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Abstract

Natural language understanding and dia-

log management are two integral compo-

nents of interactive dialog systems. Pre-

vious research has used machine learning

techniques to individually optimize these

components, with different forms of direct

and indirect supervision. We present an

approach to integrate the learning of both a

dialog strategy using reinforcement learn-

ing, and a semantic parser for robust nat-

ural language understanding, using only

natural dialog interaction for supervision.

Experimental results on a simulated task

of robot instruction demonstrate that joint

learning of both components improves di-

alog performance over learning either of

these components alone.

1 Introduction

Natural language understanding and dialog man-

agement are two integral components of a dialog

system. Current research typically deals with opti-

mizing only one of these components. We present

an approach to integrate the learning of both a di-

alog strategy using reinforcement learning, and a

semantic parser for robust natural language under-

standing, using only natural dialog interaction for

supervision.

Research in dialog systems has primarily been

focused on the problems of accurate dialog state

tracking and learning a policy for the dialog sys-

tem to respond appropriately in various scenarios.

Dialogs are typically modeled using Partially Ob-

servable Markov Decision Processes (POMDPs),

and various reinforcement learning algorithms

have been proposed and evaluated for the task of

learning optimal policies over these representa-

tions to accomplish user goals using as short and

natural a dialog as possible (Gašić and Young,

2014; Pietquin et al., 2011; Young et al., 2013).

However, such systems typically assume a fixed

language understanding component that is avail-

able a priori.

Semantic parsing is the task of mapping natural

language to a formal meaning representation. It

has the potential to allow for more robust mapping

of free-form natural language to a representation

that can be used to interpret user intentions and

track dialog state. This is done by leveraging the

compositionality of meaning inherent in language.

Prior work has shown that a semantic parser, incre-

mentally updated from conversations, is helpful in

dialogs for communicating commands to a mobile

robot (Thomason et al., 2015). We show that in-

cremental learning of a POMDP-based dialog pol-

icy allows for further improvement in dialog suc-

cess.

A major challenge with combining the above

parser and dialog policy learning techniques is

that reinforcement learning (RL) algorithms as-

sume that the dialog agent is operating in a sta-

tionary environment. This assumption is violated

when the parser is updated between conversations.

For example, the improved semantic parser may

be able to extract more information from a re-

sponse to a question, which the old parser could

not parse. So the RL algorithm may have earlier

assumed that asking such a question is not use-

ful, but this is not the case with the updated parser.

Our results show that this effect can be mitigated

if we break the allowed budget of training dialogs

into batches, updating both parser and policy after

each batch. As the next training batch gets col-

lected using the updated parser, the policy can be

updated using this experience to adapt better to it.

We demonstrate, using crowd-sourced results with

a simulated robot, that by integrating learning of

both a dialog manager and a semantic parser in
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this manner, task success is improved over cases

where the components are trained individually.

2 Related Work

Prior work has used dialog to facilitate robot task

learning, e.g. She et al. (2014), but does not ac-

count for uncertainty or dynamic changes to the

language understanding module when developing

a system policy. Some works use a POMDP model

and common-sense knowledge (Zhang and Stone,

2015) or generate clarification questions in a prob-

abilistic manner (Tellex et al., 2014), but these

too assume that a fixed and well-trained natural

language understanding component is available a-

priori. Kollar et al. (2013) use a probabilistic pars-

ing and grounding model to understand natural

language instructions and extend their knowledge

base by asking questions. However, unlike this

work, they do not use semantic parsing to lever-

age the compositionality of language, and also use

a fixed hand-coded policy for dialog.

There has been considerable work in seman-

tic parsing using both direct supervision in the

form of annotated meaning representations (Wong

and Mooney, 2007; Kwiatkowski et al., 2013; Be-

rant et al., 2013) and indirect signals from down-

stream tasks (Artzi and Zettlemoyer, 2011; Artzi

and Zettlemoyer, 2013; Thomason et al., 2015).

Artzi and Zettlemoyer (2011) use clarification di-

alogs to train semantic parsers for an airline reser-

vation system without explicit annotation of mean-

ing representations. More related to our work is

that of Thomason et al. (2015), who incorporated

this general approach into a system for instructing

a mobile robot; however, they use a simple model

of dialog state and a fixed, hand-coded dialog pol-

icy. We show that learning a dialog policy in ad-

dition to this, is more beneficial than only parser

learning. We also use a richer state representation

that incorporates multiple hypotheses from the se-

mantic parser.

