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Abstract

Background: To systematically understand the interactions between numerous
biological components, a variety of biological networks on different levels and scales
have been constructed and made available in public databases or knowledge
repositories. Graphical models such as structural equation models have long been
used to describe biological networks for various quantitative analysis tasks, especially
key biological parameter estimation. However, limited by resources or technical
capacities, partial observation is a common problem in experimental observations of
biological networks, and it thus becomes an important problem how to select
unobserved nodes for additional measurements such that all unknown model
parameters become identifiable. To the best knowledge of our authors, a solution to
this problem does not exist until this study.

Results: The identifiability-based observation problem for biological networks is
mathematically formulated for the first time based on linear recursive structural
equation models, and then a dynamic programming strategy is developed to obtain the
optimal observation strategies. The efficiency of the dynamic programming algorithm
is achieved by avoiding both symbolic computation and matrix operations as used in
other studies. We also provided necessary theoretical justifications to the proposed
method. Finally, we verified the algorithm using synthetic network structures and
illustrated the application of the proposed method in practice using a real biological
network related to influenza A virus infection.

Conclusions: The proposed approach is the first solution to the structural

identifiability-based optimal observation remedy problem. It is applicable to an
2



arbitrary directed acyclic biological network (recursive SEMs) without bidirectional
edges, and it is a computerizable method. Observation remedy is an important issue in
experiment design for biological networks, and we believe that this study provides a
solid basis for dealing with more challenging design issues (e.g., feedback loops,
dynamic or nonlinear networks) in the future. We implemented our method in R,

which is freely accessible at https://github.com/Hongyu-Miao/SIOOR.

Keywords: Biological network, Graphical model, Structural identifiability analysis,
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Background

The emergence of young research fields such as systems biology and network
medicine [1, 2] reflects some exciting changes in biomedical investigators’ view of
biology and practice. Particularly, it has been increasingly recognized that thinking in
networks may lead to novel scientific insights and findings [3] that the traditional
reductionism approaches cannot grant [4]. The recent development of experimental
techniques (e.g., a variety of high-throughput omics approaches) also provides
unprecedented opportunities for biomedical investigators to construct numerous
biological networks at different levels and scales; for instance, protein-protein
interaction networks [5, 6], gene regulatory networks [7-10], functional RNA
networks [11-13], and metabolic networks [14, 15] can be found in a number of
databases or knowledge repositories nowadays [9, 16, 17]. All such previous efforts
provide a solid basis for further advancing our understanding of biological systems
and the associated outcomes qualitatively or quantitatively.

Graphical models have long been considered as a natural mathematical
representation of biological network for various quantitative analysis tasks such as
parameter inference [18-21]. Specifically, given a biological network structure and
experimental observations of certain variables associated with network nodes, it is
often of significant interest to determine the unknown coefficients associated with
network edges. For instance, to understand the responses of a biological network (e.g.,
activation or inhibition) to different environmental signals (e.g., different signaling

molecules or different doses of the same signaling molecule), edge coefficients are
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likely to vary under different conditions and thus need to be estimated under each
condition for the same given network structure [18]. In such a scenario, although the
structure of the corresponding graphical model is known and fixed, concerns about
the accuracy and reliability of parameter estimates often raise due to, e.g., the
existence of unobserved node variables (i.e., latent variables). In practice, latent
variables are not uncommon due to various technical limitations, ethic issues,
financial affordability, and so on [18, 20]. Therefore, a natural question to ask is: what
is the remedy that enables us to obtain reliable parameter estimates for a given
graphical model structure with partially observed variables?

To the best knowledge of our authors, the aforementioned important question has
rarely been tackled before in the context of quantifying unknown model parameters of
biological networks; and in this study, we make the very first attempt to address this
question from the structural identifiability point of view. By the definition in Miao et
al. [18], an unknown model parameter is structurally identifiable if it can be uniquely
determined for a given model structure under the assumptions that sample size is
sufficiently large and data quality is not of concern. Of course, one can also take the
effects of sample size and data noise into consideration and conduct the so-called
practical identifiability analysis [18]; however, this is out of the scope of this study as
practical identifiability analysis is not feasible at certain experimental design stage
when real data are not available. On the contrary, structural identifiability analysis
allows us to detect flaws in model structure and observation scheme before data

