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1. Introduction

The term cancer is used to describe a group of disorders associ-
ated with dysregulated cell growth leading to tumor formation,
invasion into surrounding tissues and spread to other parts of the
body. Some of the most common types of cancer originate in the
breast, prostate, lung, skin and pancreas. The exact reasons for
developing cancer have not been determined [1,2]. However
researchers agree that factors such as genetic predisposition, age,
smoking tobacco, exposure to ultraviolet radiation, unhealthy life-
style, and exposure to carcinogenic agents can significantly increase
the odds of a person being affected by cancer. Between 2008 and
2010, the average annual cost of healthcare for a newly diagnosed
cancer patient in the US was $ 21,222 [3]. The economic impact
due to loss in productivity by cancer in the US was estimated to
be $130 billion in 2009 alone [4]. By 2020 the cost of cancer treat-
ment is expected to reach $158 billion just in the US [5]. Over the
past few decades a large amount of research has emphasized on
improving diagnostic techniques used to detect cancer at an early
stage when treatment can be less expensive and more effective.

Breast cancer is the most frequently diagnosed form of cancer
among women and has the second highest mortality rate after skin
cancer. It is estimated that the lifetime probability of being diag-
nosed with invasive breast cancer among women is 12.3% with
246,660 women expected to be diagnosed with breast cancer in
the United Statesin 2016 [6]. A healthy breast consists of glands that
are connected to the surface of the skin by ducts. The glands and
ducts are surrounded by connective tissue embedded in which are
blood vessels, lymph nodes, lymph channels and nerves. Breast can-
cer can originate in any part of the breast with more than 20 types of
cancer having been identified. The most common types of breast
cancer are ductal carcinoma, which originates in the ductal epithe-
lium; and lobular carcinoma, which develops in the glands.

Sensitivity of a diagnostic technique is a measure of the rate at
which a tumor is detected by the technique. Specificity of a tech-
nique refers to the accuracy of a positive diagnosis. Higher the sen-
sitivity, greater is the likelihood of a tumor in a patient being
detected, and higher the specificity, greater is the probability of a
positive diagnosis of being true. A variety of imaging modalities
aimed at improving the sensitivity and specificity for breast cancer
detection have been developed. Mammography however remains
the mainstay of screening for breast cancer. Supplemental screen-
ing and diagnostic techniques for breast cancer detection include
ultrasound, Magnetic Resonance Imaging (MRI), and tomosynthe-
sis. No single imaging modality is capable of identifying and char-
acterizing all breast abnormalities and a combined modality
approach is still necessary.

Mammography it the most common screening technique which
detects the presence of a tumor using low energy X-rays to image
the internal anatomy of the breast. Mammography detects masses

in the breast and calcifications, which may indicate the presence
of a tumor. A randomized trial with 134,867 women aged between
40 and 74 showed that regular screening resulted in a 31% reduction
in mortality from breast cancer [7]. However, the rate of false posi-
tives using mammograms is high with a 10 year study showing that
the likelihood of a false positive diagnosis for women after getting a
mammogram every year for 10 years to be 49.1% [8]. Mammogra-
phy is also known to be less sensitive for women with dense breast
tissue, since the cancer can be obscured or masked by the normal
surrounding fibroglandular tissue; the greater the ratio of fibroglan-
dular tissue to fat in the breast, the greater the density of the breast.
Approximately 50% of women undergoing screening mammogra-
phy have dense breasts. The proportion of the glandular tissue is
higher for younger women and fat content in the breast increases
as women get older. Kerlikowske et al. [9] studied the effect of breast
density and age on the sensitivity of mammography and found that
the technique has the high sensitivity for women 50 years or older
due to increased fatty tissue content while the sensitivity was rela-
tively lower for women under 50 due the denser breast tissue.

MRI uses a strong magnetic field along with pulsing radio waves
to get a high resolution image of the breast at different cross-
sections. A contrast agent is added to help better image the breast.
This procedure is used to screen women who are at a high risk of
developing breast cancer or to better image tumors found in other
tests [10]. This procedure is very expensive and time consuming
and hence is only used as an adjunct to mammography for high risk
asymptomatic and symptomatic women. Screening breast MRI has
been found to be more sensitive but less specific than mammogra-
phy for the detection of invasive breast cancers in high-risk women
in both retrospective and prospective studies [11,12].

Ultrasound or sonography detects the presence of tumors by
bouncing sound waves of the surface of the tissue. A transducer
is used to interpret the reflected sound waves in order to deter-
mine the boundaries of different types of tissue. This technique is
normally used to further investigate suspicious areas of the breast
found in the mammogram or during a breast exam. It can help dis-
tinguish between cysts (non-tumorous sacks filled with fluid) and
solid masses. It is also used for supplemental screening in subsets
of patients with dense breasts. When used as a supplement to
mammography, ultrasound can improve sensitivity of screening
at the expense of decreased specificity and increased biopsy rate
[13]. Ultrasound is an attractive supplement to mammography
because it is widely available, relatively inexpensive and does not
inconvenience the patients.

Digital breast tomosynthesis, also known as 3D mammography,
provides three-dimensional images using a moving X-ray source
and digital detector. Tomosynthesis has been approved in the Uni-
ted States for breast cancer screening, when used in combination
with mammography. Tomosynthesis, when used in combination
with mammography have been shown to modestly increase the
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Table 1
Comparison of imaging techniques for breast cancer.
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Technique Mechanism of Sensitivity  Specificity = Cost Method Cause of discomfort Recommended for
operation
Mammography Low energy X-rays 84% 92% Moderate Compressed breast Pain from breast Screening and diagnostic
compression evaluation
Magnetic Magnetic field and 90% 50% High IV contrast injected and Claustrophobia Screening in women
Resonance pulsating radio dynamic images Holding still and lying at high risk for breast
Imaging waves obtained prone for a long exam cancer
(MRI) Possible reaction to con- Diagnostic evaluation
trast agent
Contrast cannot be used
in patients with renal
insufficiency
Positron Gamma rays 90% 86% High Small amount of No significant discomfort Determine if cancer has
Emission emitted by tracer radioactive tracer spread to other parts of
Tomography substance injected in the body the body
(PET)
Ultrasound High frequency 82% 84% Low Hand-held or automated  No significant discomfort Screening in women
sound waves ultrasound device with dense breasts
Diagnostic evaluation
Tomosynthesis mammography) Low energy X-rays 90%
(3D
92% Moderate Compressed breast Pain from breast Screening and diagnostic
compression evaluation
Electronic Pressure changes 84% 82% Low Hand-held electronic Small localized pressure Follow-up after abnormal
Palpation tactile sensor finding
Imaging (EPI)
Electrical Electrical 87% 82% Low Electrodes attached to Small alternating currents Follow-up after abnormal
Impedance impedance skin applied to the electrodes finding
Scanning

cancer detection rate and decreases false positives mammography
readings, when compared to mammography alone [14]. Tomosyn-
thesis is typically performed in conjunction with conventional
mammogram, which increases the patient radiation exposure by
two fold. However, the increased total dose is still below the FDA
safety limits. Software has been developed to reconstruct the dig-
ital mammogram from the 3D dataset, lowering the radiation dose
to levels comparable to a conventional mammogram.

Over the last few decades, the need for cheap and effective diag-
nostic techniques to screen and diagnose breast cancer have led to
the development of various new technologies. Three recent tech-
niques that have emerged are electronic palpation imaging, electri-
cal impedance scanning (EIS), and thermal imaging. Electronic
palpation imaging (EPI) detects the presence of a tumor in the breast
by generating a map of the rigidity of the breast tissue by imposing
pressure waves and observing the resultant displacement of differ-
ent regions of the breast [15]. The second method that has been
developed over the years is electrical impedance scanning which,
as the name suggests, measures the electrical impedance of the
breast to detect the presence of tumors. The electrical conductivity
of the tumor is higher than that of healthy breast tissue and there-
fore, the electrical impedance is lower than the healthy tissue. Ther-
mal techniques such as Liquid Crystal Thermography and Infrared
(IR) imaging rely on surface temperature readings of the breast.
Since tumors are clusters of cells which multiply in an uncontrolled
manner, the metabolic heat generation rate and the blood perfusion
rate of the tumor are higher than normal tissues. The increased heat
generation at the tumor is dissipated to the surrounding tissue and
can be seen as a temperature spike at the surface of the breast.
Table 1 presents a comparison of the different imaging techniques
for breast cancer.

Analyzing the change in the temperature at the surface of the
breast can help predict the size and location of the tumor. Liquid
crystal thermography was initially considered as a viable
technique to measure the surface temperature of the breast with a
sensitivity of about 0.1 °C. Liquid crystal thermography was widely
used mainly due to the higher costs associated with non-contact IR

camera. The major drawbacks of liquid crystal thermography are the
need for contact between the breast and a film with the liquid crys-
tals; the need for external light sources, that indeed can cause bias in
the colors perceived [16]. Infrared thermography used an infrared
camera to map the temperature of the breast to predict the presence
of a tumor in the breast. This technique is superior to liquid crystal
thermography since it does not require direct contact with the
patient and does not introduce any bias as a result of the contact.
With infrared cameras becoming dramatically better over the past
few decades, infrared thermography has increasingly become an
active field of research.