There has also been considerable work in goal-

directed dialog systems in domains such as infor-

mation provision (Young et al., 2013). These sys-

tems model dialog as a POMDP and focus on ei-

ther the problem of tracking belief state accurately

over large state spaces (Young et al., 2010; Thom-

son and Young, 2010; Mrkšić et al., 2015; El Asri

et al., 2016) or efficiently learning a dialog pol-

icy over this state space (Gašić and Young, 2014;

Pietquin et al., 2011; Png et al., 2012). However,

these systems typically assume a fixed natural lan-

guage understanding component. In this work, we

combine language learning with principled dialog

strategy learning.

More recently, there has been work on model-

ing various components of a dialog system using

neural networks (Mrkšić et al., 2015; Wen et al.,

2015). There have also been some end-to-end neu-

ral network systems that simultaneously learn di-

alog policy and language comprehension for goal

directed dialog (Wen et al., 2016; Williams and

Zweig, 2016; Bordes and Weston, 2016), but they

do not use a fully compositional semantic parser.

Williams and Zweig (2016) use a very simple

keyword-spotting based technique for processing

input user utterances, which is unlikely to be able

to handle out-of-vocabulary expressions for enti-

ties. Bordes and Weston (2016) explicitly attempt

to handle out-of-vocabulary utterances in a neu-

ral dialog system but do not demonstrate much

success. We expect that in a domain such as

ours where out-of-vocabulary utterances are fairly

likely, for example, in different forms of address

for a person, a semantic parser that can be incre-

mentally updated from a small number of interac-

tions is likely to perform better. However, an em-

pirical comparison of the two in domains where

compositional language understanding is expected

to be beneficial, is an interesting direction of future

work.

3 Background - Partially Observable

Markov Decision Process (POMDP)

A Partially Observable Markov Decision Pro-

cess (POMDP) is a tuple (S, A, T, R, O, Z, γ, b0),
where S is a set of states, A is a set of actions, T

is a transition function, R is a reward function, O

is a set of observations, Z is an observation func-

tion, γ is a discount factor and b0 is an initial belief

state (Kaelbling et al., 1998). These are defined as

follows.

At any instant of time t, the agent is in a state

st ∈ S. This state is hidden from the agent and

only a noisy observation ot ∈ O of st is provided

to it. The agent maintains a belief state bt which is

a distribution over all possible states it could be in

at time t, where bt(si) gives the probability of be-

ing in state si at time t. Based on bt, the agent

chooses to take an action at ∈ A according to

a policy π, commonly represented as a probabil-

ity distribution over actions where π(at|bt) is the
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probability of taking action at when the agent is

in belief state bt. On taking action at, the agent

is given a real-valued reward rt, transitions to a

state st+1, and receives a noisy observation ot+1

of st+1.

State transitions occur according to the

probability distribution P (st+1|st, at) =
T(st, at, st+1), observations are related

to the states by the probability distribu-

tion P (ot|st, at−1) = Z(ot, st, at−1) and

rewards obtained follow the distribution

P (rt|st, at) = R(st, at, st+1).
The objective is to identify a policy π that is

optimal in the sense that it maximizes the expected

long term discounted reward, called return, given

by

g = Eπ

[

∞
∑

t=1

γtrt

]

While there exist both exact and approximate

methods for solving POMDPs, these do not usu-

ally scale well to the state spaces commonly used

in dialog domains. This has led to the develop-

ment of approximate representations that exploit

domain-specific properties of dialog tasks to allow

tractable estimation of the belief state and policy

optimization (Young et al., 2013).

4 Background - Q-Learning using

Kalman Temporal Differences

The quality of a policy π can be estimated using

the action value function

Qπ(s, a) = Eπ

[

∞
∑

t=1

γtrt | s0 = s, a0 = a

]

The optimal policy satisfies the Bellman equation,

Q∗(s, a) = Es′

[

R(s, a, s′) + γmaxa′∈AQ∗(s′, a′)
]

When the state space is very large or con-

tinuous, Qπ cannot be computed for each state

(or belief state) individually and is hence as-

sumed to be a function with parameters θ over

some features that represent the state. When the

transition or reward dynamics are not constant

(non-stationary problem), a suitable approxima-

tion is the Kalman Temporal Differences frame-

work (Geist and Pietquin, 2010). This casts the

function approximation as a filtering problem and

solves it using Kalman filtering. The specializa-

tion for learning the optimal action value function

is called the KTD-Q algorithm.

