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Abstract 

Background: To systematically understand the interactions between numerous 

biological components, a variety of biological networks on different levels and scales 

have been constructed and made available in public databases or knowledge 

repositories. Graphical models such as structural equation models have long been 

used to describe biological networks for various quantitative analysis tasks, especially 

key biological parameter estimation. However, limited by resources or technical 

capacities, partial observation is a common problem in experimental observations of 

biological networks, and it thus becomes an important problem how to select 

unobserved nodes for additional measurements such that all unknown model 

parameters become identifiable. To the best knowledge of our authors, a solution to 

this problem does not exist until this study.  

Results: The identifiability-based observation problem for biological networks is 

mathematically formulated for the first time based on linear recursive structural 

equation models, and then a dynamic programming strategy is developed to obtain the 

optimal observation strategies. The efficiency of the dynamic programming algorithm 

is achieved by avoiding both symbolic computation and matrix operations as used in 

other studies. We also provided necessary theoretical justifications to the proposed 

method. Finally, we verified the algorithm using synthetic network structures and 

illustrated the application of the proposed method in practice using a real biological 

network related to influenza A virus infection.    

Conclusions: The proposed approach is the first solution to the structural 

identifiability-based optimal observation remedy problem. It is applicable to an 
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arbitrary directed acyclic biological network (recursive SEMs) without bidirectional 

edges, and it is a computerizable method. Observation remedy is an important issue in 

experiment design for biological networks, and we believe that this study provides a 

solid basis for dealing with more challenging design issues (e.g., feedback loops, 

dynamic or nonlinear networks) in the future. We implemented our method in R, 

which is freely accessible at https://github.com/Hongyu-Miao/SIOOR. 

Keywords: Biological network, Graphical model, Structural identifiability analysis, 

Structural equation model, Observation strategy 
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Background 

The emergence of young research fields such as systems biology and network 

medicine [1, 2] reflects some exciting changes in biomedical investigators’ view of 

biology and practice. Particularly, it has been increasingly recognized that thinking in 

networks may lead to novel scientific insights and findings [3] that the traditional 

reductionism approaches cannot grant [4]. The recent development of experimental 

techniques (e.g., a variety of high-throughput omics approaches) also provides 

unprecedented opportunities for biomedical investigators to construct numerous 

biological networks at different levels and scales; for instance, protein-protein 

interaction networks [5, 6], gene regulatory networks [7-10], functional RNA 

networks [11-13], and metabolic networks [14, 15] can be found in a number of 

databases or knowledge repositories nowadays [9, 16, 17]. All such previous efforts 

provide a solid basis for further advancing our understanding of biological systems 

and the associated outcomes qualitatively or quantitatively. 

Graphical models have long been considered as a natural mathematical 

representation of biological network for various quantitative analysis tasks such as 

parameter inference [18-21]. Specifically, given a biological network structure and 

experimental observations of certain variables associated with network nodes, it is 

often of significant interest to determine the unknown coefficients associated with 

network edges. For instance, to understand the responses of a biological network (e.g., 

activation or inhibition) to different environmental signals (e.g., different signaling 

molecules or different doses of the same signaling molecule), edge coefficients are 
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likely to vary under different conditions and thus need to be estimated under each 

condition for the same given network structure [18]. In such a scenario, although the 

structure of the corresponding graphical model is known and fixed, concerns about 

the accuracy and reliability of parameter estimates often raise due to, e.g., the 

existence of unobserved node variables (i.e., latent variables). In practice, latent 

variables are not uncommon due to various technical limitations, ethic issues, 

financial affordability, and so on [18, 20]. Therefore, a natural question to ask is: what 

is the remedy that enables us to obtain reliable parameter estimates for a given 

graphical model structure with partially observed variables? 

To the best knowledge of our authors, the aforementioned important question has 

rarely been tackled before in the context of quantifying unknown model parameters of 

biological networks; and in this study, we make the very first attempt to address this 

question from the structural identifiability point of view. By the definition in Miao et 

al. [18], an unknown model parameter is structurally identifiable if it can be uniquely 

determined for a given model structure under the assumptions that sample size is 

sufficiently large and data quality is not of concern. Of course, one can also take the 

effects of sample size and data noise into consideration and conduct the so-called 

practical identifiability analysis [18]; however, this is out of the scope of this study as 

practical identifiability analysis is not feasible at certain experimental design stage 

when real data are not available. On the contrary, structural identifiability analysis 

allows us to detect flaws in model structure and observation scheme before data 

collection, and thus should be investigated first. Our solution to the question 
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mentioned at the end of the previous paragraph is thus a strategy that identifies a 

minimum number of unobserved nodes, for which the associated node variables 

should be observed in experiments such that all unknown parameters become 

structurally identifiable. This is a useful and cost-effective remedy if some of the 

model parameters are not identifiable given the original observation scheme, and we 

thus name it the structural identifiability-based optimal observation remedy (SIOOR).  

