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a b s t r a c t

Early and accurate detection of breast cancer is a critical part of the strategy to reduce the morbidity and

mortality associated with this common disease. While current guidelines recommend mammography for

screening, the sensitivity and specificity of mammograms remains less than optimal, especially for

patients with dense breast tissue. Thermography has been explored in the past as an alternative to mam-

mography. Advances in IR cameras that are used to obtain thermal images of the breast as well as com-

putational tools used to accurately model heat transfer within the breast have significantly increased the

accuracy of thermography. The current work reviews the progress that has been made in using thermal

imaging to detect breast cancer over the past three decades and identifies aspects that need further

refinement for it to become a reliable tool to diagnose breast cancer. Recent advances and suggestions

for future work in the field including using advanced simulation methods, inverse modeling, imaging pro-

tocols, and using artificial neural networks to better predict the location of the tumor are also presented.

� 2017 Elsevier Ltd. All rights reserved.
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1. Introduction

The term cancer is used to describe a group of disorders associ-

ated with dysregulated cell growth leading to tumor formation,

invasion into surrounding tissues and spread to other parts of the

body. Some of the most common types of cancer originate in the

breast, prostate, lung, skin and pancreas. The exact reasons for

developing cancer have not been determined [1,2]. However

researchers agree that factors such as genetic predisposition, age,

smoking tobacco, exposure to ultraviolet radiation, unhealthy life-

style, and exposure to carcinogenic agents can significantly increase

the odds of a person being affected by cancer. Between 2008 and

2010, the average annual cost of healthcare for a newly diagnosed

cancer patient in the US was $ 21,222 [3]. The economic impact

due to loss in productivity by cancer in the US was estimated to

be $130 billion in 2009 alone [4]. By 2020 the cost of cancer treat-

ment is expected to reach $158 billion just in the US [5]. Over the

past few decades a large amount of research has emphasized on

improving diagnostic techniques used to detect cancer at an early

stage when treatment can be less expensive and more effective.

Breast cancer is the most frequently diagnosed form of cancer

among women and has the second highest mortality rate after skin

cancer. It is estimated that the lifetime probability of being diag-

nosed with invasive breast cancer among women is 12.3% with

246,660 women expected to be diagnosed with breast cancer in

theUnited States in 2016 [6]. A healthy breast consists of glands that

are connected to the surface of the skin by ducts. The glands and

ducts are surrounded by connective tissue embedded in which are

blood vessels, lymph nodes, lymph channels and nerves. Breast can-

cer can originate in any part of the breastwithmore than 20 types of

cancer having been identified. The most common types of breast

cancer are ductal carcinoma, which originates in the ductal epithe-

lium; and lobular carcinoma, which develops in the glands.

Sensitivity of a diagnostic technique is a measure of the rate at

which a tumor is detected by the technique. Specificity of a tech-

nique refers to the accuracy of a positive diagnosis. Higher the sen-

sitivity, greater is the likelihood of a tumor in a patient being

detected, and higher the specificity, greater is the probability of a

positive diagnosis of being true. A variety of imaging modalities

aimed at improving the sensitivity and specificity for breast cancer

detection have been developed. Mammography however remains

the mainstay of screening for breast cancer. Supplemental screen-

ing and diagnostic techniques for breast cancer detection include

ultrasound, Magnetic Resonance Imaging (MRI), and tomosynthe-

sis. No single imaging modality is capable of identifying and char-

acterizing all breast abnormalities and a combined modality

approach is still necessary.

Mammography it the most common screening technique which

detects the presence of a tumor using low energy X-rays to image

the internal anatomy of the breast. Mammography detects masses

in the breast and calcifications, which may indicate the presence

of a tumor. A randomized trial with 134,867 women aged between

40 and 74 showed that regular screening resulted in a 31% reduction

in mortality from breast cancer [7]. However, the rate of false posi-

tives usingmammograms is highwith a 10 year study showing that

the likelihood of a false positive diagnosis for women after getting a

mammogram every year for 10 years to be 49.1% [8]. Mammogra-

phy is also known to be less sensitive for women with dense breast

tissue, since the cancer can be obscured or masked by the normal

surrounding fibroglandular tissue; the greater the ratio of fibroglan-

dular tissue to fat in the breast, the greater the density of the breast.

Approximately 50% of women undergoing screening mammogra-

phy have dense breasts. The proportion of the glandular tissue is

higher for younger women and fat content in the breast increases

aswomenget older. Kerlikowske et al. [9] studied the effect of breast

density and age on the sensitivity of mammography and found that

the technique has the high sensitivity for women 50 years or older

due to increased fatty tissue content while the sensitivity was rela-

tively lower for women under 50 due the denser breast tissue.

MRI uses a strong magnetic field along with pulsing radio waves

to get a high resolution image of the breast at different cross-

sections. A contrast agent is added to help better image the breast.

This procedure is used to screen women who are at a high risk of

developing breast cancer or to better image tumors found in other

tests [10]. This procedure is very expensive and time consuming

and hence is only used as an adjunct to mammography for high risk

asymptomatic and symptomatic women. Screening breast MRI has

been found to be more sensitive but less specific than mammogra-

phy for the detection of invasive breast cancers in high-risk women

in both retrospective and prospective studies [11,12].

Ultrasound or sonography detects the presence of tumors by

bouncing sound waves of the surface of the tissue. A transducer

is used to interpret the reflected sound waves in order to deter-

mine the boundaries of different types of tissue. This technique is

normally used to further investigate suspicious areas of the breast

found in the mammogram or during a breast exam. It can help dis-

tinguish between cysts (non-tumorous sacks filled with fluid) and

solid masses. It is also used for supplemental screening in subsets

of patients with dense breasts. When used as a supplement to

mammography, ultrasound can improve sensitivity of screening

at the expense of decreased specificity and increased biopsy rate

[13]. Ultrasound is an attractive supplement to mammography

because it is widely available, relatively inexpensive and does not

inconvenience the patients.

Digital breast tomosynthesis, also known as 3D mammography,

provides three-dimensional images using a moving X-ray source

and digital detector. Tomosynthesis has been approved in the Uni-

ted States for breast cancer screening, when used in combination

with mammography. Tomosynthesis, when used in combination

with mammography have been shown to modestly increase the
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cancer detection rate and decreases false positives mammography

readings, when compared to mammography alone [14]. Tomosyn-

thesis is typically performed in conjunction with conventional

mammogram, which increases the patient radiation exposure by

two fold. However, the increased total dose is still below the FDA

safety limits. Software has been developed to reconstruct the dig-

ital mammogram from the 3D dataset, lowering the radiation dose

to levels comparable to a conventional mammogram.

Over the last few decades, the need for cheap and effective diag-

nostic techniques to screen and diagnose breast cancer have led to

the development of various new technologies. Three recent tech-

niques that have emerged are electronic palpation imaging, electri-

cal impedance scanning (EIS), and thermal imaging. Electronic

palpation imaging (EPI) detects the presence of a tumor in the breast

by generating a map of the rigidity of the breast tissue by imposing

pressure waves and observing the resultant displacement of differ-

ent regions of the breast [15]. The second method that has been

developed over the years is electrical impedance scanning which,

as the name suggests, measures the electrical impedance of the

breast to detect the presence of tumors. The electrical conductivity

of the tumor is higher than that of healthy breast tissue and there-

fore, the electrical impedance is lower than the healthy tissue. Ther-

mal techniques such as Liquid Crystal Thermography and Infrared

(IR) imaging rely on surface temperature readings of the breast.

Since tumors are clusters of cells whichmultiply in an uncontrolled

manner, themetabolic heat generation rate and the blood perfusion

rate of the tumor are higher than normal tissues. The increased heat

generation at the tumor is dissipated to the surrounding tissue and

can be seen as a temperature spike at the surface of the breast.

Table 1 presents a comparison of the different imaging techniques

for breast cancer.

Analyzing the change in the temperature at the surface of the

breast can help predict the size and location of the tumor. Liquid

crystal thermography was initially considered as a viable

technique to measure the surface temperature of the breast with a

sensitivity of about 0.1 �C. Liquid crystal thermography was widely

used mainly due to the higher costs associated with non-contact IR

camera. Themajor drawbacks of liquid crystal thermography are the

need for contact between the breast and a filmwith the liquid crys-

tals; the need for external light sources, that indeed can cause bias in

the colors perceived [16]. Infrared thermography used an infrared

camera tomap the temperature of the breast to predict the presence

of a tumor in the breast. This technique is superior to liquid crystal

thermography since it does not require direct contact with the

patient and does not introduce any bias as a result of the contact.

With infrared cameras becoming dramatically better over the past

few decades, infrared thermography has increasingly become an

active field of research.

Vreugdenburg et al. [17] conducted a systematic study of the

published clinical results using infrared thermography, electrical

impedance scanning and electronic palpation imaging by identify-

ing 5441 studies and reviewing the results of 60 publications. In

case of infrared thermography it was seen that the sensitivity of

infrared thermography was between 0.71 and 0.94 (with one out-

lier). However, the specificity of the technique was seen to be poor,

varying from0.14 to 0.85. Fig. 1 shows the sensitivity and specificity

reported by some of the studies reviewed. The heterogeneity in the

results reported was attributed to the wide range of devices used in

these studies and the differences in the algorithm used to classify

the IR thermograms as normal or diseased. Broadly, there is an

inverse relationship between the sensitivity and specificity for IR

thermography. Studies reporting high sensitivity appear to have a

low threshold for classifying a thermogram as abnormal and there-

fore have poor specificity (e.g. Parisky et al. [18]), Tang et al. [19],

Arora et al. [20]). Similarly, studies where the threshold for classify-

ing a thermogram as abnormal is high, the sensitivity reported is

low while the specificity is high (e.g. Kontos and Wilson [21]).