Vreugdenburg et al. [17] conducted a systematic study of the
published clinical results using infrared thermography, electrical
impedance scanning and electronic palpation imaging by identify-
ing 5441 studies and reviewing the results of 60 publications. In
case of infrared thermography it was seen that the sensitivity of
infrared thermography was between 0.71 and 0.94 (with one out-
lier). However, the specificity of the technique was seen to be poor,
varying from 0.14 to 0.85. Fig. 1 shows the sensitivity and specificity
reported by some of the studies reviewed. The heterogeneity in the
results reported was attributed to the wide range of devices used in
these studies and the differences in the algorithm used to classify
the IR thermograms as normal or diseased. Broadly, there is an
inverse relationship between the sensitivity and specificity for IR
thermography. Studies reporting high sensitivity appear to have a
low threshold for classifying a thermogram as abnormal and there-
fore have poor specificity (e.g. Parisky et al. [18]), Tang et al. [19],
Arora et al. [20]). Similarly, studies where the threshold for classify-
ing a thermogram as abnormal is high, the sensitivity reported is
low while the specificity is high (e.g. Kontos and Wilson [21]).

2. Breast Thermography
2.1. Infrared imaging

Infrared thermography works on the principle of measuring the
radiation emitted by a surface to determine its temperature.
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Paper (Year)

Keyserlink (1998)
Wishart (2010)
Wang (2010)
Tang (2008)
Parisky (2003)
Kantos (2011)

Sensitivity (95% Cl)

0.83 (0.74-0.90)
0.71(0.58-0.81)
0.79 (0.73-0.84)
0.94 (0.82-0.99)
0.96 (0.92-0.98)
0.25 (0.09-0.49)
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Button (2004)
Arora (2004) -

0.75 (0.35-0.97)
0.90 (0.79-0.96)

T T T

0.0 0.5 1.0
Sensitivity

Paper (Year) Specificity (95% Cl)
Keyserlink (1998) - 0.81(0.72-0.88)
Wishart (2010) —le— 0.49 (0.33-0.65)
Wang (2010) = 0.77 (0.68-0.84)
Tang (2008) o= 0.44 (0.32-0.57)
Parisky (2003) 0.14 (0.12-0.17)
Kantos (2011) =8| 0.85 (0.77-0.91)
Button (2004) —i— 0.57 (0.34-0.78)
Arora (2004) - 0.44 (0.27-0.62)

0.0 05 1.0
Specificity

Fig. 1. Comparison of sensitivity and specificity from different clinical trials adapted from [17].

According to Planck’s radiation law, any object above absolute zero
temperature emits electromagnetic radiation whose spectrum and
intensity is a function of the temperature of the body. The intensity
of radiation (I) corresponding to a wavelength A that an object at a
temperature T emits is given by

27hc? he
-4

I(2,T) = (el 1) (1)

where h is the Planck constant, c is the speed of light in vacuum, and
k is the Boltzmann constant. For an object at room temperature,
most of the radiation emitted is in the infrared spectrum. Therefore
by measuring the infrared radiation that an object emits, its tem-
perature can be determined. The human body at normal tempera-
tures mainly emits 10 um wavelength with 90% of the total
radiation in the 6-14 um wavelength band.

In order to detect the infrared radiation the cameras need spe-
cialized lenses and sensors. Since glass that is used in traditional
cameras absorbs infrared radiation, the lenses used in IR cameras
are made of IR transparent materials such as Germanium or Sap-
phire. The sensors used to record the IR images are broadly classi-
fied into thermal detectors and quantum detectors. Uncooled
microbolometers are the most common type of thermal detectors
and are made of metal or semiconductor materials. These detectors
have a broader IR spectral response but are significantly slower and
less sensitive than quantum detectors. Cameras using uncooled
sensors are smaller since they do not require a self-contained cool-
ing system and thereby less expensive. The detectors in the
advanced cameras are cooled to reduce the IR radiation emitted
by itself that would otherwise affect its accuracy. The sensors are
typically cooled to a temperature of 60-100 K using a various tech-
niques including rotary sterling engine cryo-coolers and expansion
of pressurized gas. The materials used to make the cooled sensors
are narrow band gap semiconductors that are capable of detecting
long infrared radiation. Some of the commonly used materials
include Indium antimonide, Indium arsenide and mercury cad-
mium telluride.

The sensitivity of IR cameras to temperature variations has con-
sistently been improving over the last four decades. Early genera-
tion IR cameras had a temperature sensitivity of about 0.3 K.
Under such sensitivity, the most subtle temperature variations
were not captured and the heat pattern obtained lacked fine
details. With the improvement of IR detectors, modern IR cameras
can achieve sensitivities below 0.02 K (20 mK). Such high degree of
accuracy was possible due to the development of cooled quantum
detectors (InSb). This dramatic improvement in sensitivity has
allowed for the capture of more detailed thermograms that are

able to detect small, localized temperature variations. Fig. 2 chron-
icles the improvement in the sensitivity of IR cameras over the last
four decades.

Modern infrared cameras require a more stringent control on
the environmental conditions to accurately measure temperature
differences as low as 20 mK. Ng [22]| recommends to minimize
the sources of IR interference, such as windows; avoid sources of
light such as incandescent, halogen or sunlight. A plain, non-
reflective background is recommended and IR reflective surfaces
should be covered to minimize undesired reflections.

Factors such as the emissivity of the skin can affect the temper-
ature measured by the infrared camera. As infrared cameras
became popular in the 60s, multiple studies focused on the emis-
sivity of skin at different wavelengths. Early studies by Hardy
[23] as well as subsequent studies conducted by Watmough and
Oliver [24]| measured skin emissivity at different infrared wave-
lengths. They concluded that the emissivity of the skin is indepen-
dent of the wavelength and equal to 0.989 + 0.01. Similar findings
were also reported by Steketee [25] and Patil and Williams [26].
Therefore as long as standard operating procedures are followed,
the temperature recorded by the infrared camera would be an
accurate measurement of the actual skin temperature.

2.2. IR thermography to detect breast cancer

Lawson [27], in 1956 was one of the first researchers to report
the use of surface temperature measurements as a possible tool
for breast cancer diagnosis. Later in 1963, Lawson and Chugtai
[28] used IR scanners to determine that the surface temperature
of the region surrounding a tumor is about 2 °C higher than the
surface temperature of the same region on the contralateral

IR sensitivity progress
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Fig. 2. Improvements in IR camera sensitivity over the years.
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Fig. 3. Thermograms of (a) normal breast, (b) with early stages of cancer in the right breast, and (c) advanced cancer in the left breast [34].

healthy breast. Davison et al. [29] used liquid crystal thermography
to measure the temperature of the breast of patients with cancer.
They found that liquid crystal thermography and IR thermography
produce similar results. In 1980, Gautherie [30] measured the
internal temperature along a breast with a cancer tumor using a
fine needle thermocouple. He found that the presence of a tumor
resulted in a localized peak in tissue temperature. The temperature
in the tumor was approximately 3 °C higher than the surface tem-
perature at the same axis. These preliminary results showing a
relationship between the temperature profile at the breast surface
and presence of a malignant tumor lead to breast thermography
being approved by the FDA as an adjunct tool to mammography
for breast cancer detection in 1982.

During early stages of infrared thermography, the rate of true
positive diagnoses was as low as 41%. This low accuracy was pri-
marily due to the lack of standards concerning measuring condi-
tions. Besides, most clinicians that used IR thermographs were
not adequately trained in using IR cameras [31]. It wasn’t until
early 2000s that improvements in infrared cameras, and rapid
advances in computing and simulation lead researchers to once
again explore thermography as a screening tool to detect breast
cancer. A more detailed historical perspective of IR thermography
can be found in [31-33,22].

When there is an abnormality in the breast tissue such as a
malignant tumor, fibrosis, an infection or an inflammation, there
is an increase in the temperature at the surface of the breast.
Fig. 3 shows the thermograms of three patients with (a) healthy
breast, (b) early stage cancer in the right breast and (c) advanced
cancer in the left breast [34]. Temperature in the vicinity of the
affected tissue is about 2.5 °C higher than for normal tissue (con-
tralateral unaffected region). The surface temperature distribution
of tumorous breasts is affected by the size, position, depth and
stage of the tumor. Hormone intake (contraceptive), pregnancy
and lactation also have an effect on the breast temperature. In gen-
eral, the tumor is more easily identified when it is shallow. For
deep tumors, the surface temperature variation can be very subtle
with respect to a healthy breast. For this reason, highly accurate
infrared cameras as well as standardized techniques for IR screen-
ing are required [35].

Gautherie and Gross [33] reported the study of 1245 patients
who were detected to have abnormal IR image profiles. They
observed that IR imaging, besides to predict cancer, can identify
rapidly growing neoplasms. Gautherie [32] found that 35% of the
patients with abnormal thermograms developed cancer during
the next 5 years; therefore they stated that IR thermography can
predict the development of breast cancer. However, through IR
thermograms is very difficult to distinguish between breast cancer
and inflammation zones.

2.2.1. Prognostic features for breast cancer

To diagnose breast cancer using IR thermography, specific fea-
tures on the surface temperature of the breasts are identified.
The most common features are highly asymmetric temperature
distributions between breasts, hyper thermic vascular patterns,
localized hot spots, atypical complexity of the vascular pattern,
temperature differences in the entire breast of more than 2 °C
and areolar and peri-areolar heat patterns.

In thermography, the magnitude of the temperate gradients used
to distinguish between benign and malignant tumors. High temper-
ature gradients (>1 C) are indicators of malignant tumors and lower
temperature gradients are associated with benign breast diseases.

Besides the diagnosis of breast cancer, it has been demonstrated
that thermography can detect angiogenesis due to the increased
demand of blood to supply the new vessels and the increased
metabolic activity. Guidi and Schnitt [36] conducted an study of
patients with pre-invasive breast cancer. The authors reported that
women with increased number of microvessels in the breasts have
up to seven times greater risk of developing breast cancer as com-
pared with women with normal microvessel density.