Filtering problems estimate hidden quantities

X from related observations Y, modeling X and

Y as random variables. When estimating action

values, X corresponds to the function parameters,

θ and the observations, Y, are the estimated re-

turns, rt + γ maxa Q̂θt
(st+1, a). Random noise

is added to both of these to allow for parameters

to change over time. The update rules are derived

from Kalman Filtering Theory and not included

here for the sake of brevity.

5 Dialog System

Our system initiates the dialog by requesting the

user for a command. The user can command the

system to perform two actions: navigation and de-

livery. Navigation has a single parameter for the

destination. For example “go to Alice’s office”

would be a possible way to command the robot

to perform a navigation command, whose location

is a room that is the office of a person alice.

Delivery has two parameters: the item to be de-

livered and the person to receive it. For example,

“bring Alice a hamburger” would be a possible

way to specify a delivery command whose patient

is an item hamburger and recipient is a person

alice.

The robot makes an initial guess of the desired

action from the user’s response, and then may ask

clarification questions in case of insufficient un-

derstanding. At each step, it can respond with one

of four dialog acts: asking the user to repeat their

command, confirming a command or an argument

value, requesting a specific argument of a com-

mand, and executing an action (thereby ending the

dialog). A sample dialog is shown in Table 1.

Table 1: An sample clarification dialog

ROBOT How can I help?
USER bring the coffee to dr morgan
ROBOT Sorry I couldn’t understand that. Could you re-

word your original request?
USER take the coffee to dr morgan
ROBOT Sorry I couldn’t understand that. Could you re-

word your original request?
USER give the coffee cup to dr morgan
ROBOT You want me to bring coffee for George?
USER no mallory morgan
ROBOT Whom would you like me to bring something

to?
USER mallory morgan
ROBOT What would you like me to bring?
USER coffee
ROBOT I brought coffee to Mallory. Was this the correct

action?
USER yes
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Given a user response, a semantic parser is used

to convert utterances to logical forms which are

then grounded using world knowledge (e.g. re-

solving the representation of “Alice’s office” to a

particular room). These grounded logical forms

are then used to update the belief state maintained

by the system. The next step to be taken by the

system, given the belief state, is then chosen based

on the current dialog policy. Once the conversa-

tion is complete, the parser and policy can be up-

dated appropriately. These steps are outlined in

greater detail in sections 5.1 and 5.2.

The dialog is considered a success if the final

action taken is correct and a failure otherwise. The

user also has the ability to prematurely end the di-

alog, and any conversation terminated in this man-

ner is also considered a failure.

5.1 Semantic Parser Learning

Semantic parsing maps a natural language sen-

tence such as “Go to Alice’s office” to a logical

form expressed in λ-calculus such as:

walk(the(λx.office(x) ∧

possess(alice, x) ∧

person(alice))) (1)

Grounding against real-world knowledge, this will

identify a room, say room 3512, which is an office

that is owned by alice.

This formalism reduces the number of lexical

entries the system needs to learn by exploiting

compositional reasoning over language. For ex-

ample, if the system learns that “Alice Ashcraft”

and “Alice” both refer to the entity alice, no fur-

ther lexical entries are required to resolve “Go to

Alice Ashcraft’s office” to the same semantic form

(1).

In our system, semantic parsing is performed

using probabilistic CKY-parsing with a Combi-

natory Categorial Grammar (CCG) and meanings

associated with lexical entries. Perceptron-style

updates to parameter values, that minimize the

log-likelihood of the training data, are used dur-

ing training to weight parses to speed search and

give confidence scores in parse hypotheses (Zettle-

moyer and Collins, 2005).

The parser is trained using paired sentences and

logical forms. A small supervised training set is

used to initialize the parser. Training continues us-

ing pairs obtained through weak supervision col-

lected from user dialogs (Thomason et al., 2015).

We use two such types of training pairs. The first

consist of responses that are likely to correspond

to the complete action, and the logical form in-

duced by the action executed by the robot at the

end of the dialog. Such responses are expected

from the initial prompt to the user and questions

that ask the user to repeat the command. We obtain

multiple semantic parses for these responses, and

parses that correspond to a complete command,

and ground to the action finally taken by the robot,

are paired with the response to form one set of

training pairs. For example, from the conversa-

tion in Table 1, such training examples would be

generated by pairing the responses “bring the cof-

fee to dr morgan”, “take the coffee to dr morgan”

and “give the coffee cup to dr morgan” with the

semantic form bring(mallory,coffee).