Since biological networks can be represented by many different types of 

mathematical or statistical models, it is impossible to devise the SIOOR strategy for 

every different model type in one study. Therefore, we consider a linear structural 

equation model [22] here because it is a representative graphical model type and has 

been widely applied in various disciplines including systems biology [23-27]. A 

number of previous studies have investigated the parameter identifiability problem of 

SEMs, but the majority of these studies only derived theoretical criteria or conditions 

for identifiability verification, including Pearl’s back door and front door criteria [28], 

Brito and Pearl’s generalized instrumental variable criterion [29], Tian’s accessory set 

approach [30]. Only a few studies proposed computerizable identifiability analysis 

approaches, including Drton’s condition [31] and Foygel’s half-trek criterion [32] 

(implemented in R package SEMID), Sullivant’s computer algebra method and the 

more recent Wang’s identifiability matrix method [33, 34]. More importantly, all such 

criterions and methods assume that the observation strategy is given (i.e., it is 

pre-specified which variables are observed and which are not), and none of them 

considered the remedy strategy if a given observation strategy does not grant 
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identifiability to all unknown model parameters. The focus of this study is thus to 

investigate how to choose a minimum number of nodes that are not observed in the 

original observation strategy for additional experimental measurements such that all 

unknown model parameters become identifiable. This study leads to a general and 

computerizable solution to the SIOOR problem for the first time. 

More specifically, in the case that a given observation strategy of a biological 

network cannot grant identifiability of all unknown parameters in the corresponding 

SEM due to the existence of unobserved variables, we propose a dynamic 

programming (DP) approach to search for all possible SIOOR strategies. The 

proposed approach is a generic and computerizable method that can deal with 

recursive SEMs. It should be stressed that SIOOR strategy does not involve any 

power or sample size calculation and thus cannot be compared with the traditional 

experimental design approaches [35, 36]. Also, it should be stressed that the 

observability problem in control theory is different from the SIOOR problem because 

the aim of observability analysis is to determine the internal states of a system from 

its external outputs [37]. For clarification purpose, we also compare Liu’s graphic 

approach for observability analysis [38] with our SIOOR strategy in this study.  

This article is organized as follows. In the Methods Section, the structural 

identifiability-based optimal observation remedy problem is mathematically 

formulated. We then propose a dynamic programming approach with theoretical 

justification to solve the problem for recursive SEMs. In the Results and Discussion 

Section, we describe our algorithm implementation and validate the proposed method 
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using selected benchmark networks. Also, a real substructure from the influenza virus 

A [39] KEEG pathway is chosen as an example to illustrate the application of the 

proposed method in practice.  

Methods 

In this section, several key concepts and definitions are introduced for solving the 

SIOOR problem, including Observation Strategy (OS), Cardinality of Observation 

Strategy [4], and Identifiability Gain (IG). The design of the dynamical programming 

algorithm is also described. In addition, we provide the necessary theoretical 

justification for the proposed method.  

 

Problem formulation 

 A directed biological network can be denoted by ( )G ,= V E , where V denotes 

the node set and E denotes the edge set. Let iV  ( 1, 2, ,i n= … ) denote the i -th node, 

and  iY  denote the variable associated with iV . If iY  is a linear function of the 

remaining node variables, the corresponding SEM can be specified as follows,  

i ij j i
j i

Y c Y ε
≠

= +∑ ,    , 1, ,i j n=  , 

where ijc  denotes the coefficient associated with the directed edge j iV V→ , and iε  

denotes the disturbance error term that follows a certain distribution (Gaussian or 

non-Gaussian [40, 41]) with mean zero. For simplicity, all disturbance error terms are 

assumed to be independent. By definition, E specifies the structure of the coefficient 

matrix ijc =  C , i.e., 0ijc =  if no edge exists in E from jV  to iV  for i j≠ . When 
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a network structure contains one or more loops, G is a directed cyclic graph (DCG) 

and the corresponding SEM is called a non-recursive model; otherwise, G is a 

directed acyclic graph [42] and the corresponding SEM is called recursive. Although 

Drton’s condition [31] and Foygel’s half-trek criterion [32] are applicable to the 

identifiability analysis of non-recursive SEMs, the identifiability of parameters on a 

loop may be still inconclusive. Due to the lack of mature structural identifiability 

analysis techniques for examining every unknown parameter of a non-recursive SEM, 

this study focuses on recursive SEMs (i.e., DAGs) only. 

Definition 1 (observation strategy). Given a graph ( )G ,= V E , its observation 

strategy can be denoted by a binary vector ( )1
, ,

n

T

V VO O O=  , where 1
iVO =  if node 

iV  is observed and 0
iVO =  if iV  is unobserved. □ 

Observation strategy is important to parameter identifiability. In general, for a 

given network structure, the more observed nodes an observation strategy contains, 

the more likely all model parameters are identifiable. However, more observed nodes 

are usually associated with a higher experiment cost, so it is also desirable to reduce 

any unnecessary cost. The goal of SIOOR is thus to improve a given observation 

strategy by observing a minimum number of originally unobserved nodes such that all 

nonzero parameters in C  become identifiable. For this purpose, let P  denote the 

vector of all nonzero parameters in C , and let D  denote the vector of identifiability 

status of every element in P . That is, if iP  is locally or globally identifiable (i.e., iP  

has a finite number of possible values or a unique value within the parameter space, 

see [18]), 1iD = ; otherwise, 0iD = . When all the parameters in a model are locally 
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or globally identifiable, this model is called identifiable. Consequently, the SIOOR 

problem can be formulated as follows 

observed 1
min

ii

n

VV i
O

=
∑ ，subject to =D 1 ,                 (1) 

where 
1

i

n

V
i

O
=
∑  is the total number of observed nodes in an observation strategy O , 

and 1  denotes a vector of ones. For clarification, we stress that the observation 

measurements are for the random variables associated with network nodes, and we 

assume ( )n m−  of them are observed in the original observation strategy, where n  

denotes the total number of nodes and 0 m n< ≤ . 