2. Breast Thermography

2.1. Infrared imaging

Infrared thermography works on the principle of measuring the

radiation emitted by a surface to determine its temperature.

Table 1

Comparison of imaging techniques for breast cancer.

Technique Mechanism of

operation

Sensitivity Specificity Cost Method Cause of discomfort Recommended for

Mammography Low energy X-rays 84% 92% Moderate Compressed breast Pain from breast

compression

Screening and diagnostic

evaluation

Magnetic

Resonance

Imaging

(MRI)

Magnetic field and

pulsating radio

waves

90% 50% High IV contrast injected and

dynamic images

obtained

Claustrophobia

Holding still and lying

prone for a long exam

Possible reaction to con-

trast agent

Contrast cannot be used

in patients with renal

insufficiency

Screening in women

at high risk for breast

cancer

Diagnostic evaluation

Positron

Emission

Tomography

(PET)

Gamma rays

emitted by tracer

substance

90% 86% High Small amount of

radioactive tracer

injected in the body

No significant discomfort Determine if cancer has

spread to other parts of

the body

Ultrasound High frequency

sound waves

82% 84% Low Hand-held or automated

ultrasound device

No significant discomfort Screening in women

with dense breasts

Diagnostic evaluation

Tomosynthesis

(3D

mammography) Low energy X-rays 90%

92% Moderate Compressed breast Pain from breast

compression

Screening and diagnostic

evaluation

Electronic

Palpation

Imaging (EPI)

Pressure changes 84% 82% Low Hand-held electronic

tactile sensor

Small localized pressure Follow-up after abnormal

finding

Electrical

Impedance

Scanning

Electrical

impedance

87% 82% Low Electrodes attached to

skin

Small alternating currents

applied to the electrodes

Follow-up after abnormal

finding
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According to Planck’s radiation law, any object above absolute zero

temperature emits electromagnetic radiation whose spectrum and

intensity is a function of the temperature of the body. The intensity

of radiation (I) corresponding to a wavelength k that an object at a

temperature T emits is given by

Iðk; TÞ ¼
2phc2

k4
ðe

hc
kkT � 1Þ

�1
ð1Þ

where h is the Planck constant, c is the speed of light in vacuum, and

k is the Boltzmann constant. For an object at room temperature,

most of the radiation emitted is in the infrared spectrum. Therefore

by measuring the infrared radiation that an object emits, its tem-

perature can be determined. The human body at normal tempera-

tures mainly emits 10 lm wavelength with 90% of the total

radiation in the 6–14 lm wavelength band.

In order to detect the infrared radiation the cameras need spe-

cialized lenses and sensors. Since glass that is used in traditional

cameras absorbs infrared radiation, the lenses used in IR cameras

are made of IR transparent materials such as Germanium or Sap-

phire. The sensors used to record the IR images are broadly classi-

fied into thermal detectors and quantum detectors. Uncooled

microbolometers are the most common type of thermal detectors

and are made of metal or semiconductor materials. These detectors

have a broader IR spectral response but are significantly slower and

less sensitive than quantum detectors. Cameras using uncooled

sensors are smaller since they do not require a self-contained cool-

ing system and thereby less expensive. The detectors in the

advanced cameras are cooled to reduce the IR radiation emitted

by itself that would otherwise affect its accuracy. The sensors are

typically cooled to a temperature of 60–100 K using a various tech-

niques including rotary sterling engine cryo-coolers and expansion

of pressurized gas. The materials used to make the cooled sensors

are narrow band gap semiconductors that are capable of detecting

long infrared radiation. Some of the commonly used materials

include Indium antimonide, Indium arsenide and mercury cad-

mium telluride.

The sensitivity of IR cameras to temperature variations has con-

sistently been improving over the last four decades. Early genera-

tion IR cameras had a temperature sensitivity of about 0.3 K.

Under such sensitivity, the most subtle temperature variations

were not captured and the heat pattern obtained lacked fine

details. With the improvement of IR detectors, modern IR cameras

can achieve sensitivities below 0.02 K (20 mK). Such high degree of

accuracy was possible due to the development of cooled quantum

detectors (InSb). This dramatic improvement in sensitivity has

allowed for the capture of more detailed thermograms that are

able to detect small, localized temperature variations. Fig. 2 chron-

icles the improvement in the sensitivity of IR cameras over the last

four decades.

Modern infrared cameras require a more stringent control on

the environmental conditions to accurately measure temperature

differences as low as 20 mK. Ng [22] recommends to minimize

the sources of IR interference, such as windows; avoid sources of

light such as incandescent, halogen or sunlight. A plain, non-

reflective background is recommended and IR reflective surfaces

should be covered to minimize undesired reflections.

Factors such as the emissivity of the skin can affect the temper-

ature measured by the infrared camera. As infrared cameras

became popular in the 60s, multiple studies focused on the emis-

sivity of skin at different wavelengths. Early studies by Hardy

[23] as well as subsequent studies conducted by Watmough and

Oliver [24] measured skin emissivity at different infrared wave-

lengths. They concluded that the emissivity of the skin is indepen-

dent of the wavelength and equal to 0.989 ± 0.01. Similar findings

were also reported by Steketee [25] and Patil and Williams [26].

Therefore as long as standard operating procedures are followed,

the temperature recorded by the infrared camera would be an

accurate measurement of the actual skin temperature.

2.2. IR thermography to detect breast cancer

Lawson [27], in 1956 was one of the first researchers to report

the use of surface temperature measurements as a possible tool

for breast cancer diagnosis. Later in 1963, Lawson and Chugtai

[28] used IR scanners to determine that the surface temperature

of the region surrounding a tumor is about 2 �C higher than the

surface temperature of the same region on the contralateral

Fig. 1. Comparison of sensitivity and specificity from different clinical trials adapted from [17].

Fig. 2. Improvements in IR camera sensitivity over the years.
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healthy breast. Davison et al. [29] used liquid crystal thermography

to measure the temperature of the breast of patients with cancer.

They found that liquid crystal thermography and IR thermography

produce similar results. In 1980, Gautherie [30] measured the

internal temperature along a breast with a cancer tumor using a

fine needle thermocouple. He found that the presence of a tumor

resulted in a localized peak in tissue temperature. The temperature

in the tumor was approximately 3 �C higher than the surface tem-

perature at the same axis. These preliminary results showing a

relationship between the temperature profile at the breast surface

and presence of a malignant tumor lead to breast thermography

being approved by the FDA as an adjunct tool to mammography

for breast cancer detection in 1982.

During early stages of infrared thermography, the rate of true

positive diagnoses was as low as 41%. This low accuracy was pri-

marily due to the lack of standards concerning measuring condi-

tions. Besides, most clinicians that used IR thermographs were

not adequately trained in using IR cameras [31]. It wasn’t until

early 2000s that improvements in infrared cameras, and rapid

advances in computing and simulation lead researchers to once

again explore thermography as a screening tool to detect breast

cancer. A more detailed historical perspective of IR thermography

can be found in [31–33,22].

When there is an abnormality in the breast tissue such as a

malignant tumor, fibrosis, an infection or an inflammation, there

is an increase in the temperature at the surface of the breast.

Fig. 3 shows the thermograms of three patients with (a) healthy

breast, (b) early stage cancer in the right breast and (c) advanced

cancer in the left breast [34]. Temperature in the vicinity of the

affected tissue is about 2.5 �C higher than for normal tissue (con-

tralateral unaffected region). The surface temperature distribution

of tumorous breasts is affected by the size, position, depth and

stage of the tumor. Hormone intake (contraceptive), pregnancy

and lactation also have an effect on the breast temperature. In gen-

eral, the tumor is more easily identified when it is shallow. For

deep tumors, the surface temperature variation can be very subtle

with respect to a healthy breast. For this reason, highly accurate

infrared cameras as well as standardized techniques for IR screen-

ing are required [35].

Gautherie and Gross [33] reported the study of 1245 patients

who were detected to have abnormal IR image profiles. They

observed that IR imaging, besides to predict cancer, can identify

rapidly growing neoplasms. Gautherie [32] found that 35% of the

patients with abnormal thermograms developed cancer during

the next 5 years; therefore they stated that IR thermography can

predict the development of breast cancer. However, through IR

thermograms is very difficult to distinguish between breast cancer

and inflammation zones.

2.2.1. Prognostic features for breast cancer

To diagnose breast cancer using IR thermography, specific fea-

tures on the surface temperature of the breasts are identified.

The most common features are highly asymmetric temperature

distributions between breasts, hyper thermic vascular patterns,

localized hot spots, atypical complexity of the vascular pattern,

temperature differences in the entire breast of more than 2 �C

and areolar and peri-areolar heat patterns.

In thermography, themagnitude of the temperate gradients used

to distinguish between benign andmalignant tumors. High temper-

ature gradients (>1 C) are indicators of malignant tumors and lower

temperature gradients are associated with benign breast diseases.

Besides the diagnosis of breast cancer, it has been demonstrated

that thermography can detect angiogenesis due to the increased

demand of blood to supply the new vessels and the increased

metabolic activity. Guidi and Schnitt [36] conducted an study of

patients with pre-invasive breast cancer. The authors reported that

women with increased number of microvessels in the breasts have

up to seven times greater risk of developing breast cancer as com-

pared with women with normal microvessel density.