The second set of training pairs is obtained from

the arguments of the action, such as the patient or

location involved. This consists of responses to re-

quests for specific arguments. Again, we consider

multiple semantic parses for these responses, and

select those that are of the correct syntactic form

for a single argument value, and which ground to

the corresponding argument value in the final ac-

tion, to be paired with the response. For exam-

ple, from the conversation in Table 1, such training

examples would be generated by pairing the re-

sponse “mallory morgan” with the semantic form

mallory, and the response “coffee” with the se-

mantic form coffee. These paired responses

and semantic forms can then be used to retrain the

parser between conversations.

This weak supervision may be somewhat noisy

because it assumes that the form of the user’s re-

sponse matches the expected response type for

the question. However, this is unlikely to gener-

ate spurious training examples, because we addi-

tionally place constraints on the syntax of the re-

sponse. For example, if we receive “Go to Bob’s

office” as a response when we expect an argument

value, since the response is an imperative sen-

tence, not a noun phrase such as “Bob’s office”,

no training example would be generated from it.

Prior experimental results (Artzi and Zettlemoyer,

2011; Thomason et al., 2015) suggest that learn-

ing using such weak (potentially noisy) supervi-

sion from clarification dialogs is effective at im-

proving semantic parsers.
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5.2 Dialog Strategy Learning

We use a POMDP to model dialog and learn a pol-

icy (Young et al., 2013), adapting the Hidden In-

formation State model (HIS) (Young et al., 2010)

to track the belief state as the dialog progresses.

The key idea behind this approach is to group

states into equivalence classes called partitions,

and maintain a probability for each partition in-

stead of each state. States within a partition are

those that are indistinguishable to the system given

the current dialog.

More concretely, our belief state can be fac-

tored into two main components. The first is the

action (such as navigation and delivery) and ar-

gument values of the goal (such as the patient

or location) which the user is trying to convey,

g = {ga, gPAT , gRCP , gLOC}. Goal parameters

are represented in terms of semantic roles - patient

(gPAT ), recipient (gRCP ) and location (gLOC),

to allow them to generalize across different ac-

tions. The second component contains informa-

tion from the most recent user utterance, u =
{ut, ua, uPAT , uRCP , uLOC}. Here, ut is the type

of the utterance – affirmation, denial, providing in-

formation about a complete action, or providing

information about a specific argument. The com-

ponents ua, uPAT , uRCP and uLOC respectively

refer to the action, patient, recipient and location

mentioned in the most recent user utterance, any

of which can be null. This representation allows

the method to be applicable to any action that can

be expressed using up to 3 arguments.

After every user response, a beam of possi-

ble choices for u can be obtained by grounding

the beam of top-ranked parses from the semantic

parser. Semantic type-checking is used to disal-

low violations such as alice serving as the lo-

cation argument of a navigation. However, there

are a large number of possible values for g and

we use the idea of partitions (Young et al., 2010)

to track their probabilities in a tractable manner.

A partition is a set of possible goals g
(i) which

are equally probable given the conversation so far.

The probability of a partition is the sum of prob-

abilities of all goals in the partition. Initially, all

goals are in a single partition of probability 1.

When an utterance hypothesis u is obtained, ev-

ery partition currently maintained is split if needed

into partitions that are either completely consistent

or inconsistent with u. For example, if a partition

p has goals containing both navigation and deliv-

ery actions, and u specifies a delivery action, p

will have to be split into one partition p1 with all

the navigation goals and another partition p2 with

all the delivery goals. The probability mass of p

is divided between p1 and p2 in proportion to their

sizes, to maintain the invariant that the probabil-

ity of a partition is the sum of the probabilities of

the goals contained in it. Then, given the previous

system action m, The belief b(p,u) is calculated

as in the HIS model as follows

b(p,u) = k ∗P (u)∗T (m,u)∗M(u,m, p)∗ b(p)

Here, P (u) is the probability of the utterance hy-

pothesis u given the user response, which is ob-

tained from the semantic parser. T (m,u) is the

probability that the type of the utterance hypothe-

sis ut is compatible with the previous system ac-

tion m, for example, if the system asks for the con-

firmation of a goal, the expected type of response

is either affirmation or denial. This is determined

by system parameters. M(u,m, p) is a 0-1 value

indicating whether the action and argument values

mentioned in the utterance, system action, and par-

tition agree with each other (an example of where

they do not is an utterance mentioning an action

not present in any goal in the partition) and b(p)
is the belief of partition p before the update, ob-

tained by marginalizing out u from b(p,u). k is a

normalization constant that allows the expression

to become a valid probability distribution. We also

track the number of dialog turns so far.