The objective function above is minimized with respect to the originally 

unobserved nodes, subject to the constraint =D 1 . During the minimization process, 

it needs to be repeatedly verified whether all parameters have become identifiable (i.e., 

=D 1 ). For this purpose, an efficient algorithm for structural identifiability analysis of 

SEMs is needed. Here we consider the identifiability matrix method proposed by 

Wang et al. [34]. Briefly, structural identifiability of parameters can be verified by 

examining the number of solutions to the symbolic polynomial identifiability 

equations generated by Wright’s path coefficient method [43, 44]. To avoid the 

expensive symbolic computation involved in reducing such identifiability equations, 

the identifiability matrix method proposes to derive binary matrices from symbolic 

polynomials and thus enable us to determine the number of solutions via several 

simple matrix operations. It is noteworthy that Wang’s work [34] does not explicitly 

handle colliders involving bidirectional arcs when generating identifiability equations 
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with Wright’s method, however, the identifiability matrix method is still applicable 

here as we do not consider bidirectional arcs in DAGs. 

 

Identifiability gain and must-be-observed nodes 

The optimization problem in the previous section is combinatorial in nature. 

Therefore, if the number of the originally unobserved nodes (denoted by m ) is not 

small, enumerating all the 2m  different possible observation strategies over these 

nodes will be computationally expensive. We thus need an efficient algorithm such as 

dynamic programming to obtain the solutions. For this purpose, a few more 

definitions need to be introduced first. 

Definition 2 (redundant identifiability equation). Given a set of identifiability 

equations, an identifiability equation ( ),i jIE V V  is redundant with respect to that set 

if it can be expressed as a linear combination of the equations in that set. 

Definition 3 (cardinality of observation strategy). Given an observation strategy O  

for a network G , one symbolic polynomial identifiability equation can be generated 

for each pair of d-connected [28] observed nodes using, e.g., Wright’s path coefficient 

method. Then the total number of non-redundant identifiability equations is called the 

cardinality of O , denoted by ( )f O . □   

The Wright’s path coefficient method generates identifiability equations for 

recursive SEMs by calculating the covariance between two node variables, which is 

equal to the sum of the products of edge coefficients along each d-connected path, i.e., 

( ) ( ), :  ,
k l

i j i j l
path edge

IE V V Cov V V θ= ∑∏ . After removing all redundant identifiability 
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equations and redundant monomials, the identifiability result of each parameter can be 

determined by Theorem 1 in [34]. That is, if the number of non-redundant 

identifiability equations is less than the number of unknown parameters, then the 

parameters have an infinite number of possible values within the parameter space and 

are thus unidentifiable; otherwise, the parameters have a limited number of solutions 

or even a unique solution and are thus at least locally identifiable [45]. Let uN  

denote the total number of unknown parameters in P . For every parameter in P  

being locally or globally identifiable, the inequality ( ) uf O N≥  should hold 

according to Theorem 1 in [34]. Therefore, the optimization problem can also be 

formulated as follows 

  
observed 1

min
ii

n

VV i
O

=
∑ ，subject to ( ) uf O N≥ ,            (2) 

where the calculation of ( )f O  is a key challenge because it depends on specific 

network structure and observation strategy and thus has no closed-form solution. We 

thus introduce the following definition. 

Definition 4 (identifiability gain). Given a network ( )G ,= V E , let ( )kO  and 

( )( )kf O  denote an observation strategy and its cardinality, respectively. Let iV  be 

an unobserved node in ( )kO , and only iV  becomes observed in a new observation 

strategy ( )1kO +  with the observation statuses of other nodes remaining unchanged. 

Let ( )( )1kf O +  denote the cardinality of ( )1kO + . Then the identifiability gain of 

observing iV , denoted by ( )( ), k
ig V O , is calculated as 

( )( ) ( )( ) ( )( )1, =k k k
ig V O f O f O+ − . □     
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By definition, ( )( ), k
ig V O  is the difference in cardinality between two 

consecutive observation strategies ( )kO  and ( )1kO + . That is, after iV  becomes 

observed in ( )1kO + , we need to find out the number of newly added non-redundant 

identifiability equations. First, if another node jV  ( )i j≠  is observed in both ( )kO  

and ( )1kO +  and there exists a Wright’s path [46] of length 1 connecting iV  and jV , 

it can be shown that the newly added identifiability equation, denoted by ( ),i jIE V V , 

is non-redundant (see Lemma 1 and Supplementary Materials for theoretical 

justification). However, if the length of every Wright’s path between iV  and jV  is 

greater than 1, the identifiability equation ( ),i jIE V V  is not always redundant, and it 