Gamagami [37] conducted a clinical study on patients with

breast cancer using mammography and IR thermography. He

reported that hypervascularity and hyperthermia can be found in

86% of non-palpable breast cancers. The author also noted that

15% of non-palpable cancers went undetected by mammography,

but detected by IR thermography.

Head et al. [38] conducted an study on 126 breast cancer

deceased women, 100 living breast cancer patients and 100 healthy

patients. From the group of 126 deceased women, 88% presented

abnormal thermograms; from the group of 100 surviving cancer

patients, 65% presented abnormal thermograms and only 28% of

healthy women presented abnormal thermograms. The most rele-

vant prognostic feature from this study is that breast cancer

patients with abnormal thermograms have fast growing tumors.

Gautherie and Gross [33] conducted a clinical study on near

58,000 patients. The study took place from 1965 to 1977. From

all the patients, 1527 women had thermograms stage Th III. The

stages in the study range from Th I to Th V, according to an increas-

ing probability of cancer. Each stage is identified by thermos-

vascular patterns and areas of hyperthermia. In the case of Th III

thermograms, these represent suspicious, but not conclusive ther-

mograms. The study focused on patients with Th III thermograms.

Of the 1527 Th III patients, 784 had no abnormal physical,

mammographic or echo graphic findings; 461 had conditions diag-

nosed as benign disease, mainly cystic mastopathy; and 282 had

conditions confirmed as cancer. From the 784 apparently normal

patients, 177 were diagnosed with cancer within the first two

years after the initial examination. Additional 121 cases were

Fig. 3. Thermograms of (a) normal breast, (b) with early stages of cancer in the right breast, and (c) advanced cancer in the left breast [34].
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found in the next two years (4 years after the initial examination).

In total, 38% of this group was diagnosed with cancer within

4 years after the initial examination. The most important observa-

tion from this study is that healthy patients with abnormal ther-

mograms are at a higher risk of developing cancer.

Amalu [39] conducted a review of the clinical application of

breast thermography for the diagnosis of breast cancer. IR ther-

mography has a significant prognostic relevance in breast cancer

because it is related to tumor growth, tumor size and the malig-

nancy of the tumor.

2.3. Standards and operating protocols

A patient’s thermogram is significantly affected by the many

factors both prior to the examination and during the examination.

The lack of standards and protocols was attributed to be one of the

primary reasons for the poor results in the early thermography

studies. Ng [22] provided a detailed account of the standards that

should be followed before a patient undergoes an examination,

the testing procedure and environment during the examination

and the post processing of the obtained thermograms. Some of

the salient points from the work are given below.

� Patient preparation: The food the patient consumes prior to

the examination can alter the metabolic rate of the body leading

to variations in the observed thermograms. Large meals, exces-

sive consumption of beverages such as tea or coffee as well as

smoking and alcohol consumption should be avoided prior to

an examination. Other factors that may affect the thermogram

include sunbathing- up to five days prior to the examination

and application of cosmetics, lotions or antiperspirants.

� Examination environment: The patient should be in the exam-

ination room or a similar room 15 min prior to examination in

loose fitting cloths to acclimatize to the environment. Ring

[40] recommended that the examination room is 3 � 4 m with

a carpeted floor. The room temperature should be maintained

between 18 and 25 �C with a relative humidity between 40%

and 75%. Heat sources such as the computers and cameras as

well as heat sinks such as air conditioning ducts or water out-

lets should not be located near the examination area. Windows

in the roommust be shielded to prevent external radiation from

entering the room. Low IR emitting light sources such as flores-

cent tubes or LED lamps must be used for lighting.

� Imaging standards: The standards that need to be used during

thermal imaging of a human subject is given by Ammer and

Ring [41]. Thermal imaging cameras used to obtain the thermo-

grams have a startup time before the images become stable. It is

recommended that the camera run for at least 15 min before

the start of the examination. Capture masks should be used to

as references and should be 1/3 the width and 2/3 the height

of the target size. The position of the camera relative to the sub-

ject should be clearly indicated if images from multiple angles

are taken and the patient should not move while images from

multiple angles are obtained. The detector used in the camera

should have a thermal resolution of at least 100 mK at 30 �C

and a special resolution of 1 mm � 1 mm. The thermograms

used should have a minimum resolution of 120 � 120 though

a higher resolution would be preferred.

� Post processing: The software that are used in conjunction with

the thermal imaging camera should comply with a firm set of

standards so that the images are not modified or the contrasts

enhances in an arbitrary manner. Ring [40] proposed the stan-

dards that need to be implemented for obtaining thermograms.

The algorithms used to detect hot spots or analyses the asymme-

try between the beasts and identify suspect regions need to be

standardized.

Typically, thermograms of three different positions are cap-

tured, one frontal and two laterals. In order to better identify the

presence of a tumor and its location, thermograms of the entire

breast should be obtained.

An area where medical opinion is divided is the role of artificial

implants in causing cancer [42,43]. While some research has

shown that silicone implants have no role in the formation of can-

cer, others believe that women with implants are at an increased

risk of suffering from Anaplastic Large Cell Lymphoma (ALCL). In

any case, developing an effective screening technique to detect

breast cancer for patients with breast implants is required. Screen-

ing for breast cancer using mammography for patients with

implants is not ideal as (i) it may lead to damage to the implant

and (ii) the tumor may hide behind the shadow of the implant

and not be detected. Using thermography for screening women

with implants can be effective as the implants are normally placed

at the base of the breast and do not significantly affect the heat

transfer in the rest of the breast.

2.4. Image processing and automation

Lipari and Head [44] developed image processing techniques to

obtain asymmetry in the heat pattern observed from high resolu-

tion thermograms. They computed the differences in temperature

between the two breasts. They used uncooled IR cameras with a

thermal sensitivity of 0.039 K. The thermograms were taken from

the front of the breasts in order to reduce perspective and scale dis-

tortions. They segmented the breast in different quadrants to com-

pare the differences in temperature between the contralateral

breasts. They noted that the accuracy of diagnosis using IR ther-

mography can be significantly affected due to variation in interpre-

tation of the result by the operator. Therefore in a subsequent

publication, Head et al. [45] automated the algorithm to compare

the temperature profile on contralateral breasts. By comparing

statistics of the entire breast with those from different quadrants

of the breasts, the accuracy of the technique improved. However,

from their results it is not clear how the image processing helped

in the diagnosis of cancer because no significant differences in their

indicators were observed between tumorous and healthy breasts.

They claimed that their technique reduced the number of persons

that must be screened with other techniques by determining if the

abnormality level of the thermograms.

Qi and Head [46] and Kuruganti and Qi [47] proposed an auto-

matic approach that included automatic segmentation and pattern

classification of the thermograms to obtain the most relevant fea-

tures. The pixel distribution is analyzed for each of the regions in

the two different breasts. The procedure is able to identify abnor-

malities in the temperature distribution. Jakubowska et al. [48]

and Wang et al. [49] studied the thermal signature of healthy

breasts and those with malignant tumors. Irvine [50] explored

the use of Automated Target Recognition as a possible technique

to improve the diagnosis of breast cancer. In a recent publication,

Borchartt et al. [51] presented a review of the advances in ther-

mography using image processing techniques to aid in breast can-

cer diagnosis.

2.5. Dynamic IR thermography

Dynamic IR breast thermography is the process of capturing IR

thermograms for a given time. Typically, dynamic IR thermograms

are captured after subjecting the breasts to a cold stress. Usually

the duration of the cold stress is short, lower than 5 min, and with

temperatures ranging from 20 �C to 5 �C. Lower cooling tempera-

tures increase the temperature contrast, i.e. the difference in tem-

perature between the breast with a malignant tumor and the
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contralateral healthy breast. However, cooler temperatures also

increase the patient discomfort due to prolonged exposure of sub

ambient temperatures. In most of the cases the cold stress is

achieved by directing cold air to the breasts. The aim of blowing

air is to reduce the temperature variations in the breasts. After

applying the cold stress, IR thermograms are captured in the called

recovery phase. With transient thermography, the heat patterns

due to the tumor are enhanced and the tumor thermal visibility

improves.

Ohashi and Uchida [52] obtained IR thermograms on 728

patients with breast cancer. The thermograms were obtained using

steady state and dynamic thermography. For the steady state cases,

the ambient temperature was maintained at 21 �C. In the transient

cases, the thermal stress was introduced by blowing air with an

electric fan during 2 min; the thermograms were captured 15 s

apart during 20 min. They reported that the accuracy of breast can-

cer detection improved from 54% using steady state thermography

to 82% using dynamic thermography.

2.5.1. Commercial diagnostic tools using dynamic IR imaging

The Sentinel BreastScanTM is a commercial Infrared system for

the adjunct diagnosis of breast cancer. For the exam, the patient

is disrobed from the waist up and the arms placed on an armrest.

Then, cool air is directed to the breasts for 3–4 min. During the

exam, the patient can see the dynamic IR thermograms on a dis-

play. Once the cool air is turned off, the exam is complete and

the system will estimate the risk of breast cancer. The system

determines the magnitude of the asymmetries on temperature dis-

tribution between both breasts and based on such value, generates

a report with the estimation. The sensitivity of the IR camera used

is 0.08 �C.

Another commercial system is the FDA cleared NoTouch

BreastScan [53]. This system uses two infrared cameras with sen-

sitivity of 0.05 �C, each directed to one breast. The breasts are

cooled by 3–4 �C using air while IR thermograms are being cap-

tured. The exam takes between 5 and 6 min. The software of the

NoTouch BreastScan is based on Artificial Neural Networks (ANNs).