Gamagami [37] conducted a clinical study on patients with
breast cancer using mammography and IR thermography. He
reported that hypervascularity and hyperthermia can be found in
86% of non-palpable breast cancers. The author also noted that
15% of non-palpable cancers went undetected by mammography,
but detected by IR thermography.

Head et al. [38] conducted an study on 126 breast cancer
deceased women, 100 living breast cancer patients and 100 healthy
patients. From the group of 126 deceased women, 88% presented
abnormal thermograms; from the group of 100 surviving cancer
patients, 65% presented abnormal thermograms and only 28% of
healthy women presented abnormal thermograms. The most rele-
vant prognostic feature from this study is that breast cancer
patients with abnormal thermograms have fast growing tumors.

Gautherie and Gross [33] conducted a clinical study on near
58,000 patients. The study took place from 1965 to 1977. From
all the patients, 1527 women had thermograms stage Th IIl. The
stages in the study range from Th I to Th V, according to an increas-
ing probability of cancer. Each stage is identified by thermos-
vascular patterns and areas of hyperthermia. In the case of Th III
thermograms, these represent suspicious, but not conclusive ther-
mograms. The study focused on patients with Th IIl thermograms.

Of the 1527 Th III patients, 784 had no abnormal physical,
mammographic or echo graphic findings; 461 had conditions diag-
nosed as benign disease, mainly cystic mastopathy; and 282 had
conditions confirmed as cancer. From the 784 apparently normal
patients, 177 were diagnosed with cancer within the first two
years after the initial examination. Additional 121 cases were
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found in the next two years (4 years after the initial examination).
In total, 38% of this group was diagnosed with cancer within
4 years after the initial examination. The most important observa-
tion from this study is that healthy patients with abnormal ther-
mograms are at a higher risk of developing cancer.

Amalu [39] conducted a review of the clinical application of
breast thermography for the diagnosis of breast cancer. IR ther-
mography has a significant prognostic relevance in breast cancer
because it is related to tumor growth, tumor size and the malig-
nancy of the tumor.

2.3. Standards and operating protocols

A patient’s thermogram is significantly affected by the many
factors both prior to the examination and during the examination.
The lack of standards and protocols was attributed to be one of the
primary reasons for the poor results in the early thermography
studies. Ng [22] provided a detailed account of the standards that
should be followed before a patient undergoes an examination,
the testing procedure and environment during the examination
and the post processing of the obtained thermograms. Some of
the salient points from the work are given below.

o Patient preparation: The food the patient consumes prior to
the examination can alter the metabolic rate of the body leading
to variations in the observed thermograms. Large meals, exces-
sive consumption of beverages such as tea or coffee as well as
smoking and alcohol consumption should be avoided prior to
an examination. Other factors that may affect the thermogram
include sunbathing- up to five days prior to the examination
and application of cosmetics, lotions or antiperspirants.
Examination environment: The patient should be in the exam-
ination room or a similar room 15 min prior to examination in
loose fitting cloths to acclimatize to the environment. Ring
[40] recommended that the examination room is 3 x 4 m with
a carpeted floor. The room temperature should be maintained
between 18 and 25 °C with a relative humidity between 40%
and 75%. Heat sources such as the computers and cameras as
well as heat sinks such as air conditioning ducts or water out-
lets should not be located near the examination area. Windows
in the room must be shielded to prevent external radiation from
entering the room. Low IR emitting light sources such as flores-
cent tubes or LED lamps must be used for lighting.

Imaging standards: The standards that need to be used during
thermal imaging of a human subject is given by Ammer and
Ring [41]. Thermal imaging cameras used to obtain the thermo-
grams have a startup time before the images become stable. It is
recommended that the camera run for at least 15 min before
the start of the examination. Capture masks should be used to
as references and should be 1/3 the width and 2/3 the height
of the target size. The position of the camera relative to the sub-
ject should be clearly indicated if images from multiple angles
are taken and the patient should not move while images from
multiple angles are obtained. The detector used in the camera
should have a thermal resolution of at least 100 mK at 30 °C
and a special resolution of 1 mm x 1 mm. The thermograms
used should have a minimum resolution of 120 x 120 though
a higher resolution would be preferred.

Post processing: The software that are used in conjunction with
the thermal imaging camera should comply with a firm set of
standards so that the images are not modified or the contrasts
enhances in an arbitrary manner. Ring [40] proposed the stan-
dards that need to be implemented for obtaining thermograms.
The algorithms used to detect hot spots or analyses the asymme-
try between the beasts and identify suspect regions need to be
standardized.

Typically, thermograms of three different positions are cap-
tured, one frontal and two laterals. In order to better identify the
presence of a tumor and its location, thermograms of the entire
breast should be obtained.

An area where medical opinion is divided is the role of artificial
implants in causing cancer [42,43]. While some research has
shown that silicone implants have no role in the formation of can-
cer, others believe that women with implants are at an increased
risk of suffering from Anaplastic Large Cell Lymphoma (ALCL). In
any case, developing an effective screening technique to detect
breast cancer for patients with breast implants is required. Screen-
ing for breast cancer using mammography for patients with
implants is not ideal as (i) it may lead to damage to the implant
and (ii) the tumor may hide behind the shadow of the implant
and not be detected. Using thermography for screening women
with implants can be effective as the implants are normally placed
at the base of the breast and do not significantly affect the heat
transfer in the rest of the breast.

2.4. Image processing and automation

Lipari and Head [44] developed image processing techniques to
obtain asymmetry in the heat pattern observed from high resolu-
tion thermograms. They computed the differences in temperature
between the two breasts. They used uncooled IR cameras with a
thermal sensitivity of 0.039 K. The thermograms were taken from
the front of the breasts in order to reduce perspective and scale dis-
tortions. They segmented the breast in different quadrants to com-
pare the differences in temperature between the contralateral
breasts. They noted that the accuracy of diagnosis using IR ther-
mography can be significantly affected due to variation in interpre-
tation of the result by the operator. Therefore in a subsequent
publication, Head et al. [45] automated the algorithm to compare
the temperature profile on contralateral breasts. By comparing
statistics of the entire breast with those from different quadrants
of the breasts, the accuracy of the technique improved. However,
from their results it is not clear how the image processing helped
in the diagnosis of cancer because no significant differences in their
indicators were observed between tumorous and healthy breasts.
They claimed that their technique reduced the number of persons
that must be screened with other techniques by determining if the
abnormality level of the thermograms.

Qi and Head [46] and Kuruganti and Qi [47] proposed an auto-
matic approach that included automatic segmentation and pattern
classification of the thermograms to obtain the most relevant fea-
tures. The pixel distribution is analyzed for each of the regions in
the two different breasts. The procedure is able to identify abnor-
malities in the temperature distribution. Jakubowska et al. [48]
and Wang et al. [49] studied the thermal signature of healthy
breasts and those with malignant tumors. Irvine [50] explored
the use of Automated Target Recognition as a possible technique
to improve the diagnosis of breast cancer. In a recent publication,
Borchartt et al. [51] presented a review of the advances in ther-
mography using image processing techniques to aid in breast can-
cer diagnosis.

2.5. Dynamic IR thermography

Dynamic IR breast thermography is the process of capturing IR
thermograms for a given time. Typically, dynamic IR thermograms
are captured after subjecting the breasts to a cold stress. Usually
the duration of the cold stress is short, lower than 5 min, and with
temperatures ranging from 20 °C to 5 °C. Lower cooling tempera-
tures increase the temperature contrast, i.e. the difference in tem-
perature between the breast with a malignant tumor and the
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contralateral healthy breast. However, cooler temperatures also
increase the patient discomfort due to prolonged exposure of sub
ambient temperatures. In most of the cases the cold stress is
achieved by directing cold air to the breasts. The aim of blowing
air is to reduce the temperature variations in the breasts. After
applying the cold stress, IR thermograms are captured in the called
recovery phase. With transient thermography, the heat patterns
due to the tumor are enhanced and the tumor thermal visibility
improves.

Ohashi and Uchida [52] obtained IR thermograms on 728
patients with breast cancer. The thermograms were obtained using
steady state and dynamic thermography. For the steady state cases,
the ambient temperature was maintained at 21 °C. In the transient
cases, the thermal stress was introduced by blowing air with an
electric fan during 2 min; the thermograms were captured 15 s
apart during 20 min. They reported that the accuracy of breast can-
cer detection improved from 54% using steady state thermography
to 82% using dynamic thermography.

2.5.1. Commercial diagnostic tools using dynamic IR imaging

The Sentinel BreastScan™ is a commercial Infrared system for
the adjunct diagnosis of breast cancer. For the exam, the patient
is disrobed from the waist up and the arms placed on an armrest.
Then, cool air is directed to the breasts for 3-4 min. During the
exam, the patient can see the dynamic IR thermograms on a dis-
play. Once the cool air is turned off, the exam is complete and
the system will estimate the risk of breast cancer. The system
determines the magnitude of the asymmetries on temperature dis-
tribution between both breasts and based on such value, generates
a report with the estimation. The sensitivity of the IR camera used
is 0.08 °C.

Another commercial system is the FDA cleared NoTouch
BreastScan [53]. This system uses two infrared cameras with sen-
sitivity of 0.05 °C, each directed to one breast. The breasts are
cooled by 3-4 °C using air while IR thermograms are being cap-
tured. The exam takes between 5 and 6 min. The software of the
NoTouch BreastScan is based on Artificial Neural Networks (ANNSs).
The software compares the temperature distribution with known
heat patterns for cancer tumors and provides a diagnosis based
on such comparisons. The technical specifications of the Sentinel
BreastScan and the NoTouch BreastScan commercial products are
given in Table 2.

