S describes the surface enforced degree of uniaxial ordering.

B. Parametrization

We parametrize the Q-tensor order parameter as [25, 26]

Q=(3+q0)C,® o+ (gs— Ch)?y ® ?y + (€. ® ?y + ?y D) —23¢.® €2, (9)

where q1(x,y), ¢2(x,y), and g3(x, y) are variational order parameters. In this parametrization we

set that €3 = ¢ is always an eigenvector of (). The remaining two eigenvectors {?1, ?2} are

allowed to rotate within the (¢, ¢,) plane:

e = cosgo?x +sin<p€)y,

?2 = —sincp?x+cosgp?y, (10)
Ty = €.

In terms of {q1, ¢, g3} the three Q eigenvalues are expressed as s, = q3 + [q¢7 + q3, s =

¢ +q3 and s3 = —2¢3. The exchange [27] of eigenvalues s; <> so i$ realized when

g5 = 0. In the case of uniaxial ordering (see Eq.(3)), where we enforce W= ?1, it holds

@ = Scos(2¢)/2,q2 = Ssin(2¢)/2,q3 = S/6. (11)



To visualize the topology of possible nematic structures we employ the following alternative

parametrization of the () eigenvalues [25]

2
AL = gscosw,
2
Ay — —gscos>¢—g , (12)
2
A3 = —gscos>w+% ,
where
3. 2
s = §trQ. (13)

The case s = 0 corresponds to an isotropic state. Furthermore, the biaxiality measure can be
expressed as 3% = sin?(31)). Possible nematic configurations on varying v for a finite value of s
for a fixed Q-eigenframe are shown in Fig. 1. Configurations {¢) = 0, ¢ = 27/3, ¢ = —27/3}
correspond to uniaxial states with a positive scalar order parameter S (see Eq.(3)), and {¢ = ,
¥ = —7/3, ¢ = w/3} to uniaxial states with a negative value of S for the the nematic director
aligned along @1, €5, and €3, respectively. The degree of maximal biaxiality is realized for

W ==+m/6,9% = +r/2,and ) = £57/6.

C. Scaling and dimensionless equilibrium equations

In order to rewrite the free energy in a dimensionless form we introduce dimensionless and
scaled quantities. We introduce the reduced temperature [26]
_ 64AC T -T.
3B T.-T.

where 7., is the nematic superheating temperature. The corresponding superheating bulk nematic

6 (14)

order parameter S, is given by
g _ 3B
160"

In terms of these quantities the equilibrium scalar order parameter corresponding to a global min-

(15)

imum in a bulk homogeneous uniaxial configuration exists for § < % = % and can be

expressed as

Seq :S**>1+\/1——6(. (16)
Competing metastable states exist within the reduced temperature window 6 € [0,1]. Tt is
convenient to scale the nematic order parameter with respect to S,., therefore we introduce

%: Q/S**’,%é = QS/S**’ i-e-9 (]\1/: (11/5**, 22/: Q2/S**, 23/: Q3/S**, %: SS/S**
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An important role in our modelling is played by the biaxial order parameter correlation length
&y, which roughly estimates the linear core size of common topological defects. Its size is esti-

mated by [26]

éb:il LC =£- (17)
3 B2 \/1—9+1< VT

where 5,50) = 4‘?{—;70 is the bare biaxial correlation length and 7 = /1 — 6 + 1. For example, for

the liquid crystal pentylcyanobiphenyl (SCB) it holds [28] that &, ~ 30 = 10 nm. We further scale

all lengths in units of / and introduce the dimensionless operator Y/: hV. It follows that

0 1
o= A5+ B30 -2l -+ 52 (Y
fo = IVail* + Vool +3|Vgs|*, (19)

2

fe = Astr) Q- QS( (20)