The software compares the temperature distribution with known

heat patterns for cancer tumors and provides a diagnosis based

on such comparisons. The technical specifications of the Sentinel

BreastScan and the NoTouch BreastScan commercial products are

given in Table 2.

2.5.2. Clinical studies using dynamic IR thermograms

Parisky et al. [18] captured IR transient thermograms of 875

biopsied lesions (187 malignant and 688 benign) in 769 subjects

using the Sentinel BreastScanTM. The IR study was conducted in

one breast at a time. First one of the breasts was cooled with a flow

of cold air while the other was covered; then, the procedure was

repeated for the other breast. Thermograms were captured during

the cooling step. Results indicated 97% sensitivity (positive diag-

noses that are actually positive) and a negative predicted value

of 95% (negative predictions that are actually negative). For all

875 lesions, the sensitivity and negative predicted values were bet-

ter for subjects with denser breast (younger patients) tissue than

for those with less dense fatty breasts. In the study conducted by

Parisky et al. [18], the location of the suspected region to be biop-

sied was known prior the IR study. This may have biased the inter-

pretations, leading to high prediction rates. Arora et al. [20]

conducted transient IR study on 92 patients with either suspicious

mammograms or ultrasound images. The authors used the Sentinel

BreastScanTM system. More than 100 temperature images were cap-

tured during the cooling phase. Results indicated that 58 of the 60

malignant tumors were predicted, achieving a sensitivity of 97%.

The sensitivity rate could be very high because the authors consid-

ered any slightly abnormal temperature distribution to indicate

the presence of a malignant tumor.

Wishart et al. [54] used the Sentinel BreastScanTM and the

NoTouch BreastScan software to analyze thermograms of 100

patients with a total of 106 biopsied tissues. 65 of the tumors were

malignant and 41 benign. In their study, the sensitivity of the Sen-

tinel BreastScanTM was 53% and that of the NoTouch BreastScan

software was 70%. They included the diagnosis of a radiologist in

the study, which had a sensitivity of 78%. Although the diagnosis

provided by the expert radiologist was better than using the

NoTouch software, the authors recognized the great improvement

of the NoTouch software over previously used techniques. The

authors identified the need for future research in neural network

systems for breast cancer diagnosis. Collet at al. [55] used the

NoTouch BreastScan system to study 99 patients for whom biopsy

was recommended. There were a total of 105 biopsied tissues, 33

malignant and 72 benign. The sensitivity reported was 78.8%. They

claim that this high value may be biased because the IR study was

conducted after the biopsy results were disclosed.

2.6. Comparison between steady state and dynamic IR thermography

Dynamic thermography increases the thermal contrast between

healthy tissue and that with a malignant tumor as compared to

steady state thermograms. However, the procedure still is not stan-

dardized and the cooling time and temperature are not consistent

between the different studies. This may lead to the high variation

in sensitivities reported between different works. Another concern

in dynamic thermography is the patient discomfort due to the

cooling stress, which is typically between 2 and 6 min at tempera-

tures below 15 �C. Dynamic thermography was introduced because

the sensitivity of IR detectors was lower than 50 mK and the subtle

temperature variations could not be captured. With modern IR

detectors, which have sensitivities higher than 20 mK, the subtle

temperature variations can be accurately captured. Studies evalu-

ating steady state thermography using high sensitive IR detectors

are needed to reassess the limits of steady state thermograms

and to clarify whether dynamic thermography is required or

steady state thermography is capable of detecting malignant

tumors.

3. Numerical simulation of cancer tumors

The interaction of tissue with nerves veins and arteries, creates

a non-homogeneous complex morphology. Veins and arteries

transport blood which transfers heat to the tissue. The presence

of tumors, they create isolated regions with different thermal char-

acteristics. To model tissue, scientists have proposed various math-

ematical models to capture the behavior of this complex material.

Some of the prominent models that have been proposed are the

counter current model, the dual phase lag model and the radiative

model. The most commonly used bioheat equation was developed

Table 2

Comparison between the Sentinel BreastScan and the NoTouch BreastScan.

Feature NoTouch Breast Scan Sentinel BreastScan

Temperature sensitivity (�C) 0.05 0.08

IR camera resolution (pixel) 640 � 512 320 � 240

Number of IR cameras 2 1

Wavelength range (lm) 3.5–10.5 7–12

Transient IR Yes Yes

Cooling method Cold air Cold air

Cooling time (min) 5–6 3–4

Analysis time (min) Immediate 4–5

Artificial intelligence Yes Yes
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by Pennes [56] in 1948 by observing the human forearm. It is a

modified transient heat conduction equation which accounts for

the metabolic heat generated within the tissue and the heat trans-

fer between the tissue and the blood. The model assumes that heat

transfer between tissue and the blood only takes place in the cap-

illaries and not in the larger arteries/veins. The capillaries act as a

heat source or heat sink depending on the ambient temperature of

the tissue. In case of muscles doing work, the excess heat gener-

ated is removed by the blood whereas the capillaries act as a heat

source in dormant regions like the breast. The Pennes’ bioheat

equation is given by,

qtct
@T t

@t

� �

¼ r � ðktrT tÞ þxbcbðTa � T tÞ þ qm ð2Þ

where q; c and k stand for density, heat capacity and thermal con-

ductivity respectively. The subscripts t; b and a stand for tissue,

blood and artery. The blood perfusion rate,x is the volumetric flow

rate of blood for a unit volume of tissue and qm is the metabolic heat

generation rate. The model proposed by Pennes has been exten-

sively studied over the years and the main criticisms regarding

the model are [57] – (i) combining the local effects with like heat

generation, storage and diffusion with global effects such as blood

perfusion and convection in a control system is not accurate, (ii)

considering distinct temperatures of the tissue, blood inlet and out-

let at the same point is incorrect. Various other models have been

developed over the years that considered more complex formula-

tions in order to model different phenomenon such as hypothermia.

Bhowmik et al. [58] reviewed the prominent bioheat transfer mod-

els and their relevance to various applications.

The counter current model was initially proposed by Mitchell

and Myers [59] and other researchers have subsequently devel-

oped variation of the model [60–63]. The model postulates that

heat transfer between the body and the environment is best mod-

eled as a cumulative effect of the counter current heat exchange

process between the arteries and veins, and heat lost from the

body due to convection, radiation and evaporation. The model by

Mitchell and Myers was valid for sections of the body where the

vessel structure was simple and the blood flow rate was low like

the extremities of the body. Weinaum et al. [61,62] refined the

model by classifying tissues into three categories based on the

thermal interaction between the tissue and the blood vessel. The

three types of tissue are: (i) deep tissue layer, (ii) intermediate

layer, and (iii) cutaneous layer. While the model represents the

thermal interaction between the tissue and the blood vessels well,

it is inherently complex since the numerical solution to the model

is obtained by solving a distinct equation for each of the tissue lay-

ers coupled by common boundary conditions between two adja-

cent layers.

With the advent of modern thermally driven medical proce-

dures such as cryosurgery and treatments using lasers, bioheat

models that accurately depict temperature fluctuations in the body

when subjected to a pulse of heating or cooling loads have been

developed. The need for a new model for such applications arises

since the continuum based models (like Penne’s bioheat equation

and countercurrent model) assumes that a thermal disturbance

instantaneously propagates throughout the domain while it has

been experimentally shown that biological tissue exhibits non-

Fourier like behavior (Roemer et al. [64] and Mitra et al. [65]).

The duel phase lag model was developed to model highly transient

systems where the Fourier’s law is not valid by accounting for the

phase lag as a result of the thermal inertia and microstructural

interactions.

Radiation based models have also been developed to better

understand the effect of irradiation on the body. Lasers pulses over

a short duration have been used as a diagnostic tool as well as for

certain forms of treatment such as eradication of cancerous tissue

and benign tumors. Of the total intensity of laser incident on the

body, a part of it gets diffused, and the rest is transmitted through

the tissue collimated. As would be expected, the intensity of the

collimated light reduces as the distance from the boundary where

laser is incident increases. Van-Gemert [66] showed that light dif-

fuses in the forward direction and can be estimated using a

Henyey-Greenstein [67] or Legender decomposition function

[68]. Therefore by using a radiation based bioheat model, the dis-

tribution of heat flux as a function of depth from the incident sur-

face and radial distance from the incident location can be obtained.

Another important aspect of the Pennes’ bioheat model is that

the temperature is independent of arteriovenous structure. At the

present, the effect of the location of arteries and veins on the tem-

perature distribution of breast cancer is an unexplored field.

However, various studies provide a first insight on the thermal

interaction between arteries and veins with tissue. Weinbaum and

Jiji [63] indicated that the blood flow in the vessel induces a con-

vective heat transfer. At the same time, heat travels through the

vessels and tissue by conduction. The anatomical structure consists

on tissue with artery and vein pairs branching. The blood flow

direction is opposite in the artery and veins. The thermal interac-

tion between vessels and tissue is more significant in the arteriove-

nous pairs relative to the smaller transverse arteries and veins. The

authors indicated that temperature differences of vessels and tis-

sue could be less than 0.2 �C at any location.

Other studies have shown the effect of the blood flow rates and

vessel size on the temperature distribution. Chato et al. [69] theo-

retically analyzed heat transfer between artery and veins in a

countercurrent parallel flow. Heat transfer coefficients were

defined at the surface between the arteries and veins, and the

blood flow varied along the axial direction. It was found that the

effect of the heat transfer between arteries and veins was minimal

at small vessel diameters (due to reduced heat transfer area) and at

higher flow rates (superior convective heat transfer). Charny and

Levin [70] analyzed the heat transfer in an arteriovenous network

with nine branches that extended over the tissue. The theoretical

analysis accounted for the countercurrent flow between the ves-

sels and tissue. The tissue also transferred heat with the artery

due to capillary perfusion. Also, a metabolic heat generation was

included. Thermal equilibration occurred at 43 mm from the major

vessels. At this distance the vessels diameters were less than

100 lm. The countercurrent heat transfer decreased the tissue

temperature by 0.5 �C.