2.5.2. Clinical studies using dynamic IR thermograms

Parisky et al. [18] captured IR transient thermograms of 875
biopsied lesions (187 malignant and 688 benign) in 769 subjects
using the Sentinel BreastScan™. The IR study was conducted in
one breast at a time. First one of the breasts was cooled with a flow
of cold air while the other was covered; then, the procedure was
repeated for the other breast. Thermograms were captured during
the cooling step. Results indicated 97% sensitivity (positive diag-
noses that are actually positive) and a negative predicted value

Table 2
Comparison between the Sentinel BreastScan and the NoTouch BreastScan.

Feature NoTouch Breast Scan Sentinel BreastScan
Temperature sensitivity (°C) 0.05 0.08

IR camera resolution (pixel) 640 x 512 320 x 240

Number of IR cameras 2 1

Wavelength range (pm) 3.5-10.5 7-12

Transient IR Yes Yes

Cooling method Cold air Cold air

Cooling time (min) 5-6 3-4

Analysis time (min) Immediate 4-5

Artificial intelligence Yes Yes

of 95% (negative predictions that are actually negative). For all
875 lesions, the sensitivity and negative predicted values were bet-
ter for subjects with denser breast (younger patients) tissue than
for those with less dense fatty breasts. In the study conducted by
Parisky et al. [18], the location of the suspected region to be biop-
sied was known prior the IR study. This may have biased the inter-
pretations, leading to high prediction rates. Arora et al. [20]
conducted transient IR study on 92 patients with either suspicious
mammograms or ultrasound images. The authors used the Sentinel
BreastScan™ system. More than 100 temperature images were cap-
tured during the cooling phase. Results indicated that 58 of the 60
malignant tumors were predicted, achieving a sensitivity of 97%.
The sensitivity rate could be very high because the authors consid-
ered any slightly abnormal temperature distribution to indicate
the presence of a malignant tumor.

Wishart et al. [54] used the Sentinel BreastScan™ and the
NoTouch BreastScan software to analyze thermograms of 100
patients with a total of 106 biopsied tissues. 65 of the tumors were
malignant and 41 benign. In their study, the sensitivity of the Sen-
tinel BreastScan™ was 53% and that of the NoTouch BreastScan
software was 70%. They included the diagnosis of a radiologist in
the study, which had a sensitivity of 78%. Although the diagnosis
provided by the expert radiologist was better than using the
NoTouch software, the authors recognized the great improvement
of the NoTouch software over previously used techniques. The
authors identified the need for future research in neural network
systems for breast cancer diagnosis. Collet at al. [55] used the
NoTouch BreastScan system to study 99 patients for whom biopsy
was recommended. There were a total of 105 biopsied tissues, 33
malignant and 72 benign. The sensitivity reported was 78.8%. They
claim that this high value may be biased because the IR study was
conducted after the biopsy results were disclosed.

2.6. Comparison between steady state and dynamic IR thermography

Dynamic thermography increases the thermal contrast between
healthy tissue and that with a malignant tumor as compared to
steady state thermograms. However, the procedure still is not stan-
dardized and the cooling time and temperature are not consistent
between the different studies. This may lead to the high variation
in sensitivities reported between different works. Another concern
in dynamic thermography is the patient discomfort due to the
cooling stress, which is typically between 2 and 6 min at tempera-
tures below 15 °C. Dynamic thermography was introduced because
the sensitivity of IR detectors was lower than 50 mK and the subtle
temperature variations could not be captured. With modern IR
detectors, which have sensitivities higher than 20 mK, the subtle
temperature variations can be accurately captured. Studies evalu-
ating steady state thermography using high sensitive IR detectors
are needed to reassess the limits of steady state thermograms
and to clarify whether dynamic thermography is required or
steady state thermography is capable of detecting malignant
tumors.

3. Numerical simulation of cancer tumors

The interaction of tissue with nerves veins and arteries, creates
a non-homogeneous complex morphology. Veins and arteries
transport blood which transfers heat to the tissue. The presence
of tumors, they create isolated regions with different thermal char-
acteristics. To model tissue, scientists have proposed various math-
ematical models to capture the behavior of this complex material.
Some of the prominent models that have been proposed are the
counter current model, the dual phase lag model and the radiative
model. The most commonly used bioheat equation was developed
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by Pennes [56] in 1948 by observing the human forearm. It is a
modified transient heat conduction equation which accounts for
the metabolic heat generated within the tissue and the heat trans-
fer between the tissue and the blood. The model assumes that heat
transfer between tissue and the blood only takes place in the cap-
illaries and not in the larger arteries/veins. The capillaries act as a
heat source or heat sink depending on the ambient temperature of
the tissue. In case of muscles doing work, the excess heat gener-
ated is removed by the blood whereas the capillaries act as a heat
source in dormant regions like the breast. The Pennes’ bioheat
equation is given by,

aT,
pe( ) = V- (65T + 016s(T T+, @)

where p,c and k stand for density, heat capacity and thermal con-
ductivity respectively. The subscripts t,b and a stand for tissue,
blood and artery. The blood perfusion rate, w is the volumetric flow
rate of blood for a unit volume of tissue and q,, is the metabolic heat
generation rate. The model proposed by Pennes has been exten-
sively studied over the years and the main criticisms regarding
the model are [57] - (i) combining the local effects with like heat
generation, storage and diffusion with global effects such as blood
perfusion and convection in a control system is not accurate, (ii)
considering distinct temperatures of the tissue, blood inlet and out-
let at the same point is incorrect. Various other models have been
developed over the years that considered more complex formula-
tions in order to model different phenomenon such as hypothermia.
Bhowmik et al. [58] reviewed the prominent bioheat transfer mod-
els and their relevance to various applications.

The counter current model was initially proposed by Mitchell
and Myers [59] and other researchers have subsequently devel-
oped variation of the model [60-63]. The model postulates that
heat transfer between the body and the environment is best mod-
eled as a cumulative effect of the counter current heat exchange
process between the arteries and veins, and heat lost from the
body due to convection, radiation and evaporation. The model by
Mitchell and Myers was valid for sections of the body where the
vessel structure was simple and the blood flow rate was low like
the extremities of the body. Weinaum et al. [61,62] refined the
model by classifying tissues into three categories based on the
thermal interaction between the tissue and the blood vessel. The
three types of tissue are: (i) deep tissue layer, (ii) intermediate
layer, and (iii) cutaneous layer. While the model represents the
thermal interaction between the tissue and the blood vessels well,
it is inherently complex since the numerical solution to the model
is obtained by solving a distinct equation for each of the tissue lay-
ers coupled by common boundary conditions between two adja-
cent layers.

With the advent of modern thermally driven medical proce-
dures such as cryosurgery and treatments using lasers, bioheat
models that accurately depict temperature fluctuations in the body
when subjected to a pulse of heating or cooling loads have been
developed. The need for a new model for such applications arises
since the continuum based models (like Penne’s bioheat equation
and countercurrent model) assumes that a thermal disturbance
instantaneously propagates throughout the domain while it has
been experimentally shown that biological tissue exhibits non-
Fourier like behavior (Roemer et al. [64] and Mitra et al. [65]).
The duel phase lag model was developed to model highly transient
systems where the Fourier’s law is not valid by accounting for the
phase lag as a result of the thermal inertia and microstructural
interactions.

Radiation based models have also been developed to better
understand the effect of irradiation on the body. Lasers pulses over
a short duration have been used as a diagnostic tool as well as for

certain forms of treatment such as eradication of cancerous tissue
and benign tumors. Of the total intensity of laser incident on the
body, a part of it gets diffused, and the rest is transmitted through
the tissue collimated. As would be expected, the intensity of the
collimated light reduces as the distance from the boundary where
laser is incident increases. Van-Gemert [66] showed that light dif-
fuses in the forward direction and can be estimated using a
Henyey-Greenstein [67] or Legender decomposition function
[68]. Therefore by using a radiation based bioheat model, the dis-
tribution of heat flux as a function of depth from the incident sur-
face and radial distance from the incident location can be obtained.

Another important aspect of the Pennes’ bioheat model is that
the temperature is independent of arteriovenous structure. At the
present, the effect of the location of arteries and veins on the tem-
perature distribution of breast cancer is an unexplored field.

However, various studies provide a first insight on the thermal
interaction between arteries and veins with tissue. Weinbaum and
Jiji [63] indicated that the blood flow in the vessel induces a con-
vective heat transfer. At the same time, heat travels through the
vessels and tissue by conduction. The anatomical structure consists
on tissue with artery and vein pairs branching. The blood flow
direction is opposite in the artery and veins. The thermal interac-
tion between vessels and tissue is more significant in the arteriove-
nous pairs relative to the smaller transverse arteries and veins. The
authors indicated that temperature differences of vessels and tis-
sue could be less than 0.2 °C at any location.