depends on both the node’s observation status and the structure of the network. Here 

we introduce the concept of detour-path before we further elucidate the redundancy 

issue. Consider a DAG  and two d-connected observed nodes  and 

. Assume that there exists a Wright’s path jiP  between iV  and jV  as well as an 

observed node ( ),kV k i j≠  on jiP , and the direction of jiP  is from iV  to kV  and 

then to jV . Now let kiP  and jkP  denote the two segments of jiP , then kiP  entering 

node kV  has an arrow pointing into kV  while jkP  exiting node kV  has an arrow 

pointing away from kV . However, if there exists another Wright’s path between kV  

and jV , denoted by kjP , which has no any other observed nodes besides kV  and jV  

and has an arrow pointing into kV , then kV  is a collider with respect to kiP  and kjP . 

Thus, we call the Wright’s path segment jkP  the detour-path, and call iV , jV  and 

kV  the upstream node, the downstream node, and the collider node of the detour-path 

jkP , respectively. By definition, a detour-path can have only one downstream node 

( )G ,= V E iV

jV
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and one collider node but may have one or more upstream nodes. Moreover, multiple 

detour-paths can share the same upstream node, the same downstream node or the 

same collider node. Several examples are given in Fig. 1 to illustrate the concept of 

detour-path. 

In addition, when an upstream node iV  is shared by two or more detour-paths 

that have the same downstream node, iV  is called a shared upstream node; otherwise, 

iV  is called an exclusive upstream node. Note that a detour-path can have both 

exclusive and shared upstream nodes in the same time, and the collider node of one 

detour-path can be an upstream node of another detour-path. Consider two 

detour-paths that have no exclusive upstream nodes, if they share the same 

downstream node and at least one upstream node, or one upstream node of one detour 

path is the collider node of the other detour-path, then two detour-paths are 

intersecting. One can tell that if 
1jkP  intersects with 

2jkP  and 
2jkP  intersects with 

3jkP , then 
1jkP  also intersects with 

3jkP . Then we consider a downstream node jV , 

let _S IDP  denote all the intersecting detour-paths, and let _S SUN  denote all the 

shared upstream nodes of _S IDP . Similar to a single unknown parameter, the 

coefficient product 
l

l
edge

WP θ=∏  of a Wright’s path P  can be deemed as a single 

parameter and one can tell its structural identifiability based on identifiability 

equations. If a detour-path P  has at least one exclusive upstream node, then the 

Wright’s coefficient WP  of P  is globally identifiable (see Lemma 2 and 

Supplementary Materials for theoretical justification). Also, for a group of intersecting 

detour-paths, if the node number of _S SUN  is equal to or greater than the number 
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of intersecting detour-paths in _S IDP , then the Wright’s coefficient of each 

detour-path in _S IDP  is globally identifiable (see Lemma 3 and Supplementary 

Materials for theoretical justification). 

Given a DAG ( )G ,= V E , consider two observed nodes iV , jV  and an 

unobserved node uV . uV  may not be on any Wright’s paths between iV  and jV . 

For this case，if only uV  becomes observed in ( )1kO + , then for each observed node 

iV  in ( )kO , one can check whether the identifiability equation ( ),i uIE V V  is 

redundant according to Lemma 4 (see Supplementary Materials for theoretical 

justification). That is, when none of the Wright’s paths between iV  and uV  contains 

detour-paths, ( ),i uIE V V  is redundant if and only if each Wright’s path between iV  

and uV  passes at least one observed node other than iV  and uV ; otherwise, 

( ),i uIE V V  is redundant if and only if the Wright’s coefficient of each detour-path 

between iV  and uV  is globally identifiable in ( )kO  and each Wright’s path between 

iV  and uV  passes at least one observed node other than iV  and uV . If uV  is on a 

Wright’s path between iV  and jV , and the sufficient and necessary condition for one 

of the identifiability equations ( ),i uIE V V and ( ),j uIE V V  being redundant is similar 

to Lemma 4 and given in Lemma 5 (see Supplementary Materials for theoretical 

justification). Note that it can be determined whether the Wright’s coefficient of a 

detour-path is globally identifiable according to Lemma 2 and Lemma 3. 

Based on Lemma 4 and Lemma 5, we propose a novel graphic method to 

calculate the identifiability gain ( )( ), k
ig V O . Let ides  denote the descendant node 

set of iV , ianc  denote the ancestor node set of iV , irel  denote the set of nodes that 
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are not included in ides  or ianc . Moreover, let i ibound anc⊂  denote the 

boundary node set, in which every node has at least one outgoing edge to a node in 

irel . Then we can calculate ( )( ), k
ig V O  by removing the following edges from the 

original graph G : i) all the incoming edges to the observed nodes that are not 

collider nodes of detour-paths in ianc ; ii) all the outgoing edges from some observed 

nodes in ides  and irel  and these observed nodes are not the collider nodes of the 

detour-paths whose Wright’s coefficients are unidentifiable in ( )kO ; and iii) all the 

outgoing edges from the observed nodes in ibound  to nodes in irel , and then we 

get a new graph denoted by G' . Let wN  denote the total number of the observed 

nodes that are connected with iV  via any Wright’s path in graph G' . Furthermore, 

one can tell from the edge-removal operation that there still exist some redundant 

identifiability equations in G' , because the following two types of redundancy cases 

have not been considered in the edge-removal operation: iV  is the downstream node 

of an arbitrary detour-path, and iV  is on a Wright’s path between two observed nodes 

in G' . Let rN  denote the number of redundant identifiability equations in G' . 