The effect of the location of artery and venous on the breast

thermal behavior requires of special attention. The technical liter-

ature on breast cancer simulation lacks numerical models that

account for the effect of the vessels interaction. The main challenge

lies on providing a general model to capture the breast arteriove-

nous structure. Due to this reason, the bioheat equation proposed

by Pennes is still widely used for the modeling heat transfer in

the breast. In the following, a brief review on the progress in the

simulation of cancer tumors will be presented.

3.1. Geometrical considerations

Different geometrical configurations have been considered as

computational domains for the simulation of breast cancer tumors.

These include rectangular, spherical, and geometries deformed by

gravity effects. Although each of these geometries have revealed

important information on the effect of the tumor on the surface

temperature, still at the present the technical literature lacks a

simulation that predicts the surface temperature with the actual

breast shape. Simulations of cancer tumors with a more approxi-

mated breast shape could provide more accurate estimations of

tumor effects on the breast thermal response.
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In the following, earlier work on the various geometries used for

the simulation of breast cancer is reviewed. Emphasis is put on the

boundary conditions adopted by the geometries, as well as on the

physical parameters of the tissue and tumor properties.

3.1.1. Rectangular domain

As a first approximation, some researchers employed rectangu-

lar domains for the simulation of breast cancer tumors. The rectan-

gular domain uses symmetry boundary conditions on the vertical

axes, which allows the flow of heat in only one direction. Under

this condition, the temperature signature over the surface is

directly related to the tumor size and location. Therefore, most of

the works that consider rectangular geometries focus on the eval-

uation of predictive algorithms that use the surface temperature to

determine the tumor characteristics. Das and Mishra [71] simu-

lated breast cancer tumors in a rectangular-based shape by solving

the Pennes’ bioheat equation with an in-house numerical code. The

computational domain and boundary conditions are shown in

Fig. 4. The model neglected the different tissue layers that exist

inside the breast and used homogenous properties in the tissue

and tumor regions. The boundary condition at the bottom edge

was a constant temperature of 32.8 �C, the top boundary had a con-

vective heat flux condition, h = 20 W/m2-K, which were justified

with a previous numerical work [72]. The thermal properties of

healthy and tumorous regions were experimentally determined

[30]. Square tumors of 1.25 cm and 3.75 cm length were consid-

ered, and the breast had dimensions of 10 cm width and 5 cm

height. The model estimated surface temperatures with tumors

at depths of 0.25 L, 0.5 L and 0.75 L from the surface were L is

the breast height. Results of the simulation were used for develop-

ing a predictive tool for the estimation of the tumor characteristics

based on the surface temperature. A similar work was reported by

Amri et al. [73] who considered a 3D rectangular domain with a

spherical tumor. The domain had two layers, a 5 mm thick fat layer

located underneath the skin surface, and a 45 mm thick gland layer

located below the fat layer. The skin surface had a convective

boundary condition of 13.5 W/m2-�C which accounted for com-

bined effects of convection, radiation and evaporation [30]. The

tumor metabolic heat generation was estimated with an empirical

correlation which is function of the tumor diameter [30]. Values for

the metabolic rates of the various layers were taken from Ng and

Sudharshan [74]. Results showed evidence of a linear relationship

between the tumor depth and the length of the thermal layer at the

surface. The effect of transient cooling techniques on the tumor

thermal contrast was also evaluated.

The rectangular computational domain has provided a first

insight on predictive models that relate the surface temperature

with the tumor size and location. However, the model is not well

representative of actual shape of the breast and direct comparisons

with experiments have not been reported. Other shapes of the

computational domain such as hemispherical have shown better

approximations to experimental observations.

3.1.2. Hemispherical domain with concentric layers

Simulation of breast cancer has also used hemispherical compu-

tational domains with multiple layers that account for the non-

homogenous tissue properties inside the breast. In general, it is

observed that hemispherical geometries provide temperature dis-

tributions in better agreement to experimental data. Osman and

Afify [75] presented the first 3-dimensional hemispherical domain

for the simulation of breast cancer tumors. The domain was

divided in four different concentric layers representing the deep

connecting tissues (a core layer), the intermediate muscle and fat

tissues (intermediate muscle and fat layers), and the underneath

surface cutaneous tissues (skin and areola layer), see Fig. 5. An

important consideration was a countercurrent heat exchange

between the tissue and arteries, and between the tissue and veins

on the intermediate layer. This effect was added to the Pennes’ bio-

heat equation by means of extra terms with overall heat transfer

coefficients per unit temperature difference between artery and

tissue. The various dimensions of the layers are shown in Fig. 5.

The blood perfusion was chosen based on the experimental data

provided by Pennes [56] and Keller [60]. The metabolic heat gener-

ation was chosen based on experimental data [56,76,77]. At the

surface an average heat transfer coefficient was chosen based on

experimental data of Pennes [47]. Results showed evidence of an

upper quadrant warmer than the lower quadrant due to the non-

homogenous perfusion rate distribution, which is in agreement

with experimental data obtained with IR camera on normal breast

[78]. Osman and Afify later extended their model for the simula-

tion of a malignant breast in which the tumor region had a meta-

bolic heat generation and higher conductivity and perfusion rates

[79]. The thermal conductivity and the metabolic heat generation

of the tumor region were taken from Guatherie’s experiments

[30] on breast cancer tumors. The simulation found variations in

surface temperature with tumors sizes in the range of 10 mm to

36 mm in diameter and depths ranging from 5 to 18 mm.

The model of Osman and Afify [75,79] demonstrated that the

hemispherical domain gave results in better agreement with

experimental data. Also, the temperature distribution captured

the effect of the different layers in the surface temperature. How-

ever, the model made important assumptions such as concentric

hemispherical layers and counter-current heat interaction

between tissue and arteries, and tissue and veins. Other studies

indicate that Osman and Afify’s model creates non-homogenous

temperature distributions with large gradients of temperature near

the surface [74]. As a result, the model proposed by Osman and

Afify was not greatly followed. Nevertheless, the tissue properties,

Fig. 4. Breast cancer tumor analyzed with a 2D rectangular geometry. Adapted

from [71].

Fig. 5. Hemispherical computational domain with concentric layers. Adopted by

Osman and Afify [75,79]. Redrawn from [64].
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the boundary conditions, and the hemispherical shape adopted by

the authors have been commonly used in several works.

3.1.3. Hemispherical domain with non-concentric layers

The hemispherical model with concentric layers was latter

modified by Ng and Sudharsan [74] to consider non-concentric lay-

ers. This configuration accounts for a gland layer occupying a larger

volume inside the breast, see Fig. 6(a). The computational domain

and the dimensions of the various layers are shown in Fig. 6(b). As

it is shown in the figure, the breast consisted of a subcutaneous fat,

a gland, a muscle and a thoracic layer. The boundary conditions

were similar to Osman and Afify [75], but the governing equation

was the Pennes’ bioheat equation with a homogenous perfusion

rate distribution and without counter-current heat interaction.

The breast diameter was 23 cm, and the tumor diameters were

between 10 and 30 mm. Computed results of a breast with an off-

set tumor showed variations of surface temperature in the range of

36–36.5 �C in agreement with Guatherie’s experiments [30]. The

model quantified the effect of the tumor location on the surface

temperature. In a different work, Mital and Pidarati [80] used the

layered model proposed by Ng and Sudharsan [74] to predict the

depth, size and heat generation of a tumor based on the breast sur-

face temperature by using numerical simulations, artificial neural

networks, and genetic algorithms. Lu et al. [81] used a similar com-

putational domain to evaluate the effect of air flows around

healthy and unhealthy breast, where it was shown that the flow

rate could enhance the thermal contrast.

The hemispherical domain proposed by Ng and Sudharsan [74],

has been widely used in the technical literature. The main reason is

the ability of reproducing surface temperatures which are in close

agreement with experimental data. However, the hemispherical

domain shows symmetric temperature distributions, which dis-

agrees with previous experimental observations [78]. Osman and

Affify [79] argued that the upper quadrant of the breast is warmer

than the lower quadrant due to a higher vascularity. Other studies

have identified non-homogeneous temperature distributions in

deformed hemispherical shapes, as it will be shown in the follow-

ing subsection.

3.1.4. Domains with the actual breast shape

In an attempt to get better approximations of the surface tem-

perature, various works have virtually reconstructed the breast

shape. At the present, three different approaches have been fol-

lowed to reconstruct the breast: (i) tracing the outer profile of a

breast mannequin with a Computer Numerical Control (CNC)

machine [83], and (ii) generating a surface with Magnetic Reso-

nance Imaging (MRI) data [84,85], and (iii) gravity deformed with

an initial hemispherical domain [86]. In general, numerical models

with computational domains that resemble the actual breast shape

generate asymmetric surface temperatures, which is a common

trend obtained with thermograms.

