Effects of high optical injection levels in polycrystalline Si wafers on carrier transport

Doneisha Steele, **Andrey Semichaevsky**, Chemistry, Physics, and Engineering, Lincoln University (PA)

> APS Annual March meeting, New Orleans, LA, March 15, 2017

Motivation

Concentrator photovoltaics:

- Explain efficiency degradation of poly-Si PV solar cells at high optical injection levels seen in previous experiments;
- Relate extended defect density to the observed electrooptical properties of poly-Si and to I-V characteristics of solar cells;
- Explain density-dependent (optical injection-dependent) recombination in polycrystalline Si;

Broader impacts: developing electrical engineering research at Lincoln University (PA): Circuits, Electronics, Optoelectronics, Image Processing.

Previous work - experiments

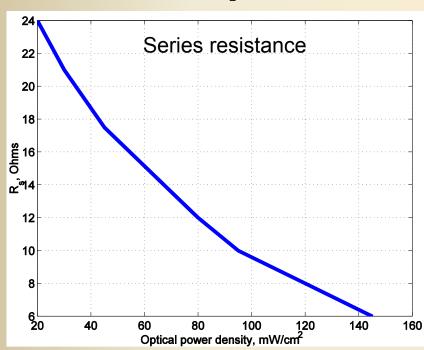
- Reduced fill factors in multicrystalline silicon solar cells due to injection-level were discussed in:
 - D. Macdonald and Cuevas A., *Progress in Photovoltaics:* Research and Applications, **8**, pp. 363-375, 2000.
- Intensity-dependent changes in equivalent circuit parameters of Si solar cells:
 - E. Connell, A. Semichaevsky, *43rd IEEE-PVSC*, June 8, 2016, Portland, OR.
 - D. Nzonzolo, Lilonga-Boyenga, G. Sissoko, *Energy and Power Engineering*, **6**, 25-36, 2014.
- Recombination lifetimes affected by transition metal impurities:
 - D. Macdonald, Applied Physics Letters, 85, 4061-4063, 2004

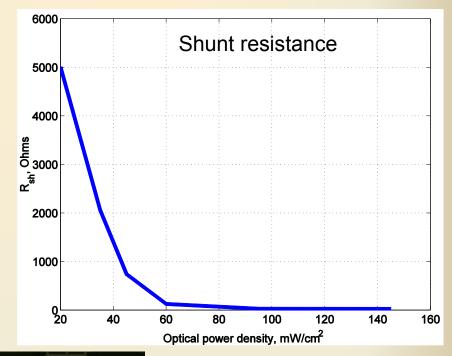
Previous work-models and parameters

- ➤ Injection-dependent recombination lifetimes in poly-Si were measured, and the contributions of bulk trap, e.g., transition metal (Fe, Ti) interstitials, and surface recombination effects were studied in:
 - D. McDonald, Sinton, R.A., Cuevas A., *Journal of Appl. Phys.*, **89**, 2772-2777, 2001,
 - J. Schmidt, Appl. Phys. Lett., 82, pp. 2178, 2003.
- Quantitative models for Auger recombination in silicon were discussed in:
 - A. Richter, A. Cuevas, et al., Phys. Rev. B, 86, 165202, 2012.

Our experiments

at max. intensities of up to 65 Suns (ms- pulses)
Sinton WCT-120 lifetime tester


I-V curve and AC impedance spectroscopy at intensities of up to 5 Suns (continuous)
Solar simulator, ABET, Inc.



Old experimental results for PV cells

$$R_s = 178.2 P_{opt}^{-0.6403} \Omega,$$

$$R^2 = 0.90$$

$$R_{sh} = 5.2 \times 10^7 P_{opt}^{-3.008} \Omega,$$

$$R^2 = 0.92$$

E. Connell, A. Semichaevsky, presented at 43rd IEEE-PVSC, Portland, OR, June 2016.

Interpretation of old measurements

What is the meaning of $R_{sh} \sim (P_{opt})^{-3}$?

