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Abstract—The performance of many parallel applications de-
pend on the loop-level parallelism. However, manually paralleliz-
ing all loops may result in degrading parallelization performance,
as some of the loops cannot scale desirably on more number of
threads. In addition, the overheads of manually setting chunk
sizes might avoid an application to reach its maximum parallel
performance. We illustrate how machine learning techniques
can be applied to address these challenges. In this research,
we develop a framework that is able to automatically capture
the static and dynamic information of a loop. Moreover, we
advocate a novel method for determining execution policy and
chunk size of a loop within an application by considering those
captured information implemented within our learning model.
Our evaluated execution results show that the proposed technique
can speed up the execution process up to 45%.

I. INTRODUCTION

Runtime information is often speculative, solely relying

on it doesn’t guarantee maximizing parallelization perfor-

mance, since the parallelization performance of an application

depends on both the values measured at runtime and the

related transformations performed at compile time. Collecting

outcome of the static analysis performed by the compiler could

significantly improve the runtime performance. These captured

information should be analyzed to optimize the application’s

parameters for achieving maximum parallelization. However,

manually tuning parameters becomes ineffective and almost

impossible when too many features are given to the program.

Hence, many researches have extensively studied machine

learning algorithms to optimize such parameters automatically.

For example in [1], nearest neighbors and support vector

machines are used for predicting unroll factors for different

nested loops based on the extracted static features. In [2],

clustering algorithm is implemented for examining different

benchmarks for their similarities to reduce the time needed

for evaluating other similar benchmarks and estimating their

performances. In [3], neural network and decision tree are ap-

plied on the training data collected from different observations

to predict the branch behavior in a new program.

Most of these existing optimization techniques require users

to compile their application twice, first compilation for ex-

tracting static information and the second one for recompiling

application based on those extracted data. Also, none of them

considers both static and dynamic information. The goal of

this research is to optimize an HPX performance by predicting

optimum execution policy and efficient chunk size for its

parallel algorithms by considering both static and dynamic

information and to develop a technique to avoid unnecessary

compilation. To the best of our knowledge, we present a

first attempt in implementing learning model for the loop

parameters prediction at runtime, in which designing these

runtime techniques and capturing learning models features are

automatically performed at compile time.

II. LEARNING ALGORITHM

A. Binary Logistic Regression Model

For predicting optimum execution policy (sequential or

parallel), we implement a binary logistic regression model

[4] for analyzing extracted information from a loop. The

wights parameters WT = [ω0, ω1, ω2, ....] are determined

by considering features values xr(i) of each experiment

X(i) = [1, x1(i), x2(i), ...]
T for minimizing log-likelihood of

the Bernoulli distribution value µ(i) = 1/(1 + e−W
T
x(i)). The

values of ω are updated as follow:

ωk+1 = (X
TSkX)

−1XT (SkXωk + y − µk) (1)

In equation (1), S is a diagonal matrix with S(i, i) =
µ(i)(1 − µ(i)). The output is determined by considering

decision rule as follow:
y(x) = 1←→ p(y = 1∣x) > 0.5 (2)

B. Multinomial Logistic Regression Model

For predicting optimum chunk size, we implement a multi-

nomial logistic regression model [4] for analyzing extracted

information from a loop. The posterior probabilities are com-

puted by using softmax transformation of the feature variables

linear functions as follow:

ynk = yk(φn) =
exp(WT

h
φ(Xn))

∑j exp(WT
j
φ(Xn))

(3)

The cross entropy error function is defined as follow:

E(ω1, ω2, ..., ωk) = −∑
n

∑
k

tnklnynk (4)

, where T is a matrix of target variables with tnk elements.