In the equations above we omitted the tildes, { f., f., fs} are dimensionless free energy densities,
and A, = h/ {éo) and A, = h*w/L are dimensionless quantities. In the expression for the surface

interaction we enforce uniaxial ordering, see Eq.(8). We set

?S = COS Y5 ?x + sin @, ?y, 21
1 2 2 | 2 2 S? .
§tr>Q - Qs< =q; +q5 + 3¢5 — ¢35 + 3~ Ss (q1 cos(2¢s) + g2 sin(2¢py)) . (22)

III. NUMERICAL OUTCOMES

Of interest are configurations of topological defects that are stabilized in plane-parallel (”pla-
nar”’) geometries exhibiting effectively two-dimensional (z,y) behavior. We study two different
surface imposed anchoring conditions, to which we henceforth refer as the boundary anchoring
condition (BAC) and field anchoring condition (FAC), respectively.

In BAC we strongly impose the uniaxial nematic structure (i.e. A, — oo, see Eq.(8), Eq.(21),

Eq.(22)) defined as

¢s (r,y) = mtan™ ) % ( (23)
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on a circle of radius R = }/m >> &,. Within the region R < /22 4+ y? we impose de-
generate tangential anchorinlg. The ansatz Eq.(23) defines TDs exhibitiné uniaxial structure char-
acterized by the winding number m € [+1/2, £1,4+3/2, +2....], with the defect’s center located
at (z = 0,y = 0). The conservation law of topological charges dictates that nematic structures
within the region R < A/m must exhibit the imposed total charge m.

In FAC we impose the surface field-type anchoring defined by Eq.(20), where (; is determined
by Eq.(23) and S5 = S, (see Eq.(16)).

Note that TDs bearing mg = 41/2 are from the 3?(x, y) perspective characterized by a 32 = 1
rim. The rim separates the interior region exhibiting essentially negative uniaxiality from the
outer region where nematic ordering displays essentially positive uniaxiality, as demonstrated in
Figs. 2 where we plot the 3?(x,y) dependence of a single mg = 1/2 defects. In bulk and in
the approximation of a single nematic elastic constant, an isolated my = +1/2 defect possesses a
circularly shaped rim. For example, when crossing the core of my = 1/2 defect (see the line in
Fig. 2a) one moves in order parameter space {s,} from, e.g., uniaxial ordering along w="¢;
towards 77 = €, as indicated by the dashed red line in Fig. 1.

In the following we study TDs enforced by BAC and FAC. The structures were calculated
numerically by solving the corresponding Euler-Lagrange equations resulting from the free energy
minimization. Note that the core structures of =m defects have identical 8?(x,y) structure in the

single nematic elastic constant approximation. For this reason we consider only cases with m > 0.

A. Boundary anchoring condition

We first study TDs using BAC. In Figs. 3 we plot TDs for cases where we enforce m = 1 (Fig.
3a), m = 2 (Fig. 3b), m = 3 (Fig. 3c), and m = 4 (Fig. 3d). One sees that in all cases there exist
only TDs exhibiting unit charges my = 1/2. The TDs repel each other and consequently they tend
to assemble close to the bounding circle at which we enforce a total topological charge m for the

LC configurations.

B. Field anchoring condition

We further consider cases where we enforce TDs via FAC by gradually increasing the dimen-

sionless field anchoring strength A, (Eq.(20)). In Figs. 4 (Figs. 5) we show cases where we



enforce a single defect bearing m = 1 (m = 2) on increasing A;. For both values of m we see
that for a relatively weak anchoring strength A, the single defects are always decomposed into
TDs bearing elementary charges. On increasing A the TDs are progressively dragged together
and at a critical value of A; = Al (m) the TDs merge into a single TD bearing the topological
charge m. At the critical condition the separate 3> = 1 rims of TDs bearing m = my (existing
for A, < A (m)) merge into a single 52 = 1 rim. For the parameter set {A, = 10, 7 = 4}
we find AY(1) ~ 0.45 and A(2) ~ 1.3. Note that for A, = A\ the core structure of the
single defect exhibits essentially negative uniaxiality in all cases studied, which is separated from
the surrounding nematic structure displaying essentially positive uniaxiality by the rim possessing
maximal biaxiality.