Steady-state 1-D transport of minority electrons by diffusion:

$$G - \frac{np}{\tau_n p + \tau_p n} - (C_n n + C_p p) np + \frac{\mu_p kT}{e} \frac{d^2 n}{dx^2} = 0$$

$$G - k_S \Delta n - k_a (\Delta n)^3 + D \frac{d^2 (\Delta n)}{dx^2} = 0, \quad G = k P_{opt}$$
Diffusion current density: $J_d = -D \frac{d\Delta n}{dx} \approx J_S - J_R$

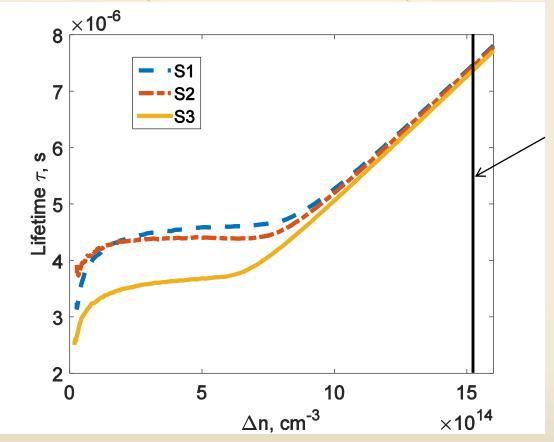
Diffusion current density:
$$J_d = -D \frac{a\Delta n}{dx} \approx J_S - J_R$$

Equivalent shunt resistance:
$$R_{sh} \approx \frac{\ddot{V}_{oc}}{J_R A}$$


Answer: yes, Rsh ~ (Popt)-3 suggests higher-order recombination processes in finished Si PV cells.

Results for carrier lifetimes

Density-dependent lifetimes, p-type Si


We observed significant variability in lifetime dependences on injection level among the samples that come from different batches.

U. Anyanwu, C. Harris, A. Semichaevsky, submitted to 44th IEEE-PVSC, Washington, DC, June 2017 and to IEEE Journal of Photovoltaics, 2017.

Results for carrier lifetimes

Density-dependent lifetimes, p-type Si

lopt~64.3 Suns or 64.3 kW/m²

Lifetime dependences on optical injection converge at high intensities for the samples that come from the same batch.

Contribution of Auger recombination

 Using the model described in A. Richter, A. Cuevas, et al., Phys. Rev. B, 86, 165202, 2012.

$$C_{\rm n} = 2.8 \times 10^{-31} \frac{cm^6}{s}, C_{\rm p} = 9.9 \times 10^{-32} \frac{cm^6}{s}$$

the relative contribution of Auger recombination is expected to be small. $I_{opt}=0...65 Suns,~\Delta n_{\rm max}\approx 2\times 10^{15}cm^{-3}$ For

$$\tau_{Auger} = \frac{1}{(C_n + C_p)\Delta n^2} \approx 0.65s >> \tau_{eff} \approx 10^{-5} s$$

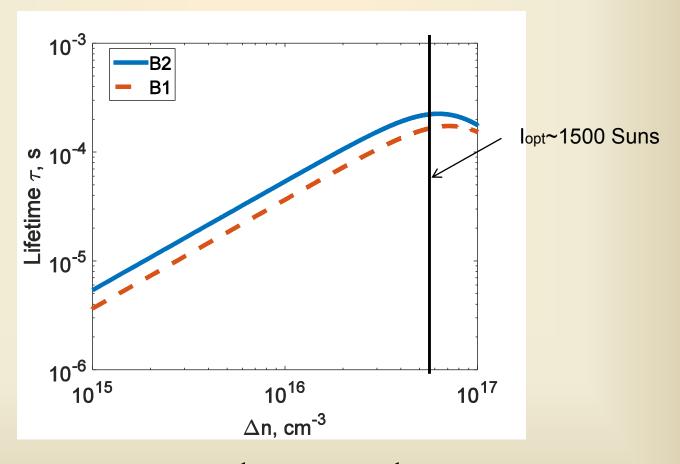
Theory

Transport modeling

$$\frac{\partial n}{\partial t} = G(t) - R(n, p) + \nabla \cdot \left[-\mu_n n \nabla \Phi + \frac{\mu_n kT}{e} \nabla n \right],$$