The gradient of E is computed as follow:

∇ωj
E(ω1, ω2, ..., ωk) = ∑

n

(ynj − tnj)φ(xn) (5)

We use the Newton-Raphson for updating the weights values:

ωnew = ωold −H
−1∇E(ω) (6)

, where H is the Hessian matrix defined as follow:

∇ωk
∇ωj

E(ω1, ω2, ..., ωk) = ∑
n

ynk(Ikj − ynj)φ(xn)φT (xn) (7)

III. PROPOSED MODEL

In this section, we propose a new technique categorized as

follow for applying learning models described in section II.

A. Special Execution Policies and Parameter

We introduce new execution policy and parameter in HPX,

which applying them on the loops makes implementing learn-

ing model on those loops. par if is a new execution policy for

implementing binary logistic regression model for determin-

ing optimum execution policy. adaptive chunk size is a new

execution policy’s parameter for implementing multinomial

logistic regression model for choosing efficient chunk size.

Fig.1 shows two loops defined with these new execution policy

and parameter.



f o r e a c h ( p a r i f , r an ge 1 . b e g i n ( ) , r an g e1 . end ( ) , lambda1 ) ;

f o r e a c h ( p o l i c y . w i th ( a d a p t i v e c h u n k s i z e ) , r an g e2 . b e g i n ( ) ,

r an ge 2 . end ( ) , lambda2 ) ;

Figure 1: Before compilation.

static/dynamic Information

dynamic number of threads∗
dynamic number of iterations∗

static number of total operations∗
static number of float operations∗
static number of comparison operations∗
static deepest loop level∗
static number of integer variables

static number of float variables

static number of if statements

static number of if statements within inner loops

static number of function calls

static number of function calls within inner loops

Table I: Collected static and dynamic features.

B. Feature Extraction

We collect 10 static features at compile time and 2 dy-

namic features at runtime to determine a learning model

that are listed in Table I. Although it may not be the best

possible set, but it is very similar to those considered in

the other works [1], [5], in which their results proved that

set is sufficient to design a learning model. The first two

features are measured dynamically at runtime and the rest

of features are collected at compile time. For this purpose,

we introduce a new class named ForEachCallHandler in the

Clang compiler as shown in fig.2 that is intended to collect

static information at compile time for the loops that use

par if as their execution policy or adaptive chunk size as

their execution policy parameter. Each feature has a member

in that class and they are calculated for each detected loop.

These features are extracted from lambda function of the loop

by applying getBody() on a lambda operator getLambdaCal-

lOperator(). Then, the value of each of them are recorded by

passing lambda to analyze statement. Dynamic features are

also measured by implementing hpx::get os thread count()

and std::distance(range.begin(), range.end()).

For avoiding overfitting problem, we choose 5 critical

features marked with red∗ color in Table I by implementing

Principal Component Analysis Algorithm [4].

C. Learning Model Implementation

1) Implementing binary logistic regression model for deter-

mining efficient execution policy: A new function seq par is

proposed to pass the extracted features for the loops that use

par if as their execution policy. In this technique, the compiler

adds extra lines within a user’s code automatically as shown in

fig.3a that makes runtime to decide whether execute a loop se-

quentially or parallel based on the output of seq par from eq.2,

in which the output 0 results in executing loop sequentially and

the output 1 results in executing loop in parallel. The input of

this function includes the extracted static information that is

initialized during compilation. Number of threads and number

of iterations are also measured and included in that features

c l a s s F o r E a c h C a l l H a n d l e r : p u b l i c MatchFinde r : : Ma tchCa l lback{
v i r t u a l vo id run ( c o n s t MatchF inde r : : Ma tchResu l t &R e s u l t ){

. . .

c o n s t SourceManager *SM = R e s u l t . SourceManager ;

/ / C a p t u r i n g lambda f u n c t i o n from a loop

c o n s t CXXMethodDecl* l a m b d a c a l l o p =

lambda reco rd−>g e t L a m b d a C a l l O p e r a t o r ( ) ;

Stmt * lambda body = l a m b d a c a l l o p−>getBody ( ) ;