Note that these two-dimensional structures (see Fig. 4c and Fig. Sc) of relatively strongly
charged TDs possess cores exhibiting essentially negative uniaxiality. A typical trajectory on
crossing cores of such TDs is sketched by the dashed red line in Fig. 1.

We next analyze the robustness of defects patterns with respect to imperfections. For this
purpose we introduce, at different positions, square perturbation patches of characteristic length
h,,, within which we enforce, in addition to FAC, a local perturbation field described by Eq. (20)

of strength A", In it we enforce uniaxial uniform ordering along a fixed orientation <p§p )

, using
parametrization Eq.(21). The center of the imposed “total” defect is set at (z,y) = (0,0) and the
center of a perturbation patch is placed at (x,, y,,), where values of displacements {x,, y,} and h,,
are comparable to &,. With these patches we approximately mimic imperfections in the patterns
using the AFM scribing method; see next section. Some representative examples are presented in

Figs. 6. One sees that the shape and orientations of daughter defects could in general be strongly

influenced by relatively weak local imperfections.

IV. EXPERIMENTAL SET-UP

In our effectively 2D theoretical analysis we impose the defect patterns by field anchoring
condition term Eq.(7). A possible experimental realization of such conditions is by confining a
nematic LC in a thin plane-parallel cell, where one “master” surface imposes anchoring conditions
described by Eq.(7) and the other imposes degenerate tangential (planar) anchoring condition. If
the cell is thin enough, as demonstrated in Ref.[21], the nematic pattern within the cell is controlled

by the master plate, and the resulting pattern is effectively 2D. To mimic this case we set that the
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field term given by Eq.(7) is present only at the master plate of the 3D plane-parallel cell. Taking

this into account, the dimensionless surface anchoring coefficient A, in Eq.(20) is expressed as
A= —. (24)

Here d. = L/w,, is the surface extrapolation length [7, 23], and w,, = wh is the ”conventional”
anchoring strength. Note that by using the definition Eq.(7) it holds that [w] = N/m?. In the
following we describe in detail the corresponding experimental set-up in which such conditions
are realized.

The goal of the experimental work is to create artificially controlled topological defects in a
liquid crystal cell that facilitate an examination of some of the theoretical predictions. Details
of the experimental cell preparation are described elsewhere [21]. Briefly, a glass substrate was
spin coated with polyamic acid RN-1175 (Nissan Chemical Industries) and baked according to
the manufacturer’s specifications to imidize. The resulting polyimide layer first was rubbed gently
with a polyester cloth (Yoshikawa YA-20-R) and then scribed strongly with a pattern, defined by
Eq.(1), using the stylus of an atomic force microscope (AFM). (The purpose of the initial weak
cloth rubbing was to minimize the director discontinuity at the edges of the AFM lithography;
within the AFM scribed region, however, the scribed pattern overwhelmed the gentle background
rubbing.) An AFM stylus force of 2.5 N was used to create two types of easy axis checkerboard
patterns of dimensions 90x90 pm, with the depth of the scribed lines being about 15 nm. One
pattern had topological defects of strength m = =+1 arranged in a 3 x 3 square array, with defect
cores spaced approximately 30 pm apart (Fig. 7a); the other pattern also was a 3 x 3 array, but
with topological defects having strength m = +2 (Fig. 8a). Each line was scribed randomly in
one direction or the opposite direction, as chosen by a computer-generated coin toss. Thus on
average the local scribing direction was random with a binomial distribution, thereby minimizing
residual pretilt of the director at the surface that could have arisen from unidirectional scribing.
The separation between the scribe lines varied from approximately 300 nm in regions of low
curvature to 100 nm in regions of high curvature, see Fig. 9. As the scribing process is analogous
to plowing, polyimide debris was present, which was removed by sonication in ethanol. For any
regular array of defects, if the sum of the defect strengths were zero, the director field would relax
to the background rubbing angle far from the defects. However, none of our defect arrays was
topological-charge neutral, and thus we observed some unwanted edge behavior, although it did