collection, and thus should be investigated first. Our solution to the question



mentioned at the end of the previous paragraph is thus a strategy that identifies a
minimum number of unobserved nodes, for which the associated node variables
should be observed in experiments such that all unknown parameters become
structurally identifiable. This is a useful and cost-effective remedy if some of the
model parameters are not identifiable given the original observation scheme, and we
thus name it the structural identifiability-based optimal observation remedy (SIOOR).
Since biological networks can be represented by many different types of
mathematical or statistical models, it is impossible to devise the SIOOR strategy for
every different model type in one study. Therefore, we consider a linear structural
equation model [22] here because it is a representative graphical model type and has
been widely applied in various disciplines including systems biology [23-27]. A
number of previous studies have investigated the parameter identifiability problem of
SEMs, but the majority of these studies only derived theoretical criteria or conditions
for identifiability verification, including Pearl’s back door and front door criteria [28],
Brito and Pearl’s generalized instrumental variable criterion [29], Tian’s accessory set
approach [30]. Only a few studies proposed computerizable identifiability analysis
approaches, including Drton’s condition [31] and Foygel’s half-trek criterion [32]
(implemented in R package SEMID), Sullivant’s computer algebra method and the
more recent Wang’s identifiability matrix method [33, 34]. More importantly, all such
criterions and methods assume that the observation strategy is given (i.e., it is
pre-specified which variables are observed and which are not), and none of them

considered the remedy strategy if a given observation strategy does not grant



identifiability to all unknown model parameters. The focus of this study is thus to
investigate how to choose a minimum number of nodes that are not observed in the
original observation strategy for additional experimental measurements such that all
unknown model parameters become identifiable. This study leads to a general and
computerizable solution to the SIOOR problem for the first time.

More specifically, in the case that a given observation strategy of a biological
network cannot grant identifiability of all unknown parameters in the corresponding
SEM due to the existence of unobserved variables, we propose a dynamic
programming (DP) approach to search for all possible SIOOR strategies. The
proposed approach is a generic and computerizable method that can deal with
recursive SEMs. It should be stressed that SIOOR strategy does not involve any
power or sample size calculation and thus cannot be compared with the traditional
experimental design approaches [35, 36]. Also, it should be stressed that the
observability problem in control theory is different from the SIOOR problem because
the aim of observability analysis is to determine the internal states of a system from
its external outputs [37]. For clarification purpose, we also compare Liu’s graphic
approach for observability analysis [38] with our SIOOR strategy in this study.

This article is organized as follows. In the Methods Section, the structural
identifiability-based optimal observation remedy problem is mathematically
formulated. We then propose a dynamic programming approach with theoretical
justification to solve the problem for recursive SEMs. In the Results and Discussion

Section, we describe our algorithm implementation and validate the proposed method



using selected benchmark networks. Also, a real substructure from the influenza virus
A [39] KEEG pathway is chosen as an example to illustrate the application of the

proposed method in practice.

Methods

In this section, several key concepts and definitions are introduced for solving the
SIOOR problem, including Observation Strategy (OS), Cardinality of Observation
Strategy [4], and Identifiability Gain (IG). The design of the dynamical programming
algorithm is also described. In addition, we provide the necessary theoretical

justification for the proposed method.

Problem formulation
A directed biological network can be denoted by G = (V,E), where V denotes

the node set and E denotes the edge set. Let V; (i=1,2,...,n) denote the i-th node,

1

and Y denote the variable associated with V;. If Y, is a linear function of the

1

remaining node variables, the corresponding SEM can be specified as follows,

KZZCIJ'YJ+8” i,jzl,---,n,

J#i l
where ¢; denotes the coefficient associated with the directed edge V, >V, and ¢,
denotes the disturbance error term that follows a certain distribution (Gaussian or
non-Gaussian [40, 41]) with mean zero. For simplicity, all disturbance error terms are
assumed to be independent. By definition, E specifies the structure of the coefficient

matrix C = [cl,j], i.e., ¢; =0 ifno edge exists in E from 7, to V. for i# j. When
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a network structure contains one or more loops, G is a directed cyclic graph (DCG)
and the corresponding SEM is called a non-recursive model; otherwise, G is a
directed acyclic graph [42] and the corresponding SEM is called recursive. Although
Drton’s condition [31] and Foygel’s half-trek criterion [32] are applicable to the
identifiability analysis of non-recursive SEMs, the identifiability of parameters on a
loop may be still inconclusive. Due to the lack of mature structural identifiability
analysis techniques for examining every unknown parameter of a non-recursive SEM,
this study focuses on recursive SEMs (i.e., DAGs) only.
Definition 1 (observation strategy). Given a graph G = (V,E) , its observation
strategy can be denoted by a binary vector O = (OVl 0y )T, where O, =1 if node
V. is observed and 0, =0 if V. is unobserved. o