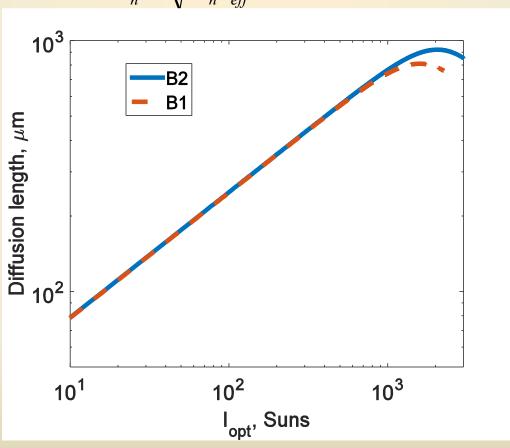
$$\frac{\partial p}{\partial t} = G(t) - R(n, p) - \nabla \cdot \left[-\mu_p p \nabla \Phi - \frac{\mu_p kT}{e} \nabla p \right]$$

 Measurements of injection-dependent lifetimes/recombination rates (Sinton, Inc.)


$$R_{SRH} = \frac{np}{\tau_{n} p + \tau_{p} n}, \quad R_{Auger} = (C_{n} n + C_{p} p) np$$

$$\frac{1}{\tau(n)} = \frac{1}{\tau_{SRH}(n)} + \frac{1}{\tau_{rad}(n)} + \frac{1}{\tau_{Auger}(n)} \approx An^{3} + Bn^{2} + Cn + D$$

Extrapolated effective NR lifetime

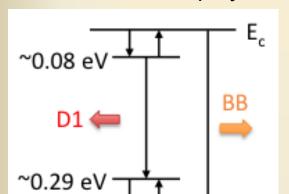

$$\tau(n) \approx 1/(\frac{1}{\tau_{SRH}(n)} + \frac{1}{\tau_{Auger}(n)})$$

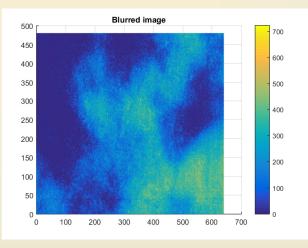
Extrapolated diffusion length for e

$$L_n = \sqrt{D_n \tau_{eff}}$$
 at T = 300K

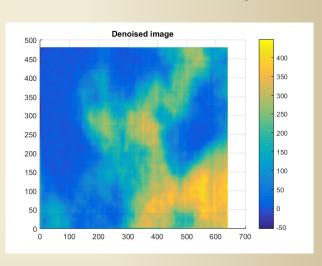
Conclusions

- > SRH recombination process is identified to be dominant from PCD studies at incident intensities of up to 65 Suns;
- Macroscale (semi-classical) transport models are suitable for assessing effects of injection-dependent recombination;
- PL IR images help identify densities of extended defects that mediate recombination;
- Research in the project is highly suitable for both Engineering Science and Physics majors.




Future work: effects of microstructure

 Information about defects in poly-Si comes from IR PL images from Harley T. Johnson's group at UIUC;


Spectral signature of a dislocation in poly-Si

Raw PL image

Processed PL image

PL images were taken at UIUC under the support of the NSF GOALI award 1300466.

Acknowledgement

- The author acknowledges support from the NSF-RIA grant HRD-1505377 and supplement HRD-1649584, including faculty release time, student support, equipment acquisition, conference travel, and publication costs;
- Important experimental data were also obtained as a result of NSF GOALI award 1300466.