To develop a computational domain that is more realistic in

appearance, Ng and Sudharsan [83,87] virtually reconstructed the

breast of a mannequin with a 34 cup ‘‘C” brassiere size. The domain

had tissue layers representing a subcutaneous fat, a gland, a core

gland, a muscle, and a tumor. An embedded tumor diameter of

32 mm was considered. The thermal conductivity and metabolic

rates were taken from Werner and Buse [88], and the tumor blood

flow andmetabolic heat were obtained from in vivo studies of Gau-

therie et al. [30]. Thermograms of three volunteers were selected to

compare against the numerical simulation. The breast surface had

an average convective heat transfer coefficient accounting for

evaporation, convection, and radiation. The breast had a constant

temperature in the core region, and an adiabatic condition in the

subcutaneous region. Computed results showed a cold region

around the nipple with a warm lower-outer quadrant and a warm

upper quadrant in agreement with the thermograms.

Computational domains which resemble the actual breast have

been used to track the tumor movement due to breast compres-

sion. In MRI the tumor moves when the breast is compressed

between plates. This procedure increases the error in defining

the tumor location. Azar et al. [84] developed a finite element

model of the breast based on elastic deformations to predict the

change in tumor position after a breast is compressed. The compu-

tational domain was reconstructed from MRI data by capturing

axial slices of the breast. Image processing software (Scion Image

and Photoshop) were used to recreate the breast surface. Three dif-

ferent tissue properties were considered representing fat, glandu-

lar, and cancerous tissues. Young’s modulus and stress-strain

properties were obtained from the experimental work of Wellman

[89] on stress-strain curves on breast tissue. Errors in displacement

(tracked by locating a Vitamin E marker pill over the breast sur-

face) between the simulation and the experimental observations

indicated computed errors of 0.9 mm in the x and y direction

and 1.8 mm in the z direction. A similar work was reported by

Abbas et al. [85] to simulate a breast compressed by two plates,

were good qualitative agreement was observed against MR images

of the breast of a healthy volunteer.

Jiang et al. [86,90] were the first on developing a simulation that

combined the mechanical and thermal properties of the breast. The

main objective was to test the effect of breast deformation by pos-

ture and gravity on the thermal behavior. A finite element method

for elastic deformation was used with mechanical properties deter-

mined from [91–93]. The initial geometry was a hemisphere,

which was deformed by gravity loads of various magnitudes. The

computational domain had concentric skin, a fat, a sub-gland and

Fig. 6. Breast model in Ng and Sudharsan [74]. (a) Traditional anatomy of the breast considered by the Ng and Sudharsan with non-concentric layers. (b) Hemispherical

geometry with layers of unequal proposed by Ng and Sudharsan. Adapted from [80,82].

2312 S.G. Kandlikar et al. / International Journal of Heat and Mass Transfer 108 (2017) 2303–2320



a core-gland layers as proposed by Osman and Affify [75]. Results

indicated that the gravity deformations create an asymmetric tem-

perature distribution with a warmer region on the upper quadrant

of the breast and a colder region in bottom quadrant, see Fig. 7.

This is in agreement with previous experimental observation by

infrared imaging of the breast [78], which shows evidence of the

feasibility of gravity-deformed breast to generate more approxi-

mated surface temperature distributions.

Simulations with computational domains with the actual breast

shape have shown asymmetric temperature distributions. Asym-

metric temperature distributions were observed previously by

Osman and Affify while simulating a normal breast [75], but this

effect was attributed to more vessels being located on the upper

quadrants of the breast. Therefore, it remains unclear whether

the asymmetrical temperature distributions are due to a high vas-

cularity or to a mechanical deformation of the breast. Also, it

should be mentioned that the work of Jiang et al. [86] lacks com-

parisons with actual breast shapes. This comparison is necessary

to evaluate the accuracy of the gravity deformed model on gener-

ating the breast shapes.

3.2. Effect of the tumor size and location

The effect of the tumor size and location is a primary factor

affecting the surface temperature of the breast. It is observed that

such effect depends on the geometrical considerations, the bound-

ary conditions, and the tissue properties.

Simulations with rectangular geometries have identified signif-

icant variations in the surface temperature due to the tumor loca-

tion. Das and Mishra [71] simulated breast tumors by considering a

square breast and tumor. The computed results indicated that

tumors of 12.5 mm located at a depth of 12.5 mm and 37.5 mm

raised the surface temperature 0.56 �C and 0.007 �C, respectively.

The effect of the tumor size was analyzed with a tumor at the cen-

ter of the domain (25 mm) which size changed from 12.5 to

37.5 mm. It was observed that the largest tumor increased the sur-

face temperature by 0.5 �C. In a different work, Amri et al. [73] con-

sidered a 3-dimensional rectangular domain with a spherical

tumor. Results showed an increase in the surface temperature in

the range of 0.2–1.2 �C for tumors of 10–30 mm diameter located

at less than 20 mm from the surface. For tumors located at a depth

of 10 mm, a change in the tumor diameter from 10 to 30 mm

increased the surface temperature by 0.2 �C. The results reported

by Amri et al. indicate that the tumor depth is the dominant factor

influencing the surface temperature.

The effect of the tumor location and size in domains with con-

centric layers has been analyzed by various researches. The results

of Osman and Afify [79] showed that tumors located at a depth of

36 mm to 49.5 mm generated a surface temperature with a cold

area around the tumor, which increased as the depth of the tumor

decreased and as the size increased. This phenomenon was attrib-

uted to a cooling effect induced by a higher blood flow in the tumor

region. Tumors located near the surface with a depth of 5 mm to

18 mm generated larger warm areas which increased as the tumor

depth decreased and as the size increased. Jiang et al. [86] with a

gravity-induce deformed breast showed that the tumor depth

has a higher effect on the surface temperature distribution relative

to the tumor diameter. As it is shown in Fig. 8, the results indicated

that tumors located at 20 mm from the surface or less increased

the temperature difference between normal and unhealthy breast

(thermal contrast) by about 1.5 �C. On the other hand, tumor sizes

of 10 to 30 mm, located at a depth of 20 mm or less, changed the

thermal contrast by about 0.1 �C. Also, it was observed that tumors

with a depth higher than 20 mm induced an insignificant surface

temperature difference between normal and unhealthy breast.

The effect of the tumor parameters on the surface temperature

with non-concentric layers has also been analyzed. Sudharsan et al.

[74] found that a 15 mm tumor diameter located at 15–38 mm

form the surface generated a thermal contrast of 0.6 �C and

0.01 �C, respectively. Simulations with tumors located at the center

line and 15 mm below the surface indicated that tumors of 5 mm

and 15 mm diameter produced surface thermal contrasts of about

0.1 �C and 0.6 �C, respectively. These results indicate that the depth

of the tumor has a higher effect on the surface temperature relative

to the tumor diameter. Also, it is shown that tumors located below

38 mm from the surface might not be easily detected with an IR

camera. Ng and Sudharsan [94] numerically showed the formation

of a warmer region on the surface above the tumor, see Fig. 9. The

results identified a diameter to depth ratio of 1:3 as a possible limit

for the change in surface temperature; the change in surface tem-

perature was hardly visible with a 10 mm tumor size located at

30 mm from the surface. Lu et al. [81] found that with a flow of

1 m/s, the surface temperature difference between normal and

unhealthy breast was 1.72 �C and 0.1 �C for tumors located at

2 cm and 5 cm from the surface, respectively.

The studies on the effect of location and size of the tumor show

significant variations on the surface temperature. Most of the

works have concluded that the tumor thermal signature over the

surface is lost for tumors located at certain depth. The maximum

depth that generates a thermal signature lies in the range

Fig. 7. Deformed spherical breast shape. Temperature difference between

deformed and non-deformed breast. (a) Cross sectional temperature, (b) Surface

temperature. Adapted from [90].

Fig. 8. Estimated maximum temperature difference between the normal and

unhealthy breast. Breast deformed by gravity. Adapted from [86].
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of 20–30 mm for tumors of various diameters. Also, the surface

thermal contrast increases as the tumor gets closer to the surface,

maximum temperature differences between healthy and

unhealthy breast of 0.6 and 1.5 �C have been identified. It has been

also shown that the tumor depth has a greater effect over the sur-

face temperature relative to the tumor diameter.

3.3. Transient numerical simulations

One of the advantages of using numerical simulations under

transient breast cooling is that the effect of the cooling time and

temperature on the tumor detectability can be studied without

causing any discomfort on the patient. Numerical simulations

allow the determination of the range of values of the cooling time

and temperature that lead to higher temperature contrast between

the tumor and the healthy tissue. Lower temperatures increase

thermal contrast, but cause more patient discomfort. The aim of

transient simulations is to find a trade-off between thermal con-

trast and patient discomfort to increase the detectability of malig-

nant tumors.

Chanmugam et al. [95] studied the effects of the thermal stress

on an 3D axisymmetric model of the breast. The model is similar to

the model employed by Mital and Pidarati [80]. The authors com-

pared the results of the transient simulations to a steady state case.

They used COMSOL Multiphysics to perform the analysis. For the

steady state case, they studied the effect of tumor size and location.

For the transient simulations, they studied the effect of cooling

time and cooling temperature on the surface temperature distribu-

tion during the recovery phase. They changed the temperature

from 14 �C to 20 �C and the cooling time from 30 s to 120 s. They

observed that the maximum temperature peak increased from

0.60 �C to 0.65 �C when the cooling time increased from 30 to

120 s. They observed that the maximum peak in temperature

occurred from 0.7 to 0.9 when changing the cooling temperature

from 20 �C to 14 �C.

Jiang et al. [90] compared the surface temperature distributions

obtained from steady state thermograms on a breast model

deformed by gravity. For the steady state case, they found temper-

ature asymmetries on the surface temperature due to the action of

gravity. They found that the surface temperature changes more by

changes in depth than in changes in tumor size. The cold stress was

introduced by changing the ambient temperature from its standard

value at 25–20 �C, 15 �C or 10 �C. The cold stress time was varied

between 0 and 60 min. They observed that the major changes in

Fig. 10. Temperature at the areola as a function of time for a) cooling stress and b) thermal recovery phase. Adapted from [90].