Observation strategy is important to parameter identifiability. In general, for a
given network structure, the more observed nodes an observation strategy contains,
the more likely all model parameters are identifiable. However, more observed nodes
are usually associated with a higher experiment cost, so it is also desirable to reduce
any unnecessary cost. The goal of SIOOR is thus to improve a given observation
strategy by observing a minimum number of originally unobserved nodes such that all
nonzero parameters in C become identifiable. For this purpose, let P denote the
vector of all nonzero parameters in C, and let D denote the vector of identifiability
status of every element in P. Thatis, if P is locally or globally identifiable (i.e., P
has a finite number of possible values or a unique value within the parameter space,

see [18]), D, =1; otherwise, D,=0. When all the parameters in a model are locally



or globally identifiable, this model is called identifiable. Consequently, the SIOOR

problem can be formulated as follows

n

min , » subjectto D=1, (1)
observed V; = i

where ZOV is the total number of observed nodes in an observation strategy O,
=

and 1 denotes a vector of ones. For clarification, we stress that the observation
measurements are for the random variables associated with network nodes, and we
assume (n—m) of them are observed in the original observation strategy, where 7
denotes the total number of nodes and 0 <m<n.

The objective function above is minimized with respect to the originally
unobserved nodes, subject to the constraint D =1. During the minimization process,
it needs to be repeatedly verified whether all parameters have become identifiable (i.e.,
D =1). For this purpose, an efficient algorithm for structural identifiability analysis of
SEMs is needed. Here we consider the identifiability matrix method proposed by
Wang et al. [34]. Briefly, structural identifiability of parameters can be verified by
examining the number of solutions to the symbolic polynomial identifiability
equations generated by Wright’s path coefficient method [43, 44]. To avoid the
expensive symbolic computation involved in reducing such identifiability equations,
the identifiability matrix method proposes to derive binary matrices from symbolic
polynomials and thus enable us to determine the number of solutions via several
simple matrix operations. It is noteworthy that Wang’s work [34] does not explicitly
handle colliders involving bidirectional arcs when generating identifiability equations

10



with Wright’s method, however, the identifiability matrix method is still applicable

here as we do not consider bidirectional arcs in DAGs.

Identifiability gain and must-be-observed nodes

The optimization problem in the previous section is combinatorial in nature.
Therefore, if the number of the originally unobserved nodes (denoted by m ) is not
small, enumerating all the 2" different possible observation strategies over these
nodes will be computationally expensive. We thus need an efficient algorithm such as
dynamic programming to obtain the solutions. For this purpose, a few more
definitions need to be introduced first.
Definition 2 (redundant identifiability equation). Given a set of identifiability
equations, an identifiability equation [E (Vl., V]) is redundant with respect to that set
if it can be expressed as a linear combination of the equations in that set.
Definition 3 (cardinality of observation strategy). Given an observation strategy O
for a network G, one symbolic polynomial identifiability equation can be generated
for each pair of d-connected [28] observed nodes using, e.g., Wright’s path coefficient
method. Then the total number of non-redundant identifiability equations is called the
cardinality of O, denoted by f(0). o

The Wright’s path coefficient method generates identifiability equations for
recursive SEMs by calculating the covariance between two node variables, which is

equal to the sum of the products of edge coefficients along each d-connected path, i.e.,

IE (Vi,Vj): Cov(V,.,Vj.)z ZH@Z . After removing all redundant identifiability

pathy edge;
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equations and redundant monomials, the identifiability result of each parameter can be
determined by Theorem 1 in [34]. That is, if the number of non-redundant
identifiability equations is less than the number of unknown parameters, then the
parameters have an infinite number of possible values within the parameter space and
are thus unidentifiable; otherwise, the parameters have a limited number of solutions
or even a unique solution and are thus at least locally identifiable [45]. Let N,
denote the total number of unknown parameters in P. For every parameter in P
being locally or globally identifiable, the inequality f(O)>N, should hold

according to Theorem 1 in [34]. Therefore, the optimization problem can also be

formulated as follows

min iOV‘ , subject to f(O)ZN (2)
=1

u>?
observed V;

where the calculation of f (0) is a key challenge because it depends on specific
network structure and observation strategy and thus has no closed-form solution. We
thus introduce the following definition.

