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Abstract

We argue that the optimization plays a crucial role in generalization of deep learning models
through implicit regularization. We do this by demonstrating that generalization ability is not
controlled by network size but rather by some other implicit control. We then demonstrate how
changing the empirical optimization procedure can improve generalization, even if actual opti-
mization quality is not affected. We do so by studying the geometry of the parameter space of deep
networks, and devising an optimization algorithm attuned to this geometry.

Keywords: Deep Learning, Implicit Regularization, Geometry of Optimization, Path-norm, Path-
SGD

1. Introduction

Central to any form of learning is an inductive bias that induces some sort of capacity control
(i.e. restricts or encourages predictors to be “simple” in some way), which in turn allows for gen-
eralization. The success of learning then depends on how well the inductive bias captures reality
(i.e. how expressive is the hypothesis class of “simple” predictors) relative to the capacity induced,
as well as on the computational complexity of fitting a “simple” predictor to the training data.

1

ar
X

iv
:1

70
5.

03
07

1v
1 

 [c
s.L

G
]  

8 
M

ay
 2

01
7



NEYSHABUR ET AL.

Let us consider learning with feed-forward networks from this perspective. If we search for the
weights minimizing the training error, we are essentially considering the hypothesis class of predic-
tors representable with different weight vectors, typically for some fixed architecture. Capacity is
then controlled by the size (number of weights) of the network1. Our justification for using such net-
works is then that many interesting and realistic functions can be represented by not-too-large (and
hence bounded capacity) feed-forward networks. Indeed, in many cases we can show how specific
architectures can capture desired behaviors. More broadly, any O(T ) time computable function can
be captured by an O(T 2) sized network, and so the expressive power of such networks is indeed
great (Sipser, 2006, Theorem 9.25).

At the same time, we also know that learning even moderately sized networks is computationally
intractable—not only is it NP-hard to minimize the empirical error, even with only three hidden
units, but it is hard to learn small feed-forward networks using any learning method (subject to
cryptographic assumptions). That is, even for binary classification using a network with a single
hidden layer and a logarithmic (in the input size) number of hidden units, and even if we know the
true targets are exactly captured by such a small network, there is likely no efficient algorithm that
can ensure error better than 1/2 (Sherstov, 2006; Daniely et al., 2014)—not if the algorithm tries
to fit such a network, not even if it tries to fit a much larger network, and in fact no matter how
the algorithm represents predictors. And so, merely knowing that some not-too-large architecture is
excellent in expressing reality does not explain why we are able to learn using it, nor using an even
larger network. Why is it then that we succeed in learning using multilayer feed-forward networks?
Can we identify a property that makes them possible to learn? An alternative inductive bias?

In section 2, we make our first steps at shedding light on this question by going back to our
understanding of network size as the capacity control at play. Our main observation, based on
empirical experimentation with single-hidden-layer networks of increasing size (increasing number
of hidden units), is that size does not behave as a capacity control parameter, and in fact there must
be some other, implicit, capacity control at play. We suggest that this hidden capacity control might
be the real inductive bias when learning with deep networks.

Revisiting the choice of gradient descent, we recall that optimization is inherently tied to a
choice of geometry or measure of distance, norm or divergence. Gradient descent for example is
tied to the `2 norm as it is the steepest descent with respect to `2 norm in the parameter space, while
coordinate descent corresponds to steepest descent with respect to the `1 norm and exp-gradient
(multiplicative weight) updates is tied to an entropic divergence. Moreover, at least when the ob-
jective function is convex, convergence behavior is tied to the corresponding norms or potentials.
For example, with gradient descent, or SGD, convergence speeds depend on the `2 norm of the
optimum. The norm or divergence can be viewed as a regularizer for the updates. There is therefore
also a strong link between regularization for optimization and regularization for learning: opti-
mization may provide implicit regularization in terms of its corresponding geometry, and for ideal
optimization performance the optimization geometry should be aligned with inductive bias driving
the learning (Srebro et al., 2011).

Is the `2 geometry on the weights the appropriate geometry for the space of deep networks? Or
can we suggest a geometry with more desirable properties that would enable faster optimization and

1. The exact correspondence depends on the activation function—for hard thresholding activation the pseudo-
dimension, and hence sample complexity, scales as O(S logS), where S is the number of weights in the network.
With sigmoidal activation it is between Ω(S2) and O(S4) (Anthony and Bartlett, 1999).
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perhaps also better implicit regularization? As suggested above, this question is also linked to the
choice of an appropriate regularizer for deep networks.

Focusing on networks with RELU activations in this section, we observe that scaling down the
incoming edges to a hidden unit and scaling up the outgoing edges by the same factor yields an
equivalent network computing the same function. Since predictions are invariant to such rescalings,
it is natural to seek a geometry, and corresponding optimization method, that is similarly invariant.

We consider here a geometry inspired by max-norm regularization (regularizing the maximum
norm of incoming weights into any unit) which seems to provide a better inductive bias compared
to the `2 norm (weight decay) (Goodfellow et al., 2013; Srivastava et al., 2014). But to achieve
rescaling invariance, we use not the max-norm itself, but rather the minimum max-norm over all
rescalings of the weights. We discuss how this measure can be expressed as a “path regularizer”
and can be computed efficiently.

We therefore suggest a novel optimization method, Path-SGD, that is an approximate steep-
est descent method with respect to path regularization. Path-SGD is rescaling-invariant and we
demonstrate that Path-SGD outperforms