/ / C a p t u r i n g p o l i c y

SourceRange p o l i c y ( c a l l −>ge tArg ( 0 )−>ge tExprLoc ( ) ,

c a l l −>ge tArg ( 1 )−>ge tExprLoc ( ) . g e t L o c W i t h O f f s e t (−2) ) ;

s t d : : s t r i n g p o l i c y s t r i n g = Lexer : : g e t S o u r c e T e x t (

CharSourceRange : : ge tCharRange ( p o l i c y ) , *SM,

LangOpt ions ( ) ) . s t r ( ) ;

/ / D e t e r m i n i n g p o l i c y i f a c u r r e n t p o l i c y i s p a r i f

i f ( p o l i c y s t r i n g . f i n d ( ” p a r i f ” ) != s t r i n g : : npos ){
/ / E x t r a c t i n g s t a t i c i n f o r m a t i o n from lambda f u n c t i o n

a n a l y z e s t a t e m e n t ( lambda body ) ;

p o l i c y d e t e r m i n a t i o n ( c a l l , SM) ; }
/ / D e t e r m i n i n g chunk s i z e i f a c u r r e n t p o l i c y ’ s

p a r a m e t e r i s a d a p t i v e c h u n k s i z e

i f ( p o l i c y s t r i n g . f i n d ( ” a d a p t i v e c h u n k s i z e ” ) != s t r i n g : :

npos ){
/ / E x t r a c t i n g s t a t i c i n f o r m a t i o n from lambda f u n c t i o n

a n a l y z e s t a t e m e n t ( lambda body ) ;

c h u n k s i z e d e t e r m i n a t i o n ( c a l l , SM) ; }}}

Figure 2: The proposed ForEachCallHandler.

i f ( s e q p a r ({ f0 , f1 , . . . f n }) )

f o r e a c h ( seq , r a ng e1 . b e g i n ( ) , r a ng e1 . end ( ) , lambda1 ) ;

e l s e

f o r e a c h ( par , r a ng e1 . b e g i n ( ) , r a ng e1 . end ( ) , lambda1 ) ;

(a) After compilation

boo l s e q p a r ( F &&f e a t u r e s ){
r e t u r n p o l i c y c o s t s f n c ( f e a t u r e s , w e i g h t s ( ” w e i g h t s . d a t ” ) ) ;}

(b) Determining execution policy at runtime.

Figure 3: The proposed seq par.

set at runtime. Fig.3b shows the policy determination approach

implemented within seq par for computing cost function by

considering features and weights.

2) Implementing multinomial logistic regression model

for determining efficient chunk size: A new function

chunk size determination is proposed to pass the extracted

features for a loop that uses adaptive chunk size as its exe-

cution policy’s parameter. In this technique, a Clang compiler

changes a user’s code automatically as shown in fig.4a that

makes runtime to choose an optimum chunk size by consider-

ing the output of chunk size determination from eq.3, that is

based on the chunk size candidate’s probability. In addition

to the extracted compile time static information, number

of threads and number of iterations are also automatically

measured and included in this function at runtime. Fig.4b

shows the chunk size determination approach implemented

within chunk size determination for computing cost function

by considering features and weights values.

f o r e a c h ( p o l i c y . w i th ( c h u n k s i z e d e t e r m i n a t i o n ({ f0 , f1 , . . . f n })

) ) , r an ge 2 . b e g i n ( ) , r an g e2 . end ( ) , lambda2 ) ;

(a) After compilation

dynamic chunk s i ze c h u n k s i z e d e t e r m i n a t i o n ( F &&f e a t u r e s ){
r e t u r n c h u n k c o s t s f n c ( f e a t u r e s , w e i g h t s ( ” w e i g h t s . d a t ” ) ) ;}

(b) Determining chunk size at runtime.