According to the topological structure of G'  and the node’s observation status, we 

can obtain rN  based on Lemma 4 and Lemma 5 (see the details in Implementation 

and Verification Section). It can be shown that the identifiability gain is 

( )( ), k
i w rg V O N N= −  (see Theorem 1 and Supplementary Materials for theoretical 

justification).  

For a given DAG G  and an observation strategy ( )kO , different unobserved 

nodes may associate with different identifiability gains. Naturally, our strategy is to 



17 
 

choose the unobserved node in ( )kO  with the maximum identifiability gain if it 

becomes observed in ( )1kO + . However, we also recognize that, to assure that all model 

parameters are at least locally identifiable, certain nodes of a DAG must be observed 

if they are unobserved in an observation strategy (see Lemma 6 and Supplementary 

Materials for theoretical justification). For convenience, we call such nodes the 

must-be-observed [14] nodes, and let ( )0 MO  denote the observation strategy, in which 

only the MBO nodes are observed.  

Lemma 1. Given a DAG ( )G ,= V E , an observed node iV , and an unobserved node 

uV  in ( )kO , if only uV  becomes observed in ( )1kO + , the identifiability equation 

( ),i uIE V V  is non-redundant if there exists a Wright’s path of length 1 connecting iV  

and uV .   

Lemma 2. If a detour-path P  has one or more exclusive upstream node, the 

Wright’s coefficient WP  of P  is globally identifiable. 

Lemma 3. For a group of intersecting detour-paths, if the number of the shared 

upstream nodes in _S SUN  is equal to or greater than the number of intersecting 

detour-paths in _S IDP , then the Wright’s coefficient of each detour-path in 

_S IDP  is globally identifiable. 

Lemma 4. Given a DAG ( )G ,= V E , an observed node iV , and an unobserved node 

uV  in ( )kO , if only uV  becomes observed in ( )1kO + , there exist two cases: 

1) each Wright’s path between iV  and uV  passes at least one observed node other 

than iV  and uV  when none of the Wright’s paths between iV  and uV  contains 

detour-paths; 
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2) each Wright’s path between iV  and uV  passes at least one observed node other 

than iV  and uV , and the Wright’s coefficient of each detour-path between iV  and 

uV  is globally identifiable in ( )kO  when certain Wright’s paths between iV  and 

uV  contain detour-paths. 

Then the identifiability equation ( ),i uIE V V  is redundant if and only if one of the 

above conditions holds. 

Lemma 5. Given a DAG ( )G ,= V E , two d-connected observed nodes iV  and jV , 

and an unobserved node uV  in ( )kO , if uV  is on a Wright’s path between iV  and 

jV  and only uV  becomes observed in ( )1kO + , there exist two cases: 

1) each Wright’s path between iV  and jV  passes at least one observed node other 

than iV  and jV  when none of the Wright’s paths between iV  and jV  contains 

detour-paths; 

2) each Wright’s path between iV  and jV  passes at least one observed node other 

than iV  and jV , and the Wright’s coefficient of each detour-path between iV  

and jV  is globally identifiable in ( )kO  when certain Wright’s paths between iV  

and jV  contain detour-paths. 

Then one of the two identifiability equations ( ),i uIE V V  and ( ),j uIE V V  is 

redundant if and only if one of the above conditions holds. 

Theorem 1. Given a DAG ( )G ,= V E  and an unobserved node iV  in an 

observation strategy O , let G'  denote the sub-graph after the edge-removal 

operation. Then the identifiability gain is ( ),i w rg V O N N= − , where wN  denotes 

the total number of the observed nodes that are connected with iV  via any Wright’s 
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path in graph G' , and rN  denotes the number of redundant identifiability equations 

in graph G' . 

Lemma 6. For a given DAG ( )G ,= V E , the following nodes must be observed to 

assure that all the parameters of the corresponding SEM are at least locally 

identifiable 

1) The nodes with an out-degree 0; 

2) The nodes with an out-degree 1; 

3) The nodes with an in-degree 0 and an out-degree less than 3. 

 

Dynamic programming strategy 

Let ( )0 GO  denote a given observation strategy. If some of the MBO nodes are not 

observed in ( )0 GO , ( )0 MO should be incorporated into ( )0 GO  according to Lemma 6. 

Therefore, the initial observation strategy, denoted by ( )0O , should always be 

( ) ( ) ( )( )000 | GMO O O= , where the OR operator is an element-wise operation. For 

example, for a DAG with 6 nodes, if ( ) [ ]0 1 0 1 0 0 0M
TO =  and 

( ) [ ]0 0 1 1 0 0 0G
TO = , then ( ) [ ]0 1 1 1 0 0 0 TO = .  