Other studies have shown the effect of the blood flow rates and
vessel size on the temperature distribution. Chato et al. [69] theo-
retically analyzed heat transfer between artery and veins in a
countercurrent parallel flow. Heat transfer coefficients were
defined at the surface between the arteries and veins, and the
blood flow varied along the axial direction. It was found that the
effect of the heat transfer between arteries and veins was minimal
at small vessel diameters (due to reduced heat transfer area) and at
higher flow rates (superior convective heat transfer). Charny and
Levin [70] analyzed the heat transfer in an arteriovenous network
with nine branches that extended over the tissue. The theoretical
analysis accounted for the countercurrent flow between the ves-
sels and tissue. The tissue also transferred heat with the artery
due to capillary perfusion. Also, a metabolic heat generation was
included. Thermal equilibration occurred at 43 mm from the major
vessels. At this distance the vessels diameters were less than
100 um. The countercurrent heat transfer decreased the tissue
temperature by 0.5 °C.

The effect of the location of artery and venous on the breast
thermal behavior requires of special attention. The technical liter-
ature on breast cancer simulation lacks numerical models that
account for the effect of the vessels interaction. The main challenge
lies on providing a general model to capture the breast arteriove-
nous structure. Due to this reason, the bioheat equation proposed
by Pennes is still widely used for the modeling heat transfer in
the breast. In the following, a brief review on the progress in the
simulation of cancer tumors will be presented.

3.1. Geometrical considerations

Different geometrical configurations have been considered as
computational domains for the simulation of breast cancer tumors.
These include rectangular, spherical, and geometries deformed by
gravity effects. Although each of these geometries have revealed
important information on the effect of the tumor on the surface
temperature, still at the present the technical literature lacks a
simulation that predicts the surface temperature with the actual
breast shape. Simulations of cancer tumors with a more approxi-
mated breast shape could provide more accurate estimations of
tumor effects on the breast thermal response.
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In the following, earlier work on the various geometries used for
the simulation of breast cancer is reviewed. Emphasis is put on the
boundary conditions adopted by the geometries, as well as on the
physical parameters of the tissue and tumor properties.

3.1.1. Rectangular domain

As a first approximation, some researchers employed rectangu-
lar domains for the simulation of breast cancer tumors. The rectan-
gular domain uses symmetry boundary conditions on the vertical
axes, which allows the flow of heat in only one direction. Under
this condition, the temperature signature over the surface is
directly related to the tumor size and location. Therefore, most of
the works that consider rectangular geometries focus on the eval-
uation of predictive algorithms that use the surface temperature to
determine the tumor characteristics. Das and Mishra [71] simu-
lated breast cancer tumors in a rectangular-based shape by solving
the Pennes’ bioheat equation with an in-house numerical code. The
computational domain and boundary conditions are shown in
Fig. 4. The model neglected the different tissue layers that exist
inside the breast and used homogenous properties in the tissue
and tumor regions. The boundary condition at the bottom edge
was a constant temperature of 32.8 °C, the top boundary had a con-
vective heat flux condition, h = 20 W/m?-K, which were justified
with a previous numerical work [72]. The thermal properties of
healthy and tumorous regions were experimentally determined
[30]. Square tumors of 1.25 cm and 3.75 cm length were consid-
ered, and the breast had dimensions of 10 cm width and 5 cm
height. The model estimated surface temperatures with tumors
at depths of 0.25 L, 0.5 L and 0.75 L from the surface were L is
the breast height. Results of the simulation were used for develop-
ing a predictive tool for the estimation of the tumor characteristics
based on the surface temperature. A similar work was reported by
Amri et al. [73] who considered a 3D rectangular domain with a
spherical tumor. The domain had two layers, a 5 mm thick fat layer
located underneath the skin surface, and a 45 mm thick gland layer
located below the fat layer. The skin surface had a convective
boundary condition of 13.5 W/m?-°C which accounted for com-
bined effects of convection, radiation and evaporation [30]. The
tumor metabolic heat generation was estimated with an empirical
correlation which is function of the tumor diameter [30]. Values for
the metabolic rates of the various layers were taken from Ng and
Sudharshan [74]. Results showed evidence of a linear relationship
between the tumor depth and the length of the thermal layer at the
surface. The effect of transient cooling techniques on the tumor
thermal contrast was also evaluated.

The rectangular computational domain has provided a first
insight on predictive models that relate the surface temperature
with the tumor size and location. However, the model is not well
representative of actual shape of the breast and direct comparisons
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Fig. 4. Breast cancer tumor analyzed with a 2D rectangular geometry. Adapted
from [71].

with experiments have not been reported. Other shapes of the
computational domain such as hemispherical have shown better
approximations to experimental observations.

3.1.2. Hemispherical domain with concentric layers

Simulation of breast cancer has also used hemispherical compu-
tational domains with multiple layers that account for the non-
homogenous tissue properties inside the breast. In general, it is
observed that hemispherical geometries provide temperature dis-
tributions in better agreement to experimental data. Osman and
Afify [75] presented the first 3-dimensional hemispherical domain
for the simulation of breast cancer tumors. The domain was
divided in four different concentric layers representing the deep
connecting tissues (a core layer), the intermediate muscle and fat
tissues (intermediate muscle and fat layers), and the underneath
surface cutaneous tissues (skin and areola layer), see Fig. 5. An
important consideration was a countercurrent heat exchange
between the tissue and arteries, and between the tissue and veins
on the intermediate layer. This effect was added to the Pennes’ bio-
heat equation by means of extra terms with overall heat transfer
coefficients per unit temperature difference between artery and
tissue. The various dimensions of the layers are shown in Fig. 5.
The blood perfusion was chosen based on the experimental data
provided by Pennes [56] and Keller [60]. The metabolic heat gener-
ation was chosen based on experimental data [56,76,77]. At the
surface an average heat transfer coefficient was chosen based on
experimental data of Pennes [47]. Results showed evidence of an
upper quadrant warmer than the lower quadrant due to the non-
homogenous perfusion rate distribution, which is in agreement
with experimental data obtained with IR camera on normal breast
[78]. Osman and Afify later extended their model for the simula-
tion of a malignant breast in which the tumor region had a meta-
bolic heat generation and higher conductivity and perfusion rates
[79]. The thermal conductivity and the metabolic heat generation
of the tumor region were taken from Guatherie’s experiments
[30] on breast cancer tumors. The simulation found variations in
surface temperature with tumors sizes in the range of 10 mm to
36 mm in diameter and depths ranging from 5 to 18 mm.

The model of Osman and Afify [75,79] demonstrated that the
hemispherical domain gave results in better agreement with
experimental data. Also, the temperature distribution captured
the effect of the different layers in the surface temperature. How-
ever, the model made important assumptions such as concentric
hemispherical layers and counter-current heat interaction
between tissue and arteries, and tissue and veins. Other studies
indicate that Osman and Afify’s model creates non-homogenous
temperature distributions with large gradients of temperature near
the surface [74]. As a result, the model proposed by Osman and
Afify was not greatly followed. Nevertheless, the tissue properties,
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Fig. 5. Hemispherical computational domain with concentric layers. Adopted by
Osman and Afify [75,79]. Redrawn from [64].
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Fig. 6. Breast model in Ng and Sudharsan [74]. (a) Traditional anatomy of the breast considered by the Ng and Sudharsan with non-concentric layers. (b) Hemispherical

geometry with layers of unequal proposed by Ng and Sudharsan. Adapted from [80,82].

the boundary conditions, and the hemispherical shape adopted by
the authors have been commonly used in several works.

3.1.3. Hemispherical domain with non-concentric layers

The hemispherical model with concentric layers was latter
modified by Ng and Sudharsan [74] to consider non-concentric lay-
ers. This configuration accounts for a gland layer occupying a larger
volume inside the breast, see Fig. 6(a). The computational domain
and the dimensions of the various layers are shown in Fig. 6(b). As
it is shown in the figure, the breast consisted of a subcutaneous fat,
a gland, a muscle and a thoracic layer. The boundary conditions
were similar to Osman and Afify [75], but the governing equation
was the Pennes’ bioheat equation with a homogenous perfusion
rate distribution and without counter-current heat interaction.
The breast diameter was 23 cm, and the tumor diameters were
between 10 and 30 mm. Computed results of a breast with an off-
set tumor showed variations of surface temperature in the range of
36-36.5 °C in agreement with Guatherie’s experiments [30]. The
model quantified the effect of the tumor location on the surface
temperature. In a different work, Mital and Pidarati [80] used the
layered model proposed by Ng and Sudharsan [74] to predict the
depth, size and heat generation of a tumor based on the breast sur-
face temperature by using numerical simulations, artificial neural
networks, and genetic algorithms. Lu et al. [81] used a similar com-
putational domain to evaluate the effect of air flows around
healthy and unhealthy breast, where it was shown that the flow
rate could enhance the thermal contrast.

The hemispherical domain proposed by Ng and Sudharsan [74],
has been widely used in the technical literature. The main reason is
the ability of reproducing surface temperatures which are in close
agreement with experimental data. However, the hemispherical
domain shows symmetric temperature distributions, which dis-
agrees with previous experimental observations [78]. Osman and
Affify [79] argued that the upper quadrant of the breast is warmer
than the lower quadrant due to a higher vascularity. Other studies
have identified non-homogeneous temperature distributions in
deformed hemispherical shapes, as it will be shown in the follow-
ing subsection.

3.1.4. Domains with the actual breast shape

In an attempt to get better approximations of the surface tem-
perature, various works have virtually reconstructed the breast
shape. At the present, three different approaches have been fol-
lowed to reconstruct the breast: (i) tracing the outer profile of a
breast mannequin with a Computer Numerical Control (CNC)
machine [83], and (ii) generating a surface with Magnetic Reso-
nance Imaging (MRI) data [84,85], and (iii) gravity deformed with
an initial hemispherical domain [86]. In general, numerical models

with computational domains that resemble the actual breast shape
generate asymmetric surface temperatures, which is a common
trend obtained with thermograms.