Definition 4 (identifiability gain). Given a network G :(V,E) , let 0% and
f (O(k)) denote an observation strategy and its cardinality, respectively. Let V, be
an unobserved node in O, and only V. becomes observed in a new observation

(k+1)

strategy O with the observation statuses of other nodes remaining unchanged.
Let f (O(k”) ) denote the cardinality of 0" . Then the identifiability gain of

observing V., denoted by g(V,O(/‘) ) , is calculated  as

1 1

g(Vi,O(k))Zf(O(kH))—f(O(k)). 0
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By definition, g(V.,O(")) is the difference in cardinality between two

“1) That is, after ¥, becomes

1

consecutive observation strategies 0" and O

observed in O**)

, we need to find out the number of newly added non-redundant
identifiability equations. First, if another node 7, (i £ ) is observed in both O
and O™ and there exists a Wright’s path [46] of length 1 connecting V; and V.,

1

it can be shown that the newly added identifiability equation, denoted by IE ( i Vj) ,
is non-redundant (see Lemma 1 and Supplementary Materials for theoretical
justification). However, if the length of every Wright’s path between V, and V, is

1

greater than 1, the identifiability equation /F (K, Vj) is not always redundant, and it
depends on both the node’s observation status and the structure of the network. Here

we introduce the concept of detour-path before we further elucidate the redundancy

issue. Consider a DAG G=(V,E) and two d-connected observed nodes V. and

1

1

V,. Assume that there exists a Wright’s path P, between V. and V, as well as an
observed node Vk(k;ti, j) on P, and the direction of P, is from ¥, to V, and
thento V. Nowlet £, and P, denote the two segments of P,, then £, entering
node V, has an arrow pointing into ¥, while P, exiting node ¥, has an arrow
pointing away from V,. However, if there exists another Wright’s path between V,
and V;, denoted by ]~’,{j, which has no any other observed nodes besides V, and V,
and has an arrow pointing into ¥, , then V, is a collider with respect to B, and f’kj
Thus, we call the Wright’s path segment P, the detour-path, and call V;, V, and
V. the upstream node, the downstream node, and the collider node of the detour-path

P, , respectively. By definition, a detour-path can have only one downstream node
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and one collider node but may have one or more upstream nodes. Moreover, multiple
detour-paths can share the same upstream node, the same downstream node or the
same collider node. Several examples are given in Fig. 1 to illustrate the concept of
detour-path.

In addition, when an upstream node V., is shared by two or more detour-paths
that have the same downstream node, V, is called a shared upstream node; otherwise,
V. is called an exclusive upstream node. Note that a detour-path can have both
exclusive and shared upstream nodes in the same time, and the collider node of one
detour-path can be an upstream node of another detour-path. Consider two
detour-paths that have no exclusive upstream nodes, if they share the same

downstream node and at least one upstream node, or one upstream node of one detour

path is the collider node of the other detour-path, then two detour-paths are
intersecting. One can tell that if P, intersects with P, and P, intersects with
P, , then P, also intersects with P, . Then we consider a downstream node V/,

let S IDP denote all the intersecting detour-paths, and let S SUN denote all the

shared upstream nodes of S [DP. Similar to a single unknown parameter, the

coefficient product WP = H@, of a Wright’s path P can be deemed as a single

edge,

parameter and one can tell its structural identifiability based on identifiability
equations. If a detour-path P has at least one exclusive upstream node, then the
Wright’s coefficient WP of P is globally identifiable (see Lemma 2 and
Supplementary Materials for theoretical justification). Also, for a group of intersecting

detour-paths, if the node number of S SUN is equal to or greater than the number

14



of intersecting detour-paths in S IDP, then the Wright’s coefficient of each
detour-path in § IDP 1is globally identifiable (see Lemma 3 and Supplementary

Materials for theoretical justification).

Given a DAG G=(V,E), consider two observed nodes V;, V, and an

1

unobserved node V,. V, may not be on any Wright’s paths between V, and V..

k+1

For this case, if only ¥, becomes observed in 0", then for each observed node

V. in 0%, one can check whether the identifiability equation [E(V,V,) is

1

redundant according to Lemma 4 (see Supplementary Materials for theoretical

justification). That is, when none of the Wright’s paths between V; and ¥, contains

1 u

detour-paths, IE (Vi,Vu) is redundant if and only if each Wright’s path between V,

1

and V passes at least one observed node other than V. and V ; otherwise,

u i u

IE ( l.,V) is redundant if and only if the Wright’s coefficient of each detour-path

u

between V; and V, is globally identifiable in 0") and each Wright’s path between

1

V. and V, passes at least one observed node other than ¥V, and V . If V isona

Wright’s path between V, and V,, and the sufficient and necessary condition for one

of the identifiability equations IE(V,,V,)and IE(V/.,Vu) being redundant is similar
to Lemma 4 and given in Lemma 5 (see Supplementary Materials for theoretical
justification). Note that it can be determined whether the Wright’s coefficient of a
detour-path is globally identifiable according to Lemma 2 and Lemma 3.