The belief state is a distribution over all possi-

ble hypotheses given the conversation so far. The

HIS model allows tracking probabilities of the po-

tentially large number of hypotheses. However, it

is difficult to learn a policy over this large a state

space in a reasonable number of dialogs. Thus,

we learn a dialog policy over a summary state as

in previous work (Young et al., 2010; Gašić and

Young, 2014). Table 2 contains the features used

to learn the policy. Also, the policy is learned over

abstract dialog acts (ask user to rephrase the en-

tire goal, ask for a specific parameter, confirm a

full/partial goal, execute a goal), which are con-

verted to a system response by using parameters

from the most likely hypothesis.

It is important to note that while only the top

two hypotheses are used by the policy to choose

the next action, it is useful to maintain the belief of

all hypotheses because a hypothesis that is initially

of low probability may become the most probable

after additional turns of dialog.
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Probability of top hypothesis

Probability of second hypothesis

Number of goals allowed by the partition in the top hy-
pothesis

Number of parameters of the partition in the top hypoth-
esis, required by its action, that are uncertain (set to the
maximum value if there is more than one possible ac-
tion)

Number of dialog turns used so far

Do the top and second hypothesis use the same partition
(0-1)

Type of last user utterance

Action of the partition in the top hypothesis, or null if
this is not unique

Table 2: Features used in summary space

The choice of policy learning algorithm is im-

portant because learning POMDP policies is chal-

lenging and dialog applications exhibit proper-

ties not often encountered in other reinforcement

learning applications (Daubigney et al., 2012).

We use KTD-Q (Kalman Temporal Difference Q-

learning (Geist and Pietquin, 2010)) to learn the

dialog policy as it was designed to satisfy some of

these properties and tested in a dialog system with

simulated users (Pietquin et al., 2011). The prop-

erties we wished to be satisfied by the algorithm

were the following:

• Low sample complexity in order to learn

from limited user interaction.

• An off-policy algorithm to enable the use

of existing dialog corpora to bootstrap the

system, and crowdsourcing platforms such

as Amazon Mechanical Turk during training

and evaluation.

• A model-free rather than a model-based al-

gorithm because it is difficult to design a

good transition and observation model for

this problem (Daubigney et al., 2012).

• Robustness to non-stationarity because the

underlying language understanding compo-

nent changes with time (Section 5.1), which

is likely to change state transitions.

To learn the policy, we provided a high positive re-

ward for correct completion of the task and a high

negative reward when the robot chose to execute

an incorrect action, or if the user terminated the

dialog before the robot was confident about taking

an action. The system was also given a per-turn

reward of −1 to encourage shorter dialogs.

6 Experimental Evaluation

The learning methods described above were ap-

plied to improve an initial dialog system using

weak supervision from dialog interaction with real

users. The dialog system was initialized using

data from the conversation logs of Thomason et

al. (2015), which also consist of interactions be-

tween a human user and a robot to which a high-

level command must be communicated, and which

asks clarifying questions when attempting to un-

derstand the dialog.

6.1 Initialization

The semantic parser was initialized using a small

seed lexicon and trained on a small set of super-

vised examples constructed using templates for

commands gathered from the conversation logs.

While the parser can be used even if initialized us-

ing only a handful of hand-coded training exam-

ples, the increased robustness obtained by training

on templated sentences results in less frustrating

interaction during initial dialogs.

The RL component was first initialized with a

Q-function approximation of the hand-coded pol-

icy of Thomason et al. (2015). The hand-coded

policy was encoded in the form of if-then rules

and had to be mapped to a Q-function appropriate

for the KTD-Q algorithm, which assumes the Q-

function is a probability distribution with a mean

that is a linear function of the feature space. We

obtain a set of “training points” for these linear

weights by densely sampling the feature space.

The hand coded policy is then used to identify

the correct action for each of these feature vectors.