To develop a computational domain that is more realistic in
appearance, Ng and Sudharsan [83,87] virtually reconstructed the
breast of a mannequin with a 34 cup “C” brassiere size. The domain
had tissue layers representing a subcutaneous fat, a gland, a core
gland, a muscle, and a tumor. An embedded tumor diameter of
32 mm was considered. The thermal conductivity and metabolic
rates were taken from Werner and Buse [88], and the tumor blood
flow and metabolic heat were obtained from in vivo studies of Gau-
therie et al. [30]. Thermograms of three volunteers were selected to
compare against the numerical simulation. The breast surface had
an average convective heat transfer coefficient accounting for
evaporation, convection, and radiation. The breast had a constant
temperature in the core region, and an adiabatic condition in the
subcutaneous region. Computed results showed a cold region
around the nipple with a warm lower-outer quadrant and a warm
upper quadrant in agreement with the thermograms.

Computational domains which resemble the actual breast have
been used to track the tumor movement due to breast compres-
sion. In MRI the tumor moves when the breast is compressed
between plates. This procedure increases the error in defining
the tumor location. Azar et al. [84] developed a finite element
model of the breast based on elastic deformations to predict the
change in tumor position after a breast is compressed. The compu-
tational domain was reconstructed from MRI data by capturing
axial slices of the breast. Image processing software (Scion Image
and Photoshop) were used to recreate the breast surface. Three dif-
ferent tissue properties were considered representing fat, glandu-
lar, and cancerous tissues. Young’s modulus and stress-strain
properties were obtained from the experimental work of Wellman
[89] on stress-strain curves on breast tissue. Errors in displacement
(tracked by locating a Vitamin E marker pill over the breast sur-
face) between the simulation and the experimental observations
indicated computed errors of 0.9 mm in the X and y direction
and 1.8 mm in the z direction. A similar work was reported by
Abbas et al. [85] to simulate a breast compressed by two plates,
were good qualitative agreement was observed against MR images
of the breast of a healthy volunteer.

Jiang et al. [86,90] were the first on developing a simulation that
combined the mechanical and thermal properties of the breast. The
main objective was to test the effect of breast deformation by pos-
ture and gravity on the thermal behavior. A finite element method
for elastic deformation was used with mechanical properties deter-
mined from [91-93]. The initial geometry was a hemisphere,
which was deformed by gravity loads of various magnitudes. The
computational domain had concentric skin, a fat, a sub-gland and
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a core-gland layers as proposed by Osman and Affify [75]. Results
indicated that the gravity deformations create an asymmetric tem-
perature distribution with a warmer region on the upper quadrant
of the breast and a colder region in bottom quadrant, see Fig. 7.
This is in agreement with previous experimental observation by
infrared imaging of the breast [78], which shows evidence of the
feasibility of gravity-deformed breast to generate more approxi-
mated surface temperature distributions.

Simulations with computational domains with the actual breast
shape have shown asymmetric temperature distributions. Asym-
metric temperature distributions were observed previously by
Osman and Affify while simulating a normal breast [75], but this
effect was attributed to more vessels being located on the upper
quadrants of the breast. Therefore, it remains unclear whether
the asymmetrical temperature distributions are due to a high vas-
cularity or to a mechanical deformation of the breast. Also, it
should be mentioned that the work of Jiang et al. [86] lacks com-
parisons with actual breast shapes. This comparison is necessary
to evaluate the accuracy of the gravity deformed model on gener-
ating the breast shapes.

3.2. Effect of the tumor size and location

The effect of the tumor size and location is a primary factor
affecting the surface temperature of the breast. It is observed that
such effect depends on the geometrical considerations, the bound-
ary conditions, and the tissue properties.

Simulations with rectangular geometries have identified signif-
icant variations in the surface temperature due to the tumor loca-
tion. Das and Mishra [71] simulated breast tumors by considering a
square breast and tumor. The computed results indicated that
tumors of 12.5 mm located at a depth of 12.5 mm and 37.5 mm
raised the surface temperature 0.56 °C and 0.007 °C, respectively.
The effect of the tumor size was analyzed with a tumor at the cen-
ter of the domain (25 mm) which size changed from 12.5 to
37.5 mm. It was observed that the largest tumor increased the sur-
face temperature by 0.5 °C. In a different work, Amri et al. [73] con-
sidered a 3-dimensional rectangular domain with a spherical
tumor. Results showed an increase in the surface temperature in
the range of 0.2-1.2 °C for tumors of 10-30 mm diameter located
at less than 20 mm from the surface. For tumors located at a depth
of 10 mm, a change in the tumor diameter from 10 to 30 mm
increased the surface temperature by 0.2 °C. The results reported
by Amri et al. indicate that the tumor depth is the dominant factor
influencing the surface temperature.

Fig. 7. Deformed spherical breast shape. Temperature difference between
deformed and non-deformed breast. (a) Cross sectional temperature, (b) Surface
temperature. Adapted from [90].

The effect of the tumor location and size in domains with con-
centric layers has been analyzed by various researches. The results
of Osman and Afify [79] showed that tumors located at a depth of
36 mm to 49.5 mm generated a surface temperature with a cold
area around the tumor, which increased as the depth of the tumor
decreased and as the size increased. This phenomenon was attrib-
uted to a cooling effect induced by a higher blood flow in the tumor
region. Tumors located near the surface with a depth of 5 mm to
18 mm generated larger warm areas which increased as the tumor
depth decreased and as the size increased. Jiang et al. [86] with a
gravity-induce deformed breast showed that the tumor depth
has a higher effect on the surface temperature distribution relative
to the tumor diameter. As it is shown in Fig. 8, the results indicated
that tumors located at 20 mm from the surface or less increased
the temperature difference between normal and unhealthy breast
(thermal contrast) by about 1.5 °C. On the other hand, tumor sizes
of 10 to 30 mm, located at a depth of 20 mm or less, changed the
thermal contrast by about 0.1 °C. Also, it was observed that tumors
with a depth higher than 20 mm induced an insignificant surface
temperature difference between normal and unhealthy breast.

The effect of the tumor parameters on the surface temperature
with non-concentric layers has also been analyzed. Sudharsan et al.
[74] found that a 15 mm tumor diameter located at 15-38 mm
form the surface generated a thermal contrast of 0.6 °C and
0.01 °C, respectively. Simulations with tumors located at the center
line and 15 mm below the surface indicated that tumors of 5 mm
and 15 mm diameter produced surface thermal contrasts of about
0.1 °C and 0.6 °C, respectively. These results indicate that the depth
of the tumor has a higher effect on the surface temperature relative
to the tumor diameter. Also, it is shown that tumors located below
38 mm from the surface might not be easily detected with an IR
camera. Ng and Sudharsan [94] numerically showed the formation
of a warmer region on the surface above the tumor, see Fig. 9. The
results identified a diameter to depth ratio of 1:3 as a possible limit
for the change in surface temperature; the change in surface tem-
perature was hardly visible with a 10 mm tumor size located at
30 mm from the surface. Lu et al. [81] found that with a flow of
1 m/s, the surface temperature difference between normal and
unhealthy breast was 1.72°C and 0.1 °C for tumors located at
2 cm and 5 cm from the surface, respectively.

The studies on the effect of location and size of the tumor show
significant variations on the surface temperature. Most of the
works have concluded that the tumor thermal signature over the
surface is lost for tumors located at certain depth. The maximum
depth that generates a thermal signature lies in the range

Tumor Depth, mn

Tumor Size, mm

Fig. 8. Estimated maximum temperature difference between the normal and
unhealthy breast. Breast deformed by gravity. Adapted from [86].
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Fig. 9. Temperature distribution with an offset tumor; (a) 3D domain with the surface mesh, (b) temperature contour over the surface. Tumor size 15 mm located at 24.5 mm

from the surface. Adapted from [94].
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Fig. 10. Temperature at the areola as a function of time for a) cooling stress and b) thermal recovery phase. Adapted from [90].

of 20-30 mm for tumors of various diameters. Also, the surface
thermal contrast increases as the tumor gets closer to the surface,
maximum temperature differences between healthy and
unhealthy breast of 0.6 and 1.5 °C have been identified. It has been
also shown that the tumor depth has a greater effect over the sur-
face temperature relative to the tumor diameter.

3.3. Transient numerical simulations

One of the advantages of using numerical simulations under
transient breast cooling is that the effect of the cooling time and
temperature on the tumor detectability can be studied without
causing any discomfort on the patient. Numerical simulations
allow the determination of the range of values of the cooling time
and temperature that lead to higher temperature contrast between
the tumor and the healthy tissue. Lower temperatures increase
thermal contrast, but cause more patient discomfort. The aim of
transient simulations is to find a trade-off between thermal con-
trast and patient discomfort to increase the detectability of malig-
nant tumors.

Chanmugam et al. [95] studied the effects of the thermal stress
on an 3D axisymmetric model of the breast. The model is similar to

the model employed by Mital and Pidarati [80]. The authors com-
pared the results of the transient simulations to a steady state case.
They used COMSOL Multiphysics to perform the analysis. For the
steady state case, they studied the effect of tumor size and location.
For the transient simulations, they studied the effect of cooling
time and cooling temperature on the surface temperature distribu-
tion during the recovery phase. They changed the temperature
from 14 °C to 20 °C and the cooling time from 30 s to 120 s. They
observed that the maximum temperature peak increased from
0.60°C to 0.65°C when the cooling time increased from 30 to
120s. They observed that the maximum peak in temperature
occurred from 0.7 to 0.9 when changing the cooling temperature
from 20 °C to 14 °C.