Fig. 9. Temperature distribution with an offset tumor; (a) 3D domain with the surface mesh, (b) temperature contour over the surface. Tumor size 15 mm located at 24.5 mm

from the surface. Adapted from [94].

2314 S.G. Kandlikar et al. / International Journal of Heat and Mass Transfer 108 (2017) 2303–2320



temperature occur for cold stress times lower than 10 min. After

10 min, the temperature decrease and become less steeped and

finally after 30 min, the changes in temperature are very slow.

Fig. 10a shows the temperature of the areola as a function of the

cooling time for the different cooling temperatures considered.

After removing the cold stress during the thermal recovery phase,

the temperature increased considerably during the first 15 min,

then, the changes were less tilted and after 25 min, the increase

in temperature was very slow (Fig. 10b).

The authors noted that the maximum temperature contrast is

obtained at around 30 min of the beginning of the thermal stress.

However, in the real case, the patient would be subjected to a cold

stress for 30 min, which can create discomfort in the patient due to

the prolonged thermal stress.

In a recent work, Amri et al. [73] performed an study of steady

state and transient simulations on a breast model with a malignant

tumor. They used a three dimensional model consisting of a rectan-

gular region with two different layers, the fat and the gland tissues.

The depth of the model was 50 mm (5 mm fat and 45 mm gland);

the tumor was embedded in the gland region. They studied the

effect of the tumor diameter and depth. To study the effect of the

tumor diameter, they considered diameters of 10, 20 and 30 mm.

The depth of the tumor varied between 5 and 30 mm. The ambient

temperature was 21 �C and the core temperature was 37 �C. For the

transient simulations, the authors considered cooling tempera-

tures of 5, 10 and 15 �C and cooling times of 10, 20, 30, 60 and

120 s. The authors compared the thermal contrast between the

steady-state and transient simulations. Their results indicate that

the tumor diameter has a minimal on the thermal contrast when

the depth of the tumor is higher than 15 mm. They reported that

the cooling temperature has little effect on the magnitude of the

thermal contrast (Fig. 11a); for tumors deeper than 20 mm, the

thermal contrast is as low as 0.05 �C. For example, the maximum

thermal contrast for a 10 mm tumor and 1 min cooling with 5 �C

located at 5 mm is obtained around 8 min with a value of 1.2 �C.

They also reported that the time required to obtain the maximum

thermal contrast increases as the deep of the tumor increases

(Fig. 11b).

The work of Jiang et al. [90] reported cooling times of up to 1 h

in order to cool the whole breast and increase the temperature

contrast caused by the presence of the tumor. However, in a real

case, the patient would be for 1 h subjected to a cooling stress;

adopting these recommendations can cause great discomfort in

the patient. In contrast, Amri et al. [73] reported optimal cooling

times lower than 2 min, which is a more patient friendly approach.

However, the model adopted by the authors is a rectangular

domain, which does not resemble the shape of the breast. There-

fore more research is needed to identify a range of cooling param-

eters that both, be user friendly and allow high thermal contrasts

between the tumor and the healthy tissue. For tumors deeper than

15 mm, transient thermography provides similar values to steady-

state thermography.

4. Inverse modeling

Inverse modeling is the estimation of the value of the unknown

parameters in an equation when the solution is known. To esti-

mate the unknown parameters, initial values are considered and

the governing equation is solved for the set of estimated parame-

ters. The estimated solution is compared with the known solution

and optimization algorithms are used to estimate a new set of

parameters. A new solution is then obtained for the new set of

parameters. This procedure is repeated until the difference

between the estimated and the known solutions be smaller than

a convergence criterion. In the case of IR thermograms for breast

cancer diagnosis, the surface temperature distribution obtained

from IR thermograms is considered as the solution to the bio-

heat transfer equation. To implement inverse modeling, a model

for the breast is required. The bio-heat transfer equation is solved

in such domain for a set of initial values of the thermophysical

properties of the breast tissues. Then, optimization techniques

such as the Gradient Descent Method, the Levenberg-Marquardt

algorithm, or Genetic Algorithms are used to estimate the value

of the thermophysical properties. The inverse modeling problem

is typically ill posed with no unique solution since temperature

can only be measured at the surface of the breast and the temper-

ature profile inside the breast remains unknown.

4.1. Inverse modeling with analytical methods

Gescheit [96] emulated tumors by embedding paramagnetic

nanoparticles in a medium. They implanted the nanoparticles at

a given location and then heated the nanoparticles. An IR camera

captured the surface temperature and a model based on the steady

state heat equation in cylindrical coordinates was solved. They

used the Levenberg-Marquardt algorithm to fit the experimental

temperatures to the analytical model in order to determine the

depth of the nanoparticles. The results indicated that the heat gen-

eration and depth were predicted with 0% and 4.17% variation,

respectively. The conceptual work of Gescheit [96] was recently

taken to the practice by Han et al. [97] who used IR camera and

Fig. 11. Effect of cold stress temperature on a) the magnitude of the temperature contrast and b) the observation time required. Adapted from [73].
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regression analysis to differentiate cancerous and benign tumors

based on the tumor heat generation magnitude since cancer

tumors have higher generation rates Fig. 12 shows the comparison

between the experimental data and the regression analysis. Ye and

Shi [98] developed a MATLAB algorithmwith multiple heat sources

to fit the surface temperature profile to an analytical model. They

achieved a true diagnostic in 90.1% of the malignant tumors and

in 83.3% of the benign tumors. The procedure was able to identify

that cancer tumors are denser and with irregular shapes as com-

pared with benign tumors.

4.2. Inverse modeling with numerical simulations

49009301822454900930439420-1377315412115-159448551

4350-1824990663575-1614805452755-1818005-82550-2021205

534670-2231390643255Numerical simulations provide great

insight of the thermal interactions occurring inside the breasts.

Numerical simulations work well if the breast properties are pro-

vided, but because every breast is different from each other, there

are not universal breast models or property values. Thermal prop-

erties of the breast vary from individual to individual and precise

knowledge of the properties of the breast tissue is important to

predict the presence of a tumor from a thermogram. Several

authors have used numerical simulations coupled with optimiza-

tion techniques to estimate the properties of the breast tissues

through surface temperature readings.

Lunaet al. [99]used theBoundaryElementMethod [100] to relate

abnormal skin surface temperaturewith tumor position, tumor size,

heat generation, and perfusion rate on a 3D rectangular domain. The

authors found that their method could determine the tumor posi-

tion, tumor size, and tumor heat generation within 5%, 1%, and 5%

of error, respectively. Moreover, the algorithm was capable of

detecting a small tumor of size 5 mm � 1 mm at a depth of 2 cm.

Paruch et al. [101] employed genetic algorithms and gradient

methods to estimate thermal and geometrical parameters of breast

cancer tumors. The gradient method used least square minimiza-

tion to determine the unknown parameters. The results indicate

that genetic algorithms identify thermal properties (power

strength) with a maximum error of 0.79%. The geometrical param-

eters (tumor size and location) were estimated with a maximum

error of 7.5%. Agnelli et al. [102] used computer simulations and

evolutionary algorithms to estimate the depth, size, and thermal

properties of an embedded tumor. Their method predicted tumor

characteristics with more than 95% accuracy. Das and Mishra

[71] estimated the location and size of the tumor from the temper-

ature profiles of the surface using genetic algorithms. The simula-

tions were carried out in a 2D rectangular domain and simulated

using finite volume method. The location and size of the tumor is

optimized till the error is minimized. Agnelli et al. [103] used pat-

tern search algorithms to determine the metabolic heat generation

and location of the tumor in a three dimensional domain. Fig. 13

shows the initial (blue) and target (green) positions of the tumor.

After the algorithm was applied, the tumor position changed to

the red oval, which is very close to the target position.

Jiang et al. [104] determined the properties of the breast from

the thermograms of the breast surface using inverse modeling.

The work is based on combined thermal and elastic modeling of

a tumorous breast subjected to gravity induced deformation that

has been used for the authors in other publications [86,105]. The

authors reported the Tumor Induced Temperature Contrast (TITC)

and reported more than 95% accuracy in the determination of ther-

mal properties.

5. Artificial intelligence in breast cancer detection

In the context of this paper, Artificial Intelligence (AI) is a group

of algorithms that can ‘‘learn” features from data. One of the most

important tasks of AI is data classification. Data classification is the

task of classifying previously information. To conduct data classifi-

cation, the algorithm must be trained with a set of data and the

corresponding classes. Support Vector Machines (SVMs) are

models that incorporate supervised learning mainly for classifica-

tion and regression. In SVMs, the different classes in the data are

identified and the separation between classes is achieved by means

Fig. 12. Comparison of temperature distribution for the actual temperature profile and the fitted estimation (a) malignant tumor in fatty tissue and (b) malignant tumor in

dense tissue. Q is the power of the source, D is the depth of the source and T0 is the estimated basal temperature. Figure adapted from [97].

Fig. 13. Initial location of the tumor (blue), target location (green) and location

predicted using the Pattern Search method (red). Figure adapted from [103]. (For

interpretation of the references to colour in this figure legend, the reader is referred

to the web version of this article.)
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of hyperplanes. Most artificial intelligence algorithms used for

breast cancer detection are classification algorithms in which the

objective is to distinguish between healthy and breasts with a

malignant tumor. These algorithms need to be trained with ther-

mogram images labeled as malignant and healthy breasts.