The target for a training point is a high positive Q

value when combined with the correct action and

a 0 value when combined with any incorrect ac-

tion. The weights were then initialized using lin-

ear regression over these examples. Finally, we

trained the system on the above mentioned con-

versation logs, improving both the initial POMDP

dialog policy and the semantic parser.

The simplest alternative to such an initialization

would be to initialize the policy at random, but this

would lead to a large number of frustrating dialogs

before the system learns a reasonable policy. This

can be avoided by training with a simulated user

agent. However, such agents are not always real-

istic and their design requires parameters to be set

ideally from existing conversation logs. However,

since we use an off-policy algorithm, it is easier to
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train it directly from conversation logs, rather than

develop a sufficiently realistic simulated agent.

Since the KTD-Q algorithm is off-policy, it can

be trained using tuples containing the belief state,

action taken, next belief state, and reward obtained

from these logs. We update the policy using such

tuples both in the initial training phase from exist-

ing conversation logs, and when updating the pol-

icy after collecting batches of conversations in our

experiments.

6.2 Platform and setup

Our experiments were done through Mechanical

Turk as in previous work (Thomason et al., 2015;

Wen et al., 2016). During the training phase, each

user interacted with one of four dialog agents (de-

scribed in section 6.3), selected uniformly at ran-

dom. Users were not told of the presence of mul-

tiple agents and were not aware of which agent

they were interacting with. They were given a

prompt for either a navigation or delivery task and

were asked to have a conversation with the agent

to accomplish the given task. No restrictions were

placed on the language they could employ. We

use visual prompts for the tasks to avoid linguistic

priming (e.g. a picture of a hamburger instead of

the word “hamburger”). Before users could begin

the task, we used a validation step to ensure they

were sufficiently fluent in English and understood

the objectives of the task. Training dialogs were

acquired in 4 batches of 50 dialogs each across all

agents. After each batch, agents were updated as

described in section 6.3.

A final set of 100 test conversations were then

conducted between Mechanical Turk users and the

trained agents. These test tasks were novel in

comparison to the training data in that although

they used the same set of possible actions and ar-

gument values, the same combination of action

and argument values had not been seen at train-

ing time. For example, if one of the test tasks in-

volved delivery of a hamburger to alice, then

there may have been tasks in the training set to de-

liver a hamburger to other people and there may

have been tasks to deliver other items to alice,

but there was no task that involved delivery of a

hamburger to alice specifically.

6.3 Dialog agents

We compared four dialog agents. The first agent

performed only parser learning (described in Sec-

tion 5.1). Its dialog policy was always kept to be a

hand coded dialog policy similar to that of Thoma-

son et al. (2015). This was the same hand-coded

policy used to initialize the weights of the KTD-

Q algorithm. Its parser was incrementally updated

after each training batch. This agent is similar to

the system used by Thomason et al. (2015) ex-

cept that it uses the same state space as our other

agents, to ensure that any differences in perfor-

mance are not due to access to less information.

Further, while Thomason et al. (2015) use only the

top hypothesis from the parser to update the belief

state, our agent uses a beam of parses, again to be

more comparable to our other agents. In supple-

mentary material, we also include an experiment

which demonstrates that using multiple hypothe-

ses from the semantic parser is more beneficial

than using only a single one.

The second agent performed only dialog strat-

egy learning. Its parser was always kept to be the

initial parser that all agents started out with. Its

policy was incrementally updated after each train-

ing batch using the KTD-Q algorithm. The third

agent performed both parser and dialog learning;

but instead of incrementally updating the parser

and policy after each batch, they were trained at

the end of the training phase using dialogs across

all batches. This would not allow the dialog

manager to see updated versions of the parser in

batches after the first and adapt the policy towards

the improving parser. We refer to this as full learn-

ing of parser and dialog policy. The fourth agent

also performed both parser and dialog learning. Its

parser and policy were updated incrementally af-

ter each training batch. Thus for the next training

batch, the changes due to the improvement in the

parser from the previous batch could, in theory, be

demonstrated in the dialogs and hence contribute

towards updating the policy in a manner consistent

with it. We refer to this as batchwise learning of

parser and dialog policy.