Based on Lemma 4 and Lemma 5, we propose a novel graphic method to
calculate the identifiability gain g(Vi,O(")). Let des, denote the descendant node

setof V;, anc, denote the ancestor node set of V;, rel; denote the set of nodes that
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are not included in des, or anc,. Moreover, let bound, C anc, denote the
boundary node set, in which every node has at least one outgoing edge to a node in
rel.. Then we can calculate g(K,O(/‘)) by removing the following edges from the
original graph G: i) all the incoming edges to the observed nodes that are not
collider nodes of detour-paths in anc,; ii) all the outgoing edges from some observed
nodes in des;, and rel, and these observed nodes are not the collider nodes of the
detour-paths whose Wright’s coefficients are unidentifiable in 0); and iii) all the
outgoing edges from the observed nodes in bound, to nodes in rel;, and then we
get a new graph denoted by G'. Let N, denote the total number of the observed
nodes that are connected with V; via any Wright’s path in graph G'. Furthermore,
one can tell from the edge-removal operation that there still exist some redundant
identifiability equations in G', because the following two types of redundancy cases
have not been considered in the edge-removal operation: V; is the downstream node

of an arbitrary detour-path, and ¥, is on a Wright’s path between two observed nodes
in G'. Let N, denote the number of redundant identifiability equations in G'.
According to the topological structure of G' and the node’s observation status, we
can obtain N, based on Lemma 4 and Lemma 5 (see the details in Implementation
and Verification Section). It can be shown that the identifiability gain is
g(Vl_,O(k)):NW—Nr (see Theorem 1 and Supplementary Materials for theoretical
justification).

For a given DAG G and an observation strategy o, different unobserved

nodes may associate with different identifiability gains. Naturally, our strategy is to

16



choose the unobserved node in O with the maximum identifiability gain if it

k+1)

becomes observed in 0" . However, we also recognize that, to assure that all model

parameters are at least locally identifiable, certain nodes of a DAG must be observed
if they are unobserved in an observation strategy (see Lemma 6 and Supplementary

Materials for theoretical justification). For convenience, we call such nodes the

(0)y

must-be-observed [14] nodes, and let O denote the observation strategy, in which

only the MBO nodes are observed.

Lemma 1. Given a DAG G = (V,E), an observed node V;, and an unobserved node

1

k+1)

V. in O%, if only ¥, becomes observed in 0", the identifiability equation

u

IE (Vl., V;) is non-redundant if there exists a Wright’s path of length 1 connecting V,

and V

Lemma 2. If a detour-path P has one or more exclusive upstream node, the
Wright’s coefficient WP of P is globally identifiable.

Lemma 3. For a group of intersecting detour-paths, if the number of the shared
upstream nodes in S SUN is equal to or greater than the number of intersecting
detour-paths in S IDP, then the Wright’s coefficient of each detour-path in
S _IDP is globally identifiable.

Lemma 4. Given a DAG G = (V,E), an observed node V;, and an unobserved node

k+1

V. in 0", ifonly V, becomes observedin 0", there exist two cases:

u

1) each Wright’s path between V, and V, passes at least one observed node other

than 7, and V, when none of the Wright’s paths between V, and V, contains

1 u 1 u
detour-paths;
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2) each Wright’s path between V, and V, passes at least one observed node other
than 7, andV,, and the Wright’s coefficient of each detour-path between V, and

V. is globally identifiable in O when certain Wright’s paths between V; and

1

V. contain detour-paths.

u

Then the identifiability equation [E (K, Vu) is redundant if and only if one of the
above conditions holds.
Lemma 5. Given a DAG G = (V,E), two d-connected observed nodes V; and V,

and an unobserved node V, in 0", if ¥, is on a Wright’s path between ¥, and

u 1

k+1

V, and only V, becomes observed in 0", there exist two cases:

1) each Wright’s path between V; and V; passes at least one observed node other

1

than 7, and ¥, when none of the Wright’s paths between V. and V, contains

detour-paths;

2) each Wright’s path between V; and V) passes at least one observed node other

1

than ¥, and V,, and the Wright’s coefficient of each detour-path between V,

and V, is globally identifiable in 0" when certain Wright’s paths between V,

1

and V, contain detour-paths.
Then one of the two identifiability equations IE (Vqu) and /E (V_/.,Vu) is

redundant if and only if one of the above conditions holds.

Theorem 1. Given a DAG G=(V,E) and an unobserved node V., in an

1

observation strategy O, let G' denote the sub-graph after the edge-removal
operation. Then the identifiability gain is g(Vl.,O)=NW—Nr, where N, denotes

the total number of the observed nodes that are connected with V; via any Wright’s

1
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path in graph G', and N, denotes the number of redundant identifiability equations
in graph G'.
Lemma 6. For a given DAG G = (V,E), the following nodes must be observed to
assure that all the parameters of the corresponding SEM are at least locally
identifiable

1) The nodes with an out-degree 0;

2) The nodes with an out-degree 1;

3) The nodes with an in-degree 0 and an out-degree less than 3.