Figure 4: The proposed chunk size determination.



test loop ∗itr. ∗opr. ∗flt opr. ∗comp. opr. lvl policy chunk size

1
l1 10 400 200 101 2 par 0.001

l2 20 450 250 150 2 par 0.001

l3 20 502 250 103 2 par 0.001

l4 0.5 550 200 150 1 par 0.1

2
l1 150 350 101 0.5 2 par 0.001

l2 0.1 10050 5000 2505 3 seq 0.1

l3 0.1 25000 3010 1500 3 seq 0.1

l4 50 4000 200 100 1 par 0.01

3
l1 0.5 4504 250 150 2 par 0.01

l2 0.4 3502 200 100 1 par 0.01

l3 2 250 150 103 3 seq 0.1

l4 2.5 350 150 100 3 seq 0.1

4
l1 20 204 100 10 2 par 0.001

l2 30 400 150 10 2 par 0.001

l3 0.3 550 44 20 3 seq 0.1

l4 0.4 450 50 10 3 seq 0.1

5
l1 0.2 4502 150 101 3 par 0.01

l2 0.7 400 300 150 3 par 0.01

l3 0.3 302 20 14 2 par 0.01

l4 0.1 50 20 10 2 seq 1

Table II: Execution policy and chunk size determined by seq par and
chunk size determination implementation. The values of the fields marked
with ∗ are divided by 10

3 because of the limited space.

IV. EXPERIMENTAL RESULTS

In this section, we evaluate the performance of the proposed

techniques over different test cases with different characteris-

tics shown in Table II, using Clang 4.0.0 and HPX 0.9.99 and

on the test machine with two Intel Xeon E5-2630 processors,

each with 8 cores clocked at 2.4GHZ and 65GB.

1) seq par: This function is able to make runtime to

decide whether execute a loop sequentially or in parallel by

considering static and dynamic features of that loop. Fig.5a

shows the execution time for tests with 4 loops per each in

Table II by choosing seq or par as an execution policy of

all of its loops and implementing this proposed technique for

choosing execution policy of those loops. Their determined

final execution policies are included in Table II. Fig.5a illus-

trates that as the execution policy of all of the four loops

of the first test case is determined as par by implementing

this technique, due to the overhead of the policy costs fnc

cost function, manually setting their execution policy as par

resulted in having a better performance. However for the rest

of the test cases, it illustrates that execution policy seq is

determined for some of the loops that cannot scale desirably

on more number of threads, which results in outperforming

manually parallelized code by around 15% − 20%.

2) chunk size determination: This function is able to make

runtime to choose an efficient chunk size for a loop by con-

sidering static and dynamic features of that loop. It should be

noted that the multinomial logistic regression model requires

to know the chunk size candidates for choosing efficient one

among them, which are chosen to be 0.001, 0.01, 0.1, and 0.5

of the number of iteration of a loop in this research. Fig.5b

shows the execution time for tests with 4 loops per each in

Table II by setting chunk size of all of its loops to be one of the

candidates and determining efficient one using this proposed

technique. Their determined chunk size are included in the

last column of the Table II. The overall performance of these

cases show up to 45%, 32%, 37% and 58% improvement over

setting chunks to be 0.001, 0.01, 0.1, or 0.5 iterations.

(a) seq par perfromance evaluation.

(b) chunk size determination perfromance evaluation.

Figure 5: The execution time comparisons for tests with 4 loops per each.

V. CONCLUSION AND FUTURE WORKS

In this paper, we developed new techniques that are able

to implement the binary and multinomial logistic regression

model to determine an optimum execution policy and chunk

size for an HPX loop. These techniques are able to consider

both static and dynamic features of a loop and to implement

a learning technique at runtime to make an optimum decision

for its execution without requiring extra compilation. We

illustrated that the parallel performance of our test cases were

improved by around 15% − 45% using our proposed tech-

nique. These results proved that combining machine learning

technique, compiler and runtime methods helps in utilizing

maximum resource availability for optimizing HPX parallel

performance.
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