The dynamic programming strategy starts with the calculation of the cardinality of 

( )0O  (that is, ( )( )0f O ) based on Theorem 1. Specifically, let R  be the number of 

observed nodes in ( )0O , ( )_ 1, 2, ,o rV r R=   be the r-th observed node in ( )0O , and 

( ) { }0
_1 _,...,o o rO V V  be the observation strategy in which only the first r observed 

nodes in ( )0O  are observed. Then ( )( ) ( )
( ) { }( )

1
0 0

_1 __ 1
1

, ,...,
R

o o ro r
r

f O g V O V V
−

+
=

=∑  can be 

calculated according to Theorem 1. Note that the order at which _o rV  is selected into  
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( ) { }0
_1 _,...,o o RO V V  will not change the observation strategy (e.g., 

( ) { } ( ) { }0 0
_1 _ 2 _ 2 _1, ,o o o oO V V O V V= ) and thus have no effect on the value of ( )( )0f O .  

The second step of our dynamic programming strategy is to define stages and their 

associated states. Let S  denote the number of unobserved nodes in ( )0O , and let 

_u sV  ( )1,2, ,s S=   denote the s-th unobserved node in ( )0O , then the dynamic 

programming procedure can be divided into 1S +  stages. For illustration purpose, 

we consider a simple example with 5 unobserved nodes, as shown in Fig. 2. The 0-th 

stage is actually the initialization step as described in the previous paragraph, and it 

has only one state, i.e., ( )0O . At the first stage, there are 5S =  different states; that 

is, only one of the unobserved nodes { }_1 _ 2 _ 5, , ,u u uV V V  in ( )0O  will be selected to 

observe. At the second stage, since one of the five unobserved nodes has been selected 

at the previous stage, there are only four unobserved nodes for selection and thus four 

states exist (that is, { }_ 2 _ 3 _ 4 _ 5, , ,u u u uV V V V ). Therefore, as shown in Fig. 2, except for 

stages 0 and 1, each subsequent stage has one less states than its previous stage; also, 

the upper triangular region (see the area above the labels of stages 1-5 in Fig. 2) is 

empty because the selection order of unobserved nodes does not affect the eventual 

observation strategy so the inclusion of such states in the upper triangular region is 

redundant. One can tell that the proposed stage and state definitions satisfy the 

optimality principle of dynamic programming [47-49].   

The third step is to compute the state transition costs for searching the optimal 

state transition path(s). According to the definitions of stages and states, there may 

exist several different states at the s-th stage that can transit to the same state at the 
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(s+1)-th stage. For instance, four states _1uV , _ 2uV , _ 3uV  and _ 4uV  at the first stage 

can transit to _ 5uV  at the second stage, as shown in Fig. 2. The state transition cost 

from state _u iV  to state _u jV  ( i j≠ ) between two consecutive stages is just the 

identifiability gain ( ) { }( )_ _, ..., ,...k
u j u ig V O V , where ( ) { }_..., ,...k

u iO V  means that 

_u iV  is observed in ( )kO . Then the cardinality of an observation strategy can be 

computed by adding ( )( )0f O  and all the state transition costs along the state 

transition path. Since the goal of the dynamic programming strategy is to search for 

the optimal observation strategies, when there exist multiple transition paths from 

state _u iV  in ( )kO  to state _u jV  in ( )1kO +  ( i j≠ ), the transition path associated 

with the maximum identifiability gain will be chosen; that is, 

( )( ) ( )( ) ( )( )( )_ _
_

1
_ _,

max ,
u j u i u i

u i

k k k
V u j V VV i j

f O g V O f O+

≠
= + , where ( )

_u i

k
VO  is a convenient notation 

for ( ) { }_..., ,...k
u iO V .  

 The dynamic programming strategy above can be mathematically described in Eq. 

(3), and we have implemented this strategy in R (see the “Implementation and 

verification” Section),  

( ) ( )( ) ( )( )
( )( ) ( )( ) ( )( )( )

_

_ _ _
_

0 0(1)
_

1
_,

+ , ,    1, 2,..., ,

max , ,    1, 2,  & 1.

u s

u j u i u i
u i

V u s

k k k
V u j V VV i j

f O f O g V O s S

f O g V O f O k k S+

≠

 = =



= + = ≤ −




    (3) 

It should be stressed that it is not necessary to finish all the S  iterations as shown in 

Eq. (3). Once the cardinality ( )( )_u i

k
Vf O  at the k-th stage becomes equal to or greater 

than the number of unknown parameters uN , the dynamic programming process will 

stop and we get the SIOOR strategies.  
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Results and Discussion 

Overview of the framework 

Observation strategy design is an under-investigated problem for biological 

networks, despite the fact that a variety of biological networks have been actively 

constructed and used in numerous benchside or bedside studies. However, the 

existence of latent variables is a common problem due to cost, technical or other 

limitations, and has significantly hampered our capability to quantitatively investigate 

and understand such networks via, e.g., key network parameter estimation from 

experimental data. Identifiability analysis has long been recognized as a powerful tool 

to assure the accuracy and reliability of parameter estimation techniques; however, 

identifiability-based observation strategy design for biological networks turns out to 

be an unexplored field despite its substantial importance to biological network studies 

like structure identification.  