not affect the area of interest.
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To create a closed cell, a second substrate was coated with Glymo [(3-glycidyloxypropyl)
trimethoxysilane; Sigma-Aldrich], which serves as an azimuthally degenerate layer for planar
alignment. The patterned and the degenerate substrates were placed together with mylar spacers
and clamped. The cell thicknesses, as determined by interferometry, varied between 2 and 5 pum.
This spacing was less than the defect core spacing of 30 um, and thus the azimuthal director
orientation does not relax significantly on moving away from the scribed surface into the bulk.
The cell was filled with the liquid crystal 5CB in the in the isotropic phase and cooled through the

isotropic-nematic transition temperature 77y = 35°C to stabilize room temperature.

V. EXPERIMENTAL MEASUREMENTS AND DISCUSSION

The director pattern of each cell, described in the experimental set up section, was imaged
using a polarizing microscope; the images are shown in Fig. 7b and Fig. 8b. The most obvious
cases of defect decomposition can be seen in the extinction pattern caused by the director field.
However, the daughter defects are most easily observed as dark spots in unpolarized brightfield
transmission microscopy (Figs. 7¢ and Figs. 8c) or as bright spots when viewed under unpolarized
darkfield. These images provide better detail about the location and size of the defect cores than
those obtained by polarized microscopy, and are clearly due to light scattering from the cores in
which the refractive indices are varying rapidly in space. If a scribed core has not decomposed
into “daughter defects”, it is not possible with these microscopy methods to determine whether the
core has, in fact, split on a scale that is smaller than the optical resolution of the instrument.

Note that the cores of m = +1/2 line defects are always biaxial [27, 29]. A typical biaxial
topology in the perpendicular plane (a plane perpendicular to the direction of a line defect, 1.e.
(z,y) plane in our modelling) is plotted in Fig. 2. The characteristic linear size of the defect’s
core is roughly given by the biaxial correlation length [29]. For the case of localized distortions
characterized by m = +1, there are several options. In sufficiently thin cells singular line defects
might be formed. In general, their cores are expected [25] to be essentially biaxial with either 1)
negative or ii) positive uniaxiality at the center of the core. In these cases the core structure in a
perpendicular plane is characterized by 1) one and ii) two essentially concentric rims exhibiting
maximal degree of biaxiality [25]. In both cases the core size region is roughly given by the biaxial
order parameter correlation length. Close enough to the I-N phase transition and for appropriate

elastic properties, the m = =1 defect cores could be uniaxial, where the center of the defect
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core is isotropic [30-32]. In this case the core size is determined by the uniaxial order parameter
correlation length. If the cell thickness is large enough then the nematic director field is expected
to “escape along the third direction” [16] to avoid a singularity in 7. In this case the localized
distortion is essentially uniaxial and the characteristic size of perpendicular plane distortions is
expected to be comparable to the cell thickness. However, our current imaging techniques cannot
determine whether the director has adopted an escaped configuration. The escaped configuration
can be probed via a Freedericksz-type measurement, however, and is the subject of future work.
The cores of defects characterized by |m| > 1 have not yet been theoretically analyzed and have
been so far only rarely experimentally detected [33].

Even though the spatial resolution of the AFM is very good, there necessarily will be a region
at each defect core that is ill-defined. The exact size of this region is difficult to control, but is
generally close to 250-500 nm, and not generally larger than one micrometer in diameter. The
surface topography for an m = +2 defect is shown in Fig. 9. The anchoring in the centermost
area of this particular defect is effectively random due to overlapping surface manipulations of
the AFM stylus. In other cases, the centermost region could be untouched by the tip and therefore
provide uniform anchoring due to the prior weak cloth rubbing. In either case, the patterned region
scribed by the AFM creates anchoring conditions in the form of a topological defect to within some
length scale of the singularity. The undefined central core amounts to, at most, a perturbation of
the anchoring. The perturbation near the singularity can cause the daughter defects to differ in size,
and can influence the axes along which the defect divides. In the array of singly charged defects
shown in Fig. 7c, eight of the defects have divided into two half charge defects as predicted by the
model. The other scribed defect appears as a single core, which could be due to either limitations
in optical resolution or perhaps an escaped configuration. In the m = +2 array of Fig. 8c, six of
the nine initial defects have broken into four half-integer charges located at the corners of a square.
The other three have broken into a pair of half-integer cores, with the remainder of the “charge”
left in a defect that also appears to be decomposed, but perpendicular in direction and on a smaller
length scale. It is likely that this behavior is caused by perturbations in the alignment field that
occurred during scribing.