Dynamic programming strategy

Let 0% denote a given observation strategy. If some of the MBO nodes are not

URNG )

observed in O ¥ should be incorporated into O"° according to Lemma 6.

Therefore, the initial observation strategy, denoted by 0", should always be

o :(O(O)M |O(°)G), where the OR operator is an element-wise operation. For
example, for a DAG with 6 nodes, if 0" =1 0100 O]T and
0% =[0 110 0 0],then 0”=[1 1 1 0 0 0].

The dynamic programming strategy starts with the calculation of the cardinality of

o (that is, f (O(O))) based on Theorem 1. Specifically, let R be the number of

observed nodes in O(O), |4

o

,(r=1,2,---,R) be the r-th observed node in 0", and

O(O){V 1,...,Vo_r} be the observation strategy in which only the first » observed

0_

nodes in O are observed. Then f(O(O))z g(Vai(m),O(O){V()J,...,Vw}) can be

R-1

r=1

calculated according to Theorem 1. Note that the order at which V, . is selected into

19



oMy, ...,

o _ o _

R} will  not change the observation strategy (e.g.,
o {Vo_l, Vo_z} =0" {Vo_z, Vo_l} ) and thus have no effect on the value of f(O(O)) .

The second step of our dynamic programming strategy is to define stages and their

associated states. Let S denote the number of unobserved nodes in O, and let

u s (s=1,2,---,S) denote the s-th unobserved node in O(O), then the dynamic
programming procedure can be divided into §+1 stages. For illustration purpose,
we consider a simple example with 5 unobserved nodes, as shown in Fig. 2. The 0-th
stage is actually the initialization step as described in the previous paragraph, and it

has only one state, i.e., 0. At the first stage, there are S =35 different states; that

is, only one of the unobserved nodes {Vu_, , Vu_z,---,Vu_S} in 0 will be selected to
observe. At the second stage, since one of the five unobserved nodes has been selected
at the previous stage, there are only four unobserved nodes for selection and thus four
states exist (that is, {Vu_z,Vll_qu_MVu_s} ). Therefore, as shown in Fig. 2, except for
stages 0 and 1, each subsequent stage has one less states than its previous stage; also,
the upper triangular region (see the area above the labels of stages 1-5 in Fig. 2) is
empty because the selection order of unobserved nodes does not affect the eventual
observation strategy so the inclusion of such states in the upper triangular region is
redundant. One can tell that the proposed stage and state definitions satisfy the
optimality principle of dynamic programming [47-49].

The third step is to compute the state transition costs for searching the optimal
state transition path(s). According to the definitions of stages and states, there may

exist several different states at the s-th stage that can transit to the same state at the
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(s+1)-th stage. For instance, four states V, ,, V, ,, V, ; and V, , at the first stage

u u_2° u

can transit to V, . at the second stage, as shown in Fig. 2. The state transition cost

u

from state V, , to state ¥, ; (i# ;) between two consecutive stages is just the

u

identifiability gain g(V o) {...,I{U,...}), where oO" { v } means that

u_jo 5V isees
V, . is observed in O" . Then the cardinality of an observation strategy can be

u7

computed by adding f (O(O)) and all the state transition costs along the state
transition path. Since the goal of the dynamic programming strategy is to search for

the optimal observation strategies, when there exist multiple transition paths from

state ¥, , in 0% to state V,, in 0" (i#j), the transition path associated

with the maximum identifiability gain will be chosen; that is,
f (Oﬁ"*}”) = Vma,i(,( g(VuJ,OLfl )+ f (Oék) )), where 01(/k) is a convenient notation
for O {..v, ...}

The dynamic programming strategy above can be mathematically described in Eq.

(3), and we have implemented this strategy in R (see the “Implementation and

verification” Section),

700 )=r(0")g(v, ,0%), s=12..8,

7(08)= max (g(v, .0 )+ (0)), k=12 &k<5-1.

Ry =

3)

It should be stressed that it is not necessary to finish all the § iterations as shown in

Eq. (3). Once the cardinality f (O,(,f)i) at the k-th stage becomes equal to or greater

than the number of unknown parameters N, , the dynamic programming process will

stop and we get the SIOOR strategies.
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Results and Discussion

Overview of the framework

Observation strategy design is an under-investigated problem for biological
networks, despite the fact that a variety of biological networks have been actively
constructed and used in numerous benchside or bedside studies. However, the
existence of latent variables is a common problem due to cost, technical or other
limitations, and has significantly hampered our capability to quantitatively investigate
and understand such networks via, e.g., key network parameter estimation from
experimental data. Identifiability analysis has long been recognized as a powerful tool
to assure the accuracy and reliability of parameter estimation techniques; however,
identifiability-based observation strategy design for biological networks turns out to
be an unexplored field despite its substantial importance to biological network studies
like structure identification.