To the best knowledge of our authors, this is the first study that tackles the 

problem of identifiability-based observation strategy design for biological networks 

described by linear SEMs. First, we introduce several new concepts such as 

cardinality of observation strategy and identifiability gain and mathematically 

formulate the identifiability-based optimal observation problem. Second, for a given 

network structure, the key idea is to turn a minimum number of unobserved nodes in 

the original observation strategy into observed such that the number of non-redundant 

identifiability equations becomes greater than or equal to the number of unknown 

model parameters (i.e., the whole system is at least locally identifiable). By counting 



23 
 

the number of non-redundant identifiability equations, we avoid performing actual 

identifiability analysis on SEM and the proposed method is thus computationally 

efficient. Third, by defining the concepts of stage division and state transition, a 

dynamic programming strategy is proposed to solve the maximization problem 

without involving any time-consuming symbolic computation or matrix operations 

[33, 34]. Fourth, an efficient computing algorithm is proposed to calculate the 

identifiability gain of each unobserved node in a given observation strategy. More 

specifically, the computing process is significantly simplified by counting the number 

of observed nodes that connect with the node of concern via Wright’s paths after 

removing certain edges from the original graph.  

It takes a non-constant time to compute the node identifiability gain in each 

iteration, and the algorithm complexity depends on the number of observed nodes. 

Furthermore, the number of iterations of the dynamic programming algorithm does 

not depend on the total number of nodes, but the number of unobserved nodes in the 

original observation strategy. Let S  denote the number of unobserved nodes and T  

denote the number of observed nodes in the original observation strategy, then the 

computation complexity of the dynamic programing strategy is ( )2O S T⋅ . 

 

Implementation and Verification 

The flowchart of the proposed algorithm for searching the structural 

identifiability-based optimal observation remedy is shown in Fig. 3. We have 

implemented the dynamic programming algorithm in R, and all the source codes and 
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examples are freely accessible at https://github.com/Hongyu-Miao/SIOOR. 

Here we describe several important technical details of the implementation. First, 

at the state transition step, i.e., ( )( ) ( )( ) ( )( )( )_ _ _
_

1
_,

max ,
u j u i u i

u i

k k k
V u j V VV i j

f O g V O f O+

≠
= + , if there 

exist multiple transitions that produce the same ( )( )1kf O + , our current 

implementation chooses only one such transition to update the next-stage observation 

strategy. If needed, the R code can be slightly modified to enumerate all optimal 

observation strategies. Second, since the boundary node set is just a subset of the 

ancestor node set for a given node, the processing of the boundary nodes is 

incorporated into the processing of the ancestor nodes in the current implementation.  

In order to verify the implementation, synthetic DAGs can be generated for this 

purpose, like the two DAG examples in Fig. 4. The first DAG contains 8 nodes and 

13 edges, and it has only a single input node and a single output node. Moreover, the 

first example considers a special initial observation strategy (i.e., all nodes are 

unobserved) to illustrate the capability of the proposed method to design optimal 

observation strategy from scratch. The second DAG has multiple input and output 

nodes, and it considers a more general situation, that is, there exists both observed and 

unobserved nodes in the initial observation strategy. We analyzed the two examples 

using the proposed algorithm, and used the identifiability matrix method [34] to verify 

that the obtained observation remedies do grant (local) identifiability to all model 

parameters . 

 

Applications to real biological networks 

https://github.com/Hongyu-Miao/SIOOR


25 
 

 Since it is impossible to cover all the biological networks in various databases 

and knowledge repositories [16, 17] in one study, we choose the biological network 

associated with influenza A virus [39] as an application example for illustration 

purpose. IAV can infect birds as well as mammals including human, and it has been 

one of the major infectious pathogens that have caused millions of human deaths. It is 

thus of great scientific significance to systematically understand IAV infection and 

immune response mechanisms. Therefore, Matsuoka et al. [50] manually curated a 

comprehensive database, called FluMap, for depicting the influenza virus life cycle at 

the molecular level from over 500 previous publications. There are mainly five 

modules in FluMap: virus entry, virus replication and transcription, post-translational 

processing, transportation of virus proteins, and packaging and budding. Given the 

critical role of virus replication in influenza virus life cycle, numerous experimental 

studies (e.g., [42, 51-53]) have made attempts to understand virus replication 

mechanisms and their clinical implications. Thus, we choose to focus on the IAV 

replication module and analyze its observation strategy.   

Since IAV replication involves many different biomolecules and complex 

interactions, it is usually infeasible to observe all such components and their 

interactions in one study. The question of concern here is how to choose a minimal 

number of nodes in Fig. 5 to observe such that all the model parameters become at 

least locally identifiable. Note that Fig. 5 is derived from Matsuoka’s work [50], and 

consists of 22 nodes and 26 edges; for simplicity, the catalyzers and inhibitors in this 

network are treated as reactants.  
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A relevant concept, called observability, has been previously investigated by Liu 

et al. [38] for complex dynamic systems. Although observability analysis also deals 

with observation strategies considering the existence of latent variables, it is very 

different from identifiability analysis in two aspects: 1) the focus of observability 

analysis is not model parameters but how to infer the unobserved state variables from 

experimentally measured outputs of a system; 2) the graphical approach proposed by 

Liu et al. was developed for the so-called balance equations based on mass-action 

kinetics, the model structures of which are very different from static linear SEMs. 