In Fig. 10a we calculate the enforced m = 2 defect decomposition, where simulation param-
eters are set to mimic experimental conditions with which the defect textures shown in Figs. 8
are obtained. Assuming A ~ 3 um, 5150) ~ 30 nm we set A, = h/féo) = 100. The separation

between adjacent mg = 1/2 defect is typically 5 pm, which we reproduce in simulations for
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Ay ~ 0.1. Taking into account Eq.(1), approximating elastic properties by L ~ 10~ N [7], one
gets w,, ~ 107% N/m. Furthermore, Fig. 10b,c,d reveal that in the calculated regime the relative
placement of “daughter defects” strongly depends on local imperfections. For example, by vary-
ing positions of perturbation patches (see Sec. 1I11.B) and local preferential ordering within them,
one can relatively strongly modify the defect patterns, and the resulting configurations could be

strongly asymmetric.

VI. CONCLUSIONS

We studied decomposition of nematic TDs in effectively 2D planar systems, where we enforce
arelatively large total topological charge m. The simple Frank modelling, where nematic ordering
is described solely with the nematic director field o, suggests that for the case of a single defect

bearing charge m, its local elastic cost AF scales as AF ~ m?

. Consequently, the general
tendency is that defects with |m| > |mg| decompose into TDs bearing elementary charges m.
Due to the so called head-to-tail nematic symmetry, it holds that mq = +1/2. We tested the
robustness of this tendency both theoretically and experimentally for NLC confined to simple
planar geometries.

In the theoretical part we employed the Landau-de Gennes approach in terms of the nematic
tensor order parameter using the single nematic elastic constant approximation. We focused on the
structural behavior of TDs in 2D Cartesian system. We enforced relatively large total topological
charge m using two qualitatively different scenarios to which we refer as the boundary anchoring
condition (BAC) and field anchoring condition (FAC). Note that results were tested for both m > 0
and m < 0. However, resulting biaxial profiles were exactly the same for both cases + |m|. For
this reason we considered only cases with m > 0. It needs to be mentioned that this symmetry
is a consequence of the single nematic elastic approximation. However, (conventional) elastic
anisotropy would, in general, give rise only to quantitative changes without affecting the basic
qualitative results.

In the BAC case we imposed the total charge m via the prescribed uniaxial nematic director
pattern on a circle of a radius R >> &, which encircles nematic LC phase. We treated cases
with m = 1, 2, 3 and 4 relatively deep into the nematic phase. Simulations revealed that, in
equilibrium, the system always consisted only of elementary TDs with charges my = 1/2. In all

cases the topological charge conservation law was obeyed, i.e., m = Nmg, where N is the number
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of TDs. For relatively large values of m (m >> 1), TDs tend to assemble close to the enclosing
circle, which becomes increasingly pronounced on increasing the ratio R/¢,. This phenomenon is
reminiscent of the Faraday effect in electrostatics and will be analyzed in more detail in our future
study. Note, that nematic LCs under certain conditions display several remarkable analogies [34—
37] with electrostatics, because interactions between TDs often exhibit Coulumb-like coupling.