We did not include a system that performs no

learning on either the parser or policy because it

was shown by Thomason et al. (2015) that parser

learning combined with a simple hand-coded pol-

icy outperforms this. We also did not attempt to

update both parser and policy after each dialog

because this forces all dialogs to be conducted in

sequence, which does not allow us to fully lever-

age crowdsourcing platforms such as Mechanical

Turk.
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6.4 Experiment hypothesis

We hypothesized that the agent performing batch-

wise parser and policy learning would outperform

the agents performing only parser or only dialog

learning as we expect that improving both com-

ponents is more beneficial. However, we did not

necessarily expect the same result from full parser

and dialog learning because it did not provide any

chance to allow updates to propagate even indi-

rectly from one component to another, exposing

the RL algorithm to a more non-stationary en-

vironment. Hence, we also expected batchwise

learning to outperform full learning.

6.5 Results and Discussion

The agents were evaluated on the test set using the

following objective performance metrics: the frac-

tion of successful dialogs (see 5) and the length of

successful dialogs. We also included a survey at

the end of the task asking users to rate on a 1–

5 scale whether the robot understood them, and

whether they felt the robot asked sensible ques-

tions.

Learning
involved

% suc-
cessful
dialogs

Avg
dialog
length

Robot
under-
stood

Sensible
ques-
tions

Parser 75 12.43 2.93 2.79

Dialog 59 11.73 2.55 2.91

Parser & Dia-
log - full

72 12.76 2.79 3.28

Parser & Di-
alog - batch-
wise

78 10.61 3.30 3.17

Table 3: Performance metrics for dialog agents

tested. Differences in dialog success and subjec-

tive metrics are statistically significant according

to an unpaired t-test with p < 0.05.

Table 3 gives the agents’ performance on these

metrics. All differences in dialog success and the

subjective metrics are statistically significant ac-

cording to an unpaired t-test with p < 0.05. In

dialog length, the improvement of the batchwise

learning agent over the agents performing only

parser or only dialog learning are statistically sig-

nificant.

As expected, the agent performing batchwise

parser and dialog learning outperforms the agents

performing only parser or only dialog learning, in

the latter case by a large margin. We believe the

agent performing only parser learning performs

much better than the agent performing only dialog

learning due to the relatively high sample com-

plexity of reinforcement learning algorithms in

general, especially in the partially observable set-

ting. In contrast, the parser changes considerably

even from a small number of examples. Also, we

observe that full learning of both components does

not in fact outperform only parser learning. We

believe this is because the distribution of hypothe-

ses obtained using the initial parser at training time

is substantially different from that obtained using

the updated parser at test time. We believe that

batchwise training mitigates this problem because

the distribution of hypotheses changes after each

batch of training and the policy when updated at

these points can adapt to some of these changes.

The optimal size of the batch is a question for fur-

ther experimentation. Using a larger batch is less

likely to overfit updates to a single example but

breaking the total budget of training dialogs into

more batches allows the RL algorithm to see less

drastic changes in the distribution of hypotheses

from the parser.

We include an experiment in the supplementary

material that quantifies the accuracy improvement

of the parsers after training from dialogs. It is

more difficult to quantitatively compare the poli-

cies before and after learning. Qualitatively, one of

the noticeable differences is that the system tends

to confirm or act upon lower probability hypothe-

ses than is recommended by the initial hand-coded

policy. This is possibly because as the parser im-

proves, its top hypotheses are more likely to be

correct, even if they are associated with a lower

confidence score from the parser. A demonstration

of this can be seen in tables 4 and 5. The learned

policy results in a shorter dialog in the same sit-

uation because it allows the agent to act upon a

hypothesis of lower probability. Also, the learned

policy is stochastic, which is very helpful when

the agent is not able to understand the user at all.

For example, if the agent is unable to parse any of

the initial instructions from the user, under a hand-

coded policy, as its state has not changed, it would

continue to repeat the question it had asked ear-

lier, which prevents it from making any progress.

However, in a stochastic policy, other more spe-

cific questions are likely to be substituted in be-

tween, and responses to these may allow the agent

to make progress, which increases dialog success

(table 6).
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7 Conclusions

In this work, we have demonstrated that continu-

ous dialog strategy learning and semantic parser

learning can be successfully combined in a dia-

log system to enable an agent to better understand

commands provided in natural language. Both the

semantic parser and the dialog strategy can be au-

tomatically improved simultaneously using weak

feedback provided during interaction with users

rather than manually-labeled or artificially con-

structed training data. Ongoing parser learning

could have confused the RL dialog learner by al-

tering the underlying language understanding sys-

tem while it was searching for an effective dialog

policy. However, our results show that by using an

appropriate RL algorithm and batchwise training

regimen, this potential difficulty can be avoided,

and both language understanding and dialog man-

agement can be improved simultaneously.
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Table 4: The robot following the learned policy

takes the action despite the lower confidence, lead-

ing to a shorter dialog.