Jiang et al. [90] compared the surface temperature distributions
obtained from steady state thermograms on a breast model
deformed by gravity. For the steady state case, they found temper-
ature asymmetries on the surface temperature due to the action of
gravity. They found that the surface temperature changes more by
changes in depth than in changes in tumor size. The cold stress was
introduced by changing the ambient temperature from its standard
value at 25-20 °C, 15 °C or 10 °C. The cold stress time was varied
between 0 and 60 min. They observed that the major changes in
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Fig. 11. Effect of cold stress temperature on a) the magnitude of the temperature contrast and b) the observation time required. Adapted from [73].

temperature occur for cold stress times lower than 10 min. After
10 min, the temperature decrease and become less steeped and
finally after 30 min, the changes in temperature are very slow.
Fig. 10a shows the temperature of the areola as a function of the
cooling time for the different cooling temperatures considered.
After removing the cold stress during the thermal recovery phase,
the temperature increased considerably during the first 15 min,
then, the changes were less tilted and after 25 min, the increase
in temperature was very slow (Fig. 10b).

The authors noted that the maximum temperature contrast is
obtained at around 30 min of the beginning of the thermal stress.
However, in the real case, the patient would be subjected to a cold
stress for 30 min, which can create discomfort in the patient due to
the prolonged thermal stress.

In a recent work, Amri et al. [73] performed an study of steady
state and transient simulations on a breast model with a malignant
tumor. They used a three dimensional model consisting of a rectan-
gular region with two different layers, the fat and the gland tissues.
The depth of the model was 50 mm (5 mm fat and 45 mm gland);
the tumor was embedded in the gland region. They studied the
effect of the tumor diameter and depth. To study the effect of the
tumor diameter, they considered diameters of 10, 20 and 30 mm.
The depth of the tumor varied between 5 and 30 mm. The ambient
temperature was 21 °C and the core temperature was 37 °C. For the
transient simulations, the authors considered cooling tempera-
tures of 5, 10 and 15 °C and cooling times of 10, 20, 30, 60 and
120s. The authors compared the thermal contrast between the
steady-state and transient simulations. Their results indicate that
the tumor diameter has a minimal on the thermal contrast when
the depth of the tumor is higher than 15 mm. They reported that
the cooling temperature has little effect on the magnitude of the
thermal contrast (Fig. 11a); for tumors deeper than 20 mm, the
thermal contrast is as low as 0.05 °C. For example, the maximum
thermal contrast for a 10 mm tumor and 1 min cooling with 5 °C
located at 5 mm is obtained around 8 min with a value of 1.2 °C.
They also reported that the time required to obtain the maximum
thermal contrast increases as the deep of the tumor increases
(Fig. 11b).

The work of Jiang et al. [90] reported cooling times of up to 1 h
in order to cool the whole breast and increase the temperature
contrast caused by the presence of the tumor. However, in a real
case, the patient would be for 1 h subjected to a cooling stress;
adopting these recommendations can cause great discomfort in
the patient. In contrast, Amri et al. [73] reported optimal cooling
times lower than 2 min, which is a more patient friendly approach.
However, the model adopted by the authors is a rectangular

domain, which does not resemble the shape of the breast. There-
fore more research is needed to identify a range of cooling param-
eters that both, be user friendly and allow high thermal contrasts
between the tumor and the healthy tissue. For tumors deeper than
15 mm, transient thermography provides similar values to steady-
state thermography.

4. Inverse modeling

Inverse modeling is the estimation of the value of the unknown
parameters in an equation when the solution is known. To esti-
mate the unknown parameters, initial values are considered and
the governing equation is solved for the set of estimated parame-
ters. The estimated solution is compared with the known solution
and optimization algorithms are used to estimate a new set of
parameters. A new solution is then obtained for the new set of
parameters. This procedure is repeated until the difference
between the estimated and the known solutions be smaller than
a convergence criterion. In the case of IR thermograms for breast
cancer diagnosis, the surface temperature distribution obtained
from IR thermograms is considered as the solution to the bio-
heat transfer equation. To implement inverse modeling, a model
for the breast is required. The bio-heat transfer equation is solved
in such domain for a set of initial values of the thermophysical
properties of the breast tissues. Then, optimization techniques
such as the Gradient Descent Method, the Levenberg-Marquardt
algorithm, or Genetic Algorithms are used to estimate the value
of the thermophysical properties. The inverse modeling problem
is typically ill posed with no unique solution since temperature
can only be measured at the surface of the breast and the temper-
ature profile inside the breast remains unknown.

4.1. Inverse modeling with analytical methods

Gescheit [96] emulated tumors by embedding paramagnetic
nanoparticles in a medium. They implanted the nanoparticles at
a given location and then heated the nanoparticles. An IR camera
captured the surface temperature and a model based on the steady
state heat equation in cylindrical coordinates was solved. They
used the Levenberg-Marquardt algorithm to fit the experimental
temperatures to the analytical model in order to determine the
depth of the nanoparticles. The results indicated that the heat gen-
eration and depth were predicted with 0% and 4.17% variation,
respectively. The conceptual work of Gescheit [96] was recently
taken to the practice by Han et al. [97] who used IR camera and
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regression analysis to differentiate cancerous and benign tumors
based on the tumor heat generation magnitude since cancer
tumors have higher generation rates Fig. 12 shows the comparison
between the experimental data and the regression analysis. Ye and
Shi [98] developed a MATLAB algorithm with multiple heat sources
to fit the surface temperature profile to an analytical model. They
achieved a true diagnostic in 90.1% of the malignant tumors and
in 83.3% of the benign tumors. The procedure was able to identify
that cancer tumors are denser and with irregular shapes as com-
pared with benign tumors.

4.2. Inverse modeling with numerical simulations

49009301822454900930439420-1377315412115-159448551
4350-1824990663575-1614805452755-1818005-82550-2021205
534670-2231390643255Numerical simulations provide great
insight of the thermal interactions occurring inside the breasts.
Numerical simulations work well if the breast properties are pro-
vided, but because every breast is different from each other, there
are not universal breast models or property values. Thermal prop-
erties of the breast vary from individual to individual and precise
knowledge of the properties of the breast tissue is important to
predict the presence of a tumor from a thermogram. Several
authors have used numerical simulations coupled with optimiza-
tion techniques to estimate the properties of the breast tissues
through surface temperature readings.

Lunaetal.[99] used the Boundary Element Method [100] to relate
abnormal skin surface temperature with tumor position, tumor size,

heat generation, and perfusion rate on a 3D rectangular domain. The
authors found that their method could determine the tumor posi-
tion, tumor size, and tumor heat generation within 5%, 1%, and 5%
of error, respectively. Moreover, the algorithm was capable of
detecting a small tumor of size 5 mm x 1 mm at a depth of 2 cm.

Paruch et al. [101] employed genetic algorithms and gradient
methods to estimate thermal and geometrical parameters of breast
cancer tumors. The gradient method used least square minimiza-
tion to determine the unknown parameters. The results indicate
that genetic algorithms identify thermal properties (power
strength) with a maximum error of 0.79%. The geometrical param-
eters (tumor size and location) were estimated with a maximum
error of 7.5%. Agnelli et al. [102] used computer simulations and
evolutionary algorithms to estimate the depth, size, and thermal
properties of an embedded tumor. Their method predicted tumor
characteristics with more than 95% accuracy. Das and Mishra
[71] estimated the location and size of the tumor from the temper-
ature profiles of the surface using genetic algorithms. The simula-
tions were carried out in a 2D rectangular domain and simulated
using finite volume method. The location and size of the tumor is
optimized till the error is minimized. Agnelli et al. [103] used pat-
tern search algorithms to determine the metabolic heat generation
and location of the tumor in a three dimensional domain. Fig. 13
shows the initial (blue) and target (green) positions of the tumor.
After the algorithm was applied, the tumor position changed to
the red oval, which is very close to the target position.

Jiang et al. [104] determined the properties of the breast from
the thermograms of the breast surface using inverse modeling.
The work is based on combined thermal and elastic modeling of
a tumorous breast subjected to gravity induced deformation that
has been used for the authors in other publications [86,105]. The
authors reported the Tumor Induced Temperature Contrast (TITC)
and reported more than 95% accuracy in the determination of ther-
mal properties.

5. Artificial intelligence in breast cancer detection

In the context of this paper, Artificial Intelligence (Al) is a group
of algorithms that can “learn” features from data. One of the most
important tasks of Al is data classification. Data classification is the
task of classifying previously information. To conduct data classifi-
cation, the algorithm must be trained with a set of data and the
corresponding classes. Support Vector Machines (SVMs) are
models that incorporate supervised learning mainly for classifica-
tion and regression. In SVMs, the different classes in the data are
identified and the separation between classes is achieved by means
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of hyperplanes. Most artificial intelligence algorithms used for
breast cancer detection are classification algorithms in which the
objective is to distinguish between healthy and breasts with a
malignant tumor. These algorithms need to be trained with ther-
mogram images labeled as malignant and healthy breasts.