In the FAC case we enforced single uniaxial defects with dimensionless field strength A;. In
cases of simple plane-parallel geometries of thickness h, where such defect structures are enforced
via bounding plates, it holds that A, ~ h/d.. We find that below the critical value of Agc)(m)
a single defect decomposes into elementary defects. We find Agc)(l) ~ 0.45 and Agc)(2) ~
1.3 for m = 1 and m = 2, respectively. Note that for A, = Al the core structure of single
defect exhibits essentially negative uniaxiality in all cases studied, which is separated from the
surrounding nematic structure displaying essentially positive uniaxiality by the rim possessing
maximal biaxiality.

Experimentally, we studied systems which are relatively well described by FAC. Namely, we
confined the LC into plane-parallel cells, where we enforced uniaxial-like defects at one confining
plate. We scribed regular patterns enforcing locally either alternating m = +1 or m = £2 planar
defect structures. In three dimensions such patterning enforces line defects, which propagate
through the whole cell if / is not too large [21]. Also, line defects described by the winding
number |m| = 1/2 must either originate and terminate at confining surfaces or form closed loops.
However, line defects with [m| = 1 might be unstable with respect to the “escape into the third
dimension”. In both samples splitting of TDs into elementary TDs were most often observed. This
indicates that the effective anchoring strength is below its critical strength, which in simulations is
quantified by A\

We note that that the core size of an |m| = 1/2 defect is larger than, but comparable to the
biaxial correlation length &, which for SCB is estimated to be in the range between 20 and 40
nm. &, is the distance over which locally induced biaxial degree of order relaxes. Such lengths are
smaller than visible light resolution. However, the enforced |m| = 1 and |m| = 2 core structures
are larger because of stronger elastic distortions and also more easily visible because they are
larger than a biaxial correlation length by a factor "4 to 6 (See Fig. 2). Moreover, Furthermore,
the daughter line defects might exhibit some spatial variations along the z-axis, as our preliminary
3D simulations reveal. Namely, the scribed surface patterns tend to prevent decomposition of the

defects, which contradicts the bulk tendency. The simulations reveal that the resulting structures
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exhibit spatial variations along the z-axis, which increases the effective core size of structures
measured at supramesoscopic level

In our future study we intend to analyze possible structures of a topologically enforced m = 1
defect in a plane-parallel cell on varying the cell thickness and in the presence of an applied electric
field. Of particular interest will be the crossover between the non-singular escaped m = 1 structure
[16] and the structure consisting of two “daughter” m, = 1/2 defects, including biaxiality.

The results of our study are interesting both for potential applications and fundamental physics.
Namely, it is of interest to develop methods to stabilize, localize, or even destabilize defects bear-
ing strongly charged TDs. Such defects have unique optical fingerprint which could be exploited
in various nano-photonic applications. Furthermore, lattices of strongly charged TDs could be ex-
ploited as efficient traps for appropriately surface decorated nanoparticles. The former could form
a network bearing specific emergent functionality. By manipulating number or position of TDs
one could indirectly influence nanoparticle (super-)structures and, consequently, their functional-
ity. From a fundamental perspective, for example, it is of particular interest to understand under
what conditions a certain assembly of elementary units remains confined and merges into a single
defect bearing a relatively large topological charge.
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Figure captions

Fig. 1 The phase space (s, 1) revealing possible nematic states. Solid lines: positively uniaxial

states (S > 0); 7[ip = 0] = €1, W[ = 2n/3] = €970 [tp = —21/3] = €. Dashed lines:
negatively uniaxial states (S < 0); [ = 7] = 1.7 = —7/3] = €. W W = 7/3] =

5. Dotted lines: states with maximal degree of biaxiality 5> = 1. The parameter s attains its
maximum value on the circle, and the center of the circle corresponds to the isotropic phase, s = 0.
The dashed red line indicates a trajectory in the order parameter space {s, ¢} joining the points A
and B (uniaxial states) of the m = 1/2 defect core structure depicted in Fig. 2.