ROBOT How can I help?
USER bring the hamburger to peggy
ROBOT What would you like me to bring?
USER the hamburger

The robot brought a hamburger to Peggy.
ROBOT Was this the correct action?
USER yes

Table 5: The robot following the hand-coded pol-

icy confirms the action before taking it, leading to

a longer dialog.

ROBOT How can I help?
USER bring the hamburger to peggy
ROBOT What would you like me to bring?
USER the hamburger
ROBOT You want me to bring hamburger for Peggy?
USER yes

The robot brought a hamburger to Peggy.
ROBOT Was this the correct action?
USER yes

Table 6: An example where a stochastic policy

helps when the robot is unable to understand a full

command.

ROBOT How can I help?
USER bring evelyn a coffee
ROBOT Sorry I couldn’t understand that. Could you re-

word your original request?
USER bring evelyn a cup of coffee
ROBOT You want me to bring coffee for someone?
USER yes
ROBOT Whom would you like me to bring coffee to?
USER evelyn
ROBOT Whom would you like me to bring coffee to?
USER eve
ROBOT I brought coffee to Eve. Was this the correct

action?
USER yes
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Supplementary Material

A Improvement in parser accuracy

The following experiment is an attempt to quan-

tify the accuracy of the parsers after training from

dialog. This was done by hand-annotating the se-

mantic forms for commands from the test set used

for the first experiment. The results can be seen

in table 7. The parsers are evaluated in terms of

Recall@1, which is the fraction of times the cor-

rect parse is the top parse predicted by the parser,

and Recall@10, which is the fraction of times the

correct parse occurs in the top 10 parses predicted

by the parser.

Learning involved Recall@1 Recall@10

None 0.564 0.611

Only parser 0.588 0.671*

Only dialog 0.564 0.623

Parser & dialog - full 0.588 0.647 ˆ

Parser & dialog -
batchwise

0.576 0.670*

Table 7: Comparison of performance of initial

parser and parsers after updating various compo-

nents, on paired commands and semantic forms.

∗ indicates that the difference in performance be-

tween this and the Initial parser on the same met-

ric is statistically significant according to a paired

t-test with p < 0.05 and ˆ indicates that the differ-

ence is trending significance (p < 0.1)
.

As expected, we observe that the initial parser

(no learning) and the parser from the system per-

forming only dialog learning, perform worse than

the others, as the other systems update the parser

used by these. The parser of the system perform-

ing only dialog learning is in fact a copy of the

initial parser and was included only for complete-

ness. Any difference in their performance is due

to randomness. The parsers updated from dialogs

improve in accuracy but the differences are found

to be statistically significant only on Recall@10.

The modest improvement is unsurprising given

that the supervision provided is both noisy and

weak. However, as seen in the main paper, even

this modest improvement is sufficient to improve

overall dialog success.

B Importance of multiple parse

hypotheses

Many NLP systems typically return a list of top-

n hypotheses, including semantic parsers. We use

the entire beam of top-n parses when updating the

state. This is expected to be beneficial in cases

where that the correct hypothesis is not the top

ranked but present in this beam. The following ex-

periment demonstrates that using multiple parses

when updating the state improves overall dialog

success. We compared an agent that used the same

parser and policy as in the batchwise training but

only the top ranked parse from the parser to update

its state, as opposed to a beam of parses when up-

dating its state. These two systems differed in no

other components.

Number of parses
considered

% successful
dialogs

Dialog
length

1 0.59 9.17

10 0.64 12.18

Table 8: Comparison of an agent using only the

top hypothesis from the semantic parser and an-

other using the top 10 parses. All differences are

statistically significant according to an unpaired t-

test with p < 0.05.

Table 8 shows the usefulness of considering

multiple hypotheses from the semantic parser. As

expected, the agent using multiple parses performs

the correct action a significantly higher fraction

of times. The system using a single hypothesis

has a shorter average length among its successful

dialogs because it rarely succeeds in more com-

plicated dialogs where the system needs repeated

clarification or answers to multiple specific ques-

tions.
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