To the best knowledge of our authors, this is the first study that tackles the
problem of identifiability-based observation strategy design for biological networks
described by linear SEMs. First, we introduce several new concepts such as
cardinality of observation strategy and identifiability gain and mathematically
formulate the identifiability-based optimal observation problem. Second, for a given
network structure, the key idea is to turn a minimum number of unobserved nodes in
the original observation strategy into observed such that the number of non-redundant
identifiability equations becomes greater than or equal to the number of unknown

model parameters (i.e., the whole system is at least locally identifiable). By counting
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the number of non-redundant identifiability equations, we avoid performing actual
identifiability analysis on SEM and the proposed method is thus computationally
efficient. Third, by defining the concepts of stage division and state transition, a
dynamic programming strategy is proposed to solve the maximization problem
without involving any time-consuming symbolic computation or matrix operations
[33, 34]. Fourth, an efficient computing algorithm is proposed to calculate the
identifiability gain of each unobserved node in a given observation strategy. More
specifically, the computing process is significantly simplified by counting the number
of observed nodes that connect with the node of concern via Wright’s paths after
removing certain edges from the original graph.

It takes a non-constant time to compute the node identifiability gain in each
iteration, and the algorithm complexity depends on the number of observed nodes.
Furthermore, the number of iterations of the dynamic programming algorithm does
not depend on the total number of nodes, but the number of unobserved nodes in the
original observation strategy. Let § denote the number of unobserved nodes and 7'
denote the number of observed nodes in the original observation strategy, then the

computation complexity of the dynamic programing strategy is O(S T ) .

Implementation and Verification

The flowchart of the proposed algorithm for searching the structural
identifiability-based optimal observation remedy is shown in Fig. 3. We have
implemented the dynamic programming algorithm in R, and all the source codes and
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examples are freely accessible at https://github.com/Hongyu-Miao/SIOOR.

Here we describe several important technical details of the implementation. First,
at the state transition step, i.e., f (0&‘ *jl)) = Vma;(/( g(I/LU,OI(,X'i)i)+ f (Oﬁk) )), if there
exist multiple transitions that produce the same f (O(k”)) , our current
implementation chooses only one such transition to update the next-stage observation
strategy. If needed, the R code can be slightly modified to enumerate all optimal
observation strategies. Second, since the boundary node set is just a subset of the
ancestor node set for a given node, the processing of the boundary nodes is
incorporated into the processing of the ancestor nodes in the current implementation.

In order to verify the implementation, synthetic DAGs can be generated for this
purpose, like the two DAG examples in Fig. 4. The first DAG contains 8 nodes and
13 edges, and it has only a single input node and a single output node. Moreover, the
first example considers a special initial observation strategy (i.e., all nodes are
unobserved) to illustrate the capability of the proposed method to design optimal
observation strategy from scratch. The second DAG has multiple input and output
nodes, and it considers a more general situation, that is, there exists both observed and
unobserved nodes in the initial observation strategy. We analyzed the two examples
using the proposed algorithm, and used the identifiability matrix method [34] to verify

that the obtained observation remedies do grant (local) identifiability to all model

parameters .

Applications to real biological networks
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Since it is impossible to cover all the biological networks in various databases
and knowledge repositories [16, 17] in one study, we choose the biological network
associated with influenza A virus [39] as an application example for illustration
purpose. AV can infect birds as well as mammals including human, and it has been
one of the major infectious pathogens that have caused millions of human deaths. It is
thus of great scientific significance to systematically understand IAV infection and
immune response mechanisms. Therefore, Matsuoka et al. [S0] manually curated a
comprehensive database, called FluMap, for depicting the influenza virus life cycle at
the molecular level from over 500 previous publications. There are mainly five
modules in FluMap: virus entry, virus replication and transcription, post-translational
processing, transportation of virus proteins, and packaging and budding. Given the
critical role of virus replication in influenza virus life cycle, numerous experimental
studies (e.g., [42, 51-53]) have made attempts to understand virus replication
mechanisms and their clinical implications. Thus, we choose to focus on the TAV
replication module and analyze its observation strategy.