Fig. 2 A characteristic degree of biaxiality 32(z,y) plot of a my = 1/2 topological defect: a)
top view with the color code of 32 € [0, 1], b) side view. The dashed line indicates a path joining
states 77 = ¢ with positive uniaxiality (point B) and T = ¢, with negative uniaxiality (point

A). The corresponding path in the order parameter space {s, ¢} is depicted in Fig. 1 with a dashed
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red line.

Fig. 3 3%(z, y) plots of configurations of TDs where we impose via BAC: a) m = 1,b) m = 2,
c¢)m = 3,d) and m = 4. In all cases only TDs exhibiting unit charge mq = 1/2 exist. A, = 8§,
T=4.

Fig. 4 3%(x,y) plots of configurations of TDs where we impose via FAC single m = 1 defect.
a) A, =0.3,b) A, =0.44,¢c) A, = 0.45. A, = 10, 7 = 4. In Fig. 4¢ we indicate a trajectory that
transverses the core of TD. Here B indicates a point where nematic ordering exhibits essentially
positive uniaxiality, and A marks a point where the order displays negative uniaxiality. The corre-
sponding trajectory in the order parameter space {s, '} is schematically sketched in Fig. 1 by a
dashed red line.

Fig. 5 3%(x,y) plots of configurations of TDs where we impose via FAC single m = 2 defect.
a) A, =08,b) A, =1.2,¢) A, = 1.3. A. = 10, 7 = 4. In Fig. S5c we indicate a trajectory which
transverses the core of TD. Here B indicates a point where nematic ordering exhibits essentially
positive uniaxiality, and A marks a point where the order displays negative uniaxiality. The corre-
sponding trajectory in the order parameter space {s, '} is schematically sketched in Fig. 1 by a
dashed red line.

Fig. 6 3%(z,y) plots of configurations of TDs where we impose via FAC a m = 2 defect
centered at (z = 0,y = 0). The defect is decomposed into four m = 1/2 daughter TDs. The
spatial orientation of their cores is affected by different local perturbations. a) Agp ) = 0; b)
AP =1, 0% = 0;0) AP =1, 0% = 7/2; d) AP = 0.1, o¥ = 7/2. In all figures we set
A, =30, A, = 1, 7 = 4. The center of the perturbation patch of size h, = £,/2 was imposed at
coordinates (z, = &/2,y, = &/2).

Fig. 7 a) Schematic representation of the “easy axis” director pattern of a 3x3 array of m = +1
topological defects. Filled circles correspond to positive defects and open circles to negative de-
fects. b) Extinction resulting from the scribed director pattern. Image taken by polarized mi-
croscopy. The polarizer and analyzer are crossed and oriented parallel/perpendicular to the hori-
zontal. ¢) A brightfield microscopy image of the defect cores from (b). Each core is visible as a
dark spot due to light scattering. The rows of three spots at the top and bottom of the image, par-
tially obscured by the yellow square, are due to director discontinuities at the boundaries between
the scribed square and outer region. The yellow boxes nominally denote the boundaries of the
AFM lithography on each image. Scale: 30 um rectilinear distance between scribed defect cores.

Fig. 8 Same as Fig. 7 except for m = +2 topological defects.
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Fig. 9 Scribed surface topography as scanned by an Agilent 5500 AFM and a TAP300 non-
contact stylus. Non-contact mode was used to avoid damaging the topography. Scale bar = 250
nm.

Fig. 10 3%(x, y) plots of configurations of TDs calculated using FAC. The defect of the strength
m = 2 is enforced at the center of the figure, where (z = 0,y = 0). We chose typical length scales
which were roughly used in the experimental set-up shown in Fig. 8, consequently A, = h/ 5,50) =
100. The center of the perturbation patch of size h, = &, was imposed at coordinates (z,, y,). a)
The reference pattern with A”) = 0 b) (z, = h/10,y, = h/10), o7 = 7/4, AP = 0.1; ¢)
(z, = h/5,y, = h/5), o =0, AP = 0.1;d) (z, = h/5,y, = h/5), o = 7/4, AP = 0.1. In
all cases A, = 0.1, 7 = 4.
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