However, it is of interest to compare the identifiability-based observation results with 

those of the observability-based method. For this purpose, we assume that all the 

nodes in Fig. 5 are initially unobserved. After applying the proposed dynamic 

programing method, we get the optimal observation strategy shown in Fig. 6(a) for 

achieving parameter identifiability. The optimal observation strategy produced by 

Liu’s observability approach is shown in Fig. 6(b). According to Figures 6(a) and 6(b), 

one can tell that the identifiability-based observation strategy contains 20 observed 

nodes and 2 unobserved nodes, while the observability-based strategy contains 3 

observed nodes and 19 unobserved nodes. That is, for the IAV replication module, the 

system internal states can be inferred from a few observed output nodes if a balance 

equation model is used; however, it needs much more observed nodes to achieve 

parameter identifiability if a linear SEM is used. Such an observation is not only due 

to the different goals of observability and identifiability analyses, but also the 

differences in the underlying model structures used in observability or identifiability 
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analyses.  

Moreover, besides the nodes with an out-degree 0 or 1 as mentioned in Lemma 3, 

the identifiability-based observation strategy is also likely to select the nodes with a 

high out-degree as unobserved nodes; for instance, the two unobserved nodes 

viral_RNA and NP(ub) in Fig. 6(a) have the highest out-degrees 2 and 3, respectively. 

This is because, if an unobserved node has a high out-degree, this node is connected 

with many out-neighbor nodes; when its out-neighbor nodes are observed, there will 

exist multiple Wright’s paths that connect such out-neighbor nodes and pass this 

unobserved node, and the corresponding identifiability equations thus contain the 

parameters associated with the out-edges of this unobserved node such that these 

parameters can be identifiable. Interestingly, the observability-based strategy tends to 

select the nodes with a low out-degree as observed nodes, for example, all the nodes 

with 0 out-degree are observed in Fig. 6(b). It is because the nodes with an out-degree 

0 in a DAG are usually the final products of chemical reactions, instead of reactants, 

and thus the internal states associated with other nodes can be easily inferred based on 

the balance equations if all the final products of chemical reactions are measured.  

Conclusions 

 In this study, we address an important problem for biological networks: the 

design of observation strategies for all edge coefficients being identifiable. Linear 

SEMs are used as the mathematical representation of biological networks, which 

allows us to formulate the problem as a constrained optimization problem. A dynamic 
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programming strategy was then developed to solve the constrained optimization 

problem to obtain the optimal observation strategies at the cost of turning a minimal 

number of unobserved nodes into observed. The proposed solution is novel and 

efficient because it avoids both symbolic computation and matrix operations as used 

in other studies, and we provided necessary theoretical justifications for the proposed 

algorithm. As verified by multiple examples (synthetic or real networks), the proposed 

solution is generic and can be applied to an arbitrary DAG (recursive SEMs) without 

bidirectional edges.     

 We also recognize that many real biological networks are dynamic, nonlinear, or 

have feedback loops, which are beyond the capability of the method developed in this 

study. However, this study provides a basis for determining the identifiability-based 

optimal observation remedy for more complex biological networks, and we expect to 

tackle the more challenging problems in the future. 
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Figure List 

Figure 1. Four examples for illustrating the detour-path concept, where observed 

nodes are colored green and unobserved nodes are colored grey. (a) A simple 

detour-path; (b) Two detour-paths ,jk nkP P  share the same collider node kV  and 

upstream nodes ,i oV V ; (c) Two detour-paths ,jk nkP P  share the same collider node 

kV , upstream nodes ,i mV V  and edge jke ; (d) Two detour-paths ,jk nkP P  share the 

same upstream node iV  and downstream node jV . 

Figure 2. Schematic illustration of the stages, states and state transition costs in the 

proposed dynamic programming strategy. 

Figure 3. Flowchart of the proposed dynamic programming algorithm. 

Figure 4. Two DAG examples for algorithm implementation validation, where the 

green nodes are unobserved and the blue ones are observed in the initial observation 

strategy. (a) A DAG with a single input and a single output; (b) A DAG with multiple 

inputs and multiple outputs. 

Figure 5. An application example based on the influenza A virus replication module, 

where all nodes are initially unobserved and in green color.  

Figure 6. The optimal observation strategies for the influenza A virus replication 

module based on (a) identifiability and (b) observability, where the yellow nodes are 

observed and the green nodes are unobserved. 

 



 
 

(c) Two detour-paths        share the same collider 
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(a) A simple detour-path. (b) Two detour-paths        share the same 

collider node    and upstream nodes       . 
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(d) Two detour-paths        share the same 

upstream node     and downstream node    .  
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(a) A DAG with a single input and a single output 

(b) A DAG with multiple inputs and multiple outputs 

The optimal observation remedy is: V1,V2,V4,V6,V8 and any two nodes of V3, V5,V7 

The optimal observation remedy is: V1,V2,V3,V4,V8, V9 and any one node of V5, V6,V7 



 



 

(a) Identifiability-based optimal observation strategy.  

 

(b) Observability-based optimal observation strategy. 
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