Since IAV replication involves many different biomolecules and complex
interactions, it is usually infeasible to observe all such components and their
interactions in one study. The question of concern here is how to choose a minimal
number of nodes in Fig. 5 to observe such that all the model parameters become at
least locally identifiable. Note that Fig. 5 is derived from Matsuoka’s work [50], and
consists of 22 nodes and 26 edges; for simplicity, the catalyzers and inhibitors in this
network are treated as reactants.
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A relevant concept, called observability, has been previously investigated by Liu
et al. [38] for complex dynamic systems. Although observability analysis also deals
with observation strategies considering the existence of latent variables, it is very
different from identifiability analysis in two aspects: 1) the focus of observability
analysis is not model parameters but how to infer the unobserved state variables from
experimentally measured outputs of a system; 2) the graphical approach proposed by
Liu et al. was developed for the so-called balance equations based on mass-action
kinetics, the model structures of which are very different from static linear SEMs.
However, it is of interest to compare the identifiability-based observation results with
those of the observability-based method. For this purpose, we assume that all the
nodes in Fig. 5 are initially unobserved. After applying the proposed dynamic
programing method, we get the optimal observation strategy shown in Fig. 6(a) for
achieving parameter identifiability. The optimal observation strategy produced by
Liu’s observability approach is shown in Fig. 6(b). According to Figures 6(a) and 6(b),
one can tell that the identifiability-based observation strategy contains 20 observed
nodes and 2 unobserved nodes, while the observability-based strategy contains 3
observed nodes and 19 unobserved nodes. That is, for the IAV replication module, the
system internal states can be inferred from a few observed output nodes if a balance
equation model is used; however, it needs much more observed nodes to achieve
parameter identifiability if a linear SEM is used. Such an observation is not only due
to the different goals of observability and identifiability analyses, but also the
differences in the underlying model structures used in observability or identifiability
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analyses.

Moreover, besides the nodes with an out-degree 0 or 1 as mentioned in Lemma 3,
the identifiability-based observation strategy is also likely to select the nodes with a
high out-degree as unobserved nodes; for instance, the two unobserved nodes
viral RNA and NP(ub) in Fig. 6(a) have the highest out-degrees 2 and 3, respectively.
This is because, if an unobserved node has a high out-degree, this node is connected
with many out-neighbor nodes; when its out-neighbor nodes are observed, there will
exist multiple Wright’s paths that connect such out-neighbor nodes and pass this
unobserved node, and the corresponding identifiability equations thus contain the
parameters associated with the out-edges of this unobserved node such that these
parameters can be identifiable. Interestingly, the observability-based strategy tends to
select the nodes with a low out-degree as observed nodes, for example, all the nodes
with 0 out-degree are observed in Fig. 6(b). It is because the nodes with an out-degree
0 in a DAG are usually the final products of chemical reactions, instead of reactants,
and thus the internal states associated with other nodes can be easily inferred based on

the balance equations if all the final products of chemical reactions are measured.

Conclusions

In this study, we address an important problem for biological networks: the
design of observation strategies for all edge coefficients being identifiable. Linear
SEMs are used as the mathematical representation of biological networks, which

allows us to formulate the problem as a constrained optimization problem. A dynamic
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programming strategy was then developed to solve the constrained optimization
problem to obtain the optimal observation strategies at the cost of turning a minimal
number of unobserved nodes into observed. The proposed solution is novel and
efficient because it avoids both symbolic computation and matrix operations as used
in other studies, and we provided necessary theoretical justifications for the proposed
algorithm. As verified by multiple examples (synthetic or real networks), the proposed
solution is generic and can be applied to an arbitrary DAG (recursive SEMs) without
bidirectional edges.

We also recognize that many real biological networks are dynamic, nonlinear, or
have feedback loops, which are beyond the capability of the method developed in this
study. However, this study provides a basis for determining the identifiability-based
optimal observation remedy for more complex biological networks, and we expect to

tackle the more challenging problems in the future.
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Figure List

Figure 1. Four examples for illustrating the detour-path concept, where observed

nodes are colored green and unobserved nodes are colored grey. (a) A simple
detour-path; (b) Two detour-paths P,,F, share the same collider node ¥, and
upstream nodes V,V,; (¢) Two detour-paths P,,F, share the same collider node
Vi, upstream nodes V,V, and edge e,; (d) Two detour-paths P,,P, share the
same upstream node ¥, and downstream node V.

Figure 2. Schematic illustration of the stages, states and state transition costs in the
proposed dynamic programming strategy.

Figure 3. Flowchart of the proposed dynamic programming algorithm.

Figure 4. Two DAG examples for algorithm implementation validation, where the
green nodes are unobserved and the blue ones are observed in the initial observation
strategy. (a) A DAG with a single input and a single output; (b) A DAG with multiple
inputs and multiple outputs.

Figure 5. An application example based on the influenza A virus replication module,
where all nodes are initially unobserved and in green color.

Figure 6. The optimal observation strategies for the influenza A virus replication

module based on (a) identifiability and (b) observability, where the yellow nodes are

observed and the green nodes are unobserved.
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