Acharya et al. [106] used SVMs to classify 50 IR thermograms,

25 normal and 25 breasts with a cancer tumor. The authors

extracted different statistical indicators such as the mean, homo-

geneity, energy and entropy of the thermograms. From each of

the 25 thermograms in every class, the authors used 18 thermo-

grams for training and the remaining 7 were used for testing.

The use of the SVM resulted in a sensitivity of 85.71% and a speci-

ficity of 90.48%. The sensitivity is higher than the typical sensitivity

achieved by an expert radiologist, which is around 78%. The results

obtained by the authors are promising, but the database that they

used for training and test was very small. Therefore, the results

cannot be generalized. Tan et al. [107] collected 6000 temperature

sets obtained from 16 thermocouples placed on the breasts of

patients; 16 thermocouples per patient, 8 on each breast. They

used different 5 different classifiers, named feed forward neural

network, probabilistic neural network, fuzzy classifier, and Gaus-

sian mixture model and support vector machine. They used 5000

data for training and 1000 data for testing the classifiers. All clas-

sifiers achieved specificities above 80%. The best performance

was achieved by the SVM, with an average precision of 90.4%.

Recently, Francis et al. [108] used a SVM to classify abnormal ther-

mograms with an accuracy of 90.91%.

5.1. Artificial Neural Networks (ANNs)

Artificial Neural Networks (ANN) are algorithms trained with

data which purpose is to make predictions. In a neural network,

data is fed to the input layer and then processed in the hidden lay-

ers. Finally, the output from the last hidden layer serves as input to

the neurons in the output layer and a decision is taken. There could

be as many hidden layers as desired as well as neurons per layer.

ANNs have been widely used in problems related with classifica-

tion and recognition of objects within an image, achieving high

prediction rates. Recently, ANNs have been used to predict the

presence of breast cancer given a thermogram. To train the ANN,

many images both with cancer and without breast cancer must

be provided to the algorithm.

Ng and Kee [78] used ANNs and bio-statistical methods to

detect cancerous tumors from IR thermograms. The thermograms

of 82 patients (30 asymptomatic, 48 benign and 4 malignant) were

used in the analysis. The inputs of the ANN were determined from

a regression analysis. To train their ANN, the authors used a radial

basis function with back propagation. The outputs were positive

(1) for malignant and benign cases or negative (0) for healthy

cases. The authors reported a maximum accuracy of 80.95% in

detecting the tumor. The radial basis function had 75% accuracy

in making a true diagnostic in the unhealthy population, and 90%

accuracy in the healthy population.

Mital and Pidarati [80], combined ANNs, genetic algorithms, and

computer simulations to relate the skin surface temperature with

the tumor depth, diameter, and heat generation. The ANN was

trained with the tumor characteristics to predict the surface tem-

perature distribution. A genetic algorithm received an experimental

or numerical temperature to find the corresponding tumor param-

eters with an initial population conformed by the outputs of the

neural network. The computational domain consisted of a layered

semi-spherical breast (Fig. 14a)). The surface temperatures found

with the ANN showed good agreement with the numerical simula-

tion (Fig. 14c)). The genetic algorithm determined tumor depth and

diameter within an error of 5 mm and 2 mm, respectively.

In general, predictions using IR thermograms [78] present more

error than predictions using numerical simulations [80,99]. This is

because the thermophysical properties in the numerical simula-

tions are considered isotropic and surface temperature variations

are due only to changes in factors such as metabolic rate, tumor

depth and position and not due to local changes in the structure

of the breast. One of the benefits of using computers simulations

to train the ANNs is that the number of cases available is not lim-

ited to the amount of clinical data since changing tumor parame-

ters leads to a new training data. However, the numerical model

employed must be well validated with clinical data in order to pro-

duce accurate surface temperatures.

6. Current status and future research needs

6.1. Numerical simulations with more realistic computational domains

Simulations rely on governing equations that are numerically

solved based on the conditions applied along the boundaries of

the domain and the properties of the various tissue layers. There-

Fig. 14. (a) 2D breast model used by [80], (b) temperature distribution in the computational domain, and (c) comparison of surface temperature from the direct simulations

and ANN. Figure adapted from [80].
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fore, the form of the computational domain is one of the most

important factors to be considered while performing a simulation.

The computational domains have evolved from rectangular to the

actual breast geometry reconstructed from MRI. Rectangular

domains have provided a first insight into the procedures needed

to use numerical methods and artificial intelligence to predict

the tumor characteristics (location, size, heat generation, etc.).

These analyses have also provided information regarding tumor

displacement due to breast deformation. However, it is recom-

mended that future numerical simulations should obtain surface

temperature distribution using 3D reconstructed breast geome-

tries. Jiang et al. [86] presented the first thermal-elastic model to

investigate the effect of gravity deformation on the surface temper-

ature, but the computational domain was generated by applying a

gravity load to an initial hemispherical domain, and the generated

geometry was not validated with the actual shape. The solution of

the bioheat equation in the actual shape of the breast will be able

to predict the surface temperature profile more accurately. This

level of accuracy is critical to reveal the exact relationship between

the tumor characteristics and its thermal signature.

6.2. Validation of numerical simulations

Numerical simulations have highlighted the most important

effects of the tumor on the breast thermal profile. Such numerical

models use thermal and mechanical properties for the healthy and

unhealthy regions, which have been experimentally determined.

However, a numerical model can only be improved by comparing

the computed results against experimental data. Future research

should consider the development of models that reproduce all

the common thermal trends observed over the breast surface.

The simulations in Ng and Sudharsan [74,94] showed surface tem-

peratures which are in close agreement with experimental values,

but their model generated homogeneous temperature distribu-

tions which is not in accordance with previously reported IR

images [78]. The model of Osman and Affify [75,79] with concen-

tric layers has asymmetric temperature distributions and colder

temperatures around the areola region, but it considered arteriove-

nous heat exchange which has been proven to be a non-valid

assumption for the breast [74]. The gravity deformed model pro-

posed by Jiang et al. [86] showed asymmetric temperature distri-

butions, but the areola region was not colder, as has been

observed with the IR images [78]. Therefore, future advances are

needed on developing an improved model that resembles the ther-

mal characteristics of the breast with and without a tumor. Such a

model is needed to more accurately determine the variations in the

surface temperature due to the existence of a cancerous tumor.

Moreover, this model will contribute on establishing the changes

in the thermal contrast when the breast is subjected to transient

cooling techniques.

6.3. Accuracy

The low sensitivity of IR detectors and the lack of standardized

acquisition procedures have been the two major limitations for

high accuracy in the diagnosis of breast cancer. The sensitivity of

IR cameras has improved from 0.5 �C in the 1960 decade to below

0.02 �C in modern IR cameras. With modern IR cameras, it is possi-

ble to capture accurately the more subtle temperature variations in

the breasts. In regards to the acquisition procedure, conditions

such as the ambient and the imaging position of the patient were

not regulated until recently. Nowadays, there exists a protocol

for IR breast thermography in order to improve the quality of ther-

mograms and to remove undesired effects such as cooling due to

evaporation of sweat.

The accuracy in breast cancer detection has increased with the

improvement of IR detectors and imaging conditions. Recent stud-

ies report typical accuracies of 78% (Wishart et al. [54]) using IR

detectors with a sensibility of 0.08 �C. Further research is needed

to investigate the effect of using IR detectors with sensitivities

below 0.02 �C on the accuracy detection of breast cancer.

6.4. Patient discomfort

One of the most important aspects in the diagnosis of breast

cancer is the patient comfort during the procedure. In the case of

transient thermograms, these have shown higher contrast between

the tumor and the healthy breast as compared with steady-state

thermograms. However this increase in contrast is significant only

when the tumor is shallow, at depths less than 15 mm. To induce

the higher contrast, cold air typically between 5 �C and 15 �C is

blown to the breasts for periods of time between 2 min and

6 min. The maximum contrast is achieved with colder air directed

for longer periods of time. However, these conditions result in

more discomfort to the patient. The numerical simulations of Amri

et al. [73] show that the maximum contrast caused by a malignant

tumor 15 mm deep is 0.2 �C when cooled for 2 min with air at

10 �C; the observation time required to obtain this maximum con-

trast is 30 min. For deep tumors, the contrast obtained using tran-

sient thermography is similar to the contrast obtained using

steady-state thermograms. The advantage of steady state over

transient thermography is that it does not cause patient discomfort

due to an exposure to a cold air stream.In conclusion, breast cancer

is a significant cause of morbidity and mortality worldwide. Early

detection and secondary prevention of advanced disease remains

the most effective means of reducing the impact of this potentially

lethal disease. Current methods of screening are effective but inad-

equate; innovative methods to detect early breast cancer effi-

ciently and without excessive discomfort are needed to improve

the current state. Thermal analysis seems to be an effective way

to develop this non-ordinary tool. Over the last decade, significant

advances have been made in various areas, which could potentially

apply this technology more effectively. IR cameras are now capable

of detecting temperature variations of 0.02 K or less. Protocols to

detect cancerous tumors are now standardized. Mathematical

models have been developed to relate the surface temperature

with the tissue and tumor properties which show good agreement

with experimental data. Computer software can now virtually

reconstruct the anatomy of the breast with MRI scans. Artificial

intelligence has proved to be an effective tool to classify the tumor

with high specificity and sensitivity values. Unfortunately, these

areas are not yet linked, and effort is needed on combining these

multidisciplinary advancements. The energy and faith that we ded-

icate to this endeavor will lead to a more effective, less expensive

and more comfortable tool for reducing the health impact of this

common malady.
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