Acharya et al. [106] used SVMs to classify 50 IR thermograms,
25 normal and 25 breasts with a cancer tumor. The authors
extracted different statistical indicators such as the mean, homo-
geneity, energy and entropy of the thermograms. From each of
the 25 thermograms in every class, the authors used 18 thermo-
grams for training and the remaining 7 were used for testing.
The use of the SVM resulted in a sensitivity of 85.71% and a speci-
ficity of 90.48%. The sensitivity is higher than the typical sensitivity
achieved by an expert radiologist, which is around 78%. The results
obtained by the authors are promising, but the database that they
used for training and test was very small. Therefore, the results
cannot be generalized. Tan et al. [107] collected 6000 temperature
sets obtained from 16 thermocouples placed on the breasts of
patients; 16 thermocouples per patient, 8 on each breast. They
used different 5 different classifiers, named feed forward neural
network, probabilistic neural network, fuzzy classifier, and Gaus-
sian mixture model and support vector machine. They used 5000
data for training and 1000 data for testing the classifiers. All clas-
sifiers achieved specificities above 80%. The best performance
was achieved by the SVM, with an average precision of 90.4%.
Recently, Francis et al. [108] used a SVM to classify abnormal ther-
mograms with an accuracy of 90.91%.

5.1. Artificial Neural Networks (ANNs)

Artificial Neural Networks (ANN) are algorithms trained with
data which purpose is to make predictions. In a neural network,
data is fed to the input layer and then processed in the hidden lay-
ers. Finally, the output from the last hidden layer serves as input to
the neurons in the output layer and a decision is taken. There could
be as many hidden layers as desired as well as neurons per layer.
ANNs have been widely used in problems related with classifica-
tion and recognition of objects within an image, achieving high
prediction rates. Recently, ANNs have been used to predict the
presence of breast cancer given a thermogram. To train the ANN,
many images both with cancer and without breast cancer must
be provided to the algorithm.
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Ng and Kee [78] used ANNs and bio-statistical methods to
detect cancerous tumors from IR thermograms. The thermograms
of 82 patients (30 asymptomatic, 48 benign and 4 malignant) were
used in the analysis. The inputs of the ANN were determined from
a regression analysis. To train their ANN, the authors used a radial
basis function with back propagation. The outputs were positive
(1) for malignant and benign cases or negative (0) for healthy
cases. The authors reported a maximum accuracy of 80.95% in
detecting the tumor. The radial basis function had 75% accuracy
in making a true diagnostic in the unhealthy population, and 90%
accuracy in the healthy population.

Mital and Pidarati [80], combined ANNs, genetic algorithms, and
computer simulations to relate the skin surface temperature with
the tumor depth, diameter, and heat generation. The ANN was
trained with the tumor characteristics to predict the surface tem-
perature distribution. A genetic algorithm received an experimental
or numerical temperature to find the corresponding tumor param-
eters with an initial population conformed by the outputs of the
neural network. The computational domain consisted of a layered
semi-spherical breast (Fig. 14a)). The surface temperatures found
with the ANN showed good agreement with the numerical simula-
tion (Fig. 14c)). The genetic algorithm determined tumor depth and
diameter within an error of 5 mm and 2 mm, respectively.

In general, predictions using IR thermograms [78] present more
error than predictions using numerical simulations [80,99]. This is
because the thermophysical properties in the numerical simula-
tions are considered isotropic and surface temperature variations
are due only to changes in factors such as metabolic rate, tumor
depth and position and not due to local changes in the structure
of the breast. One of the benefits of using computers simulations
to train the ANNSs is that the number of cases available is not lim-
ited to the amount of clinical data since changing tumor parame-
ters leads to a new training data. However, the numerical model
employed must be well validated with clinical data in order to pro-
duce accurate surface temperatures.

6. Current status and future research needs
6.1. Numerical simulations with more realistic computational domains
Simulations rely on governing equations that are numerically

solved based on the conditions applied along the boundaries of
the domain and the properties of the various tissue layers. There-

33 : : ' : : . .
32+t °
i
g2 31
2 .
<
-
2 30+ P
€ fr
S 74
g7 ¢/
d
= ”/’;
A 28} Yk
J'l
g

7t = i

Z ' U

26 A 1 i A A A A

0 10 20 30 40 50 60 70 80
X location
—=— Direct numerical simulation (©)

—&— ANN prediction

Fig. 14. (a) 2D breast model used by [80], (b) temperature distribution in the computational domain, and (c) comparison of surface temperature from the direct simulations

and ANN. Figure adapted from [80].



2318 S.G. Kandlikar et al./International Journal of Heat and Mass Transfer 108 (2017) 2303-2320

fore, the form of the computational domain is one of the most
important factors to be considered while performing a simulation.
The computational domains have evolved from rectangular to the
actual breast geometry reconstructed from MRI. Rectangular
domains have provided a first insight into the procedures needed
to use numerical methods and artificial intelligence to predict
the tumor characteristics (location, size, heat generation, etc.).
These analyses have also provided information regarding tumor
displacement due to breast deformation. However, it is recom-
mended that future numerical simulations should obtain surface
temperature distribution using 3D reconstructed breast geome-
tries. Jiang et al. [86] presented the first thermal-elastic model to
investigate the effect of gravity deformation on the surface temper-
ature, but the computational domain was generated by applying a
gravity load to an initial hemispherical domain, and the generated
geometry was not validated with the actual shape. The solution of
the bioheat equation in the actual shape of the breast will be able
to predict the surface temperature profile more accurately. This
level of accuracy is critical to reveal the exact relationship between
the tumor characteristics and its thermal signature.

6.2. Validation of numerical simulations

Numerical simulations have highlighted the most important
effects of the tumor on the breast thermal profile. Such numerical
models use thermal and mechanical properties for the healthy and
unhealthy regions, which have been experimentally determined.
However, a numerical model can only be improved by comparing
the computed results against experimental data. Future research
should consider the development of models that reproduce all
the common thermal trends observed over the breast surface.
The simulations in Ng and Sudharsan [74,94] showed surface tem-
peratures which are in close agreement with experimental values,
but their model generated homogeneous temperature distribu-
tions which is not in accordance with previously reported IR
images [78]. The model of Osman and Affify [75,79] with concen-
tric layers has asymmetric temperature distributions and colder
temperatures around the areola region, but it considered arteriove-
nous heat exchange which has been proven to be a non-valid
assumption for the breast [74]. The gravity deformed model pro-
posed by Jiang et al. [86] showed asymmetric temperature distri-
butions, but the areola region was not colder, as has been
observed with the IR images [78]. Therefore, future advances are
needed on developing an improved model that resembles the ther-
mal characteristics of the breast with and without a tumor. Such a
model is needed to more accurately determine the variations in the
surface temperature due to the existence of a cancerous tumor.
Moreover, this model will contribute on establishing the changes
in the thermal contrast when the breast is subjected to transient
cooling techniques.

6.3. Accuracy

The low sensitivity of IR detectors and the lack of standardized
acquisition procedures have been the two major limitations for
high accuracy in the diagnosis of breast cancer. The sensitivity of
IR cameras has improved from 0.5 °C in the 1960 decade to below
0.02 °C in modern IR cameras. With modern IR cameras, it is possi-
ble to capture accurately the more subtle temperature variations in
the breasts. In regards to the acquisition procedure, conditions
such as the ambient and the imaging position of the patient were
not regulated until recently. Nowadays, there exists a protocol
for IR breast thermography in order to improve the quality of ther-
mograms and to remove undesired effects such as cooling due to
evaporation of sweat.

The accuracy in breast cancer detection has increased with the
improvement of IR detectors and imaging conditions. Recent stud-
ies report typical accuracies of 78% (Wishart et al. [54]) using IR
detectors with a sensibility of 0.08 °C. Further research is needed
to investigate the effect of using IR detectors with sensitivities
below 0.02 °C on the accuracy detection of breast cancer.

6.4. Patient discomfort

One of the most important aspects in the diagnosis of breast
cancer is the patient comfort during the procedure. In the case of
transient thermograms, these have shown higher contrast between
the tumor and the healthy breast as compared with steady-state
thermograms. However this increase in contrast is significant only
when the tumor is shallow, at depths less than 15 mm. To induce
the higher contrast, cold air typically between 5 °C and 15 °C is
blown to the breasts for periods of time between 2 min and
6 min. The maximum contrast is achieved with colder air directed
for longer periods of time. However, these conditions result in
more discomfort to the patient. The numerical simulations of Amri
et al. [73] show that the maximum contrast caused by a malignant
tumor 15 mm deep is 0.2 °C when cooled for 2 min with air at
10 °C; the observation time required to obtain this maximum con-
trast is 30 min. For deep tumors, the contrast obtained using tran-
sient thermography is similar to the contrast obtained using
steady-state thermograms. The advantage of steady state over
transient thermography is that it does not cause patient discomfort
due to an exposure to a cold air stream.In conclusion, breast cancer
is a significant cause of morbidity and mortality worldwide. Early
detection and secondary prevention of advanced disease remains
the most effective means of reducing the impact of this potentially
lethal disease. Current methods of screening are effective but inad-
equate; innovative methods to detect early breast cancer effi-
ciently and without excessive discomfort are needed to improve
the current state. Thermal analysis seems to be an effective way
to develop this non-ordinary tool. Over the last decade, significant
advances have been made in various areas, which could potentially
apply this technology more effectively. IR cameras are now capable
of detecting temperature variations of 0.02 K or less. Protocols to
detect cancerous tumors are now standardized. Mathematical
models have been developed to relate the surface temperature
with the tissue and tumor properties which show good agreement
with experimental data. Computer software can now virtually
reconstruct the anatomy of the breast with MRI scans. Artificial
intelligence has proved to be an effective tool to classify the tumor
with high specificity and sensitivity values. Unfortunately, these
areas are not yet linked, and effort is needed on combining these
multidisciplinary advancements. The energy and faith that we ded-
icate to this endeavor will lead to a more effective, less expensive
and more comfortable tool for reducing the health impact of this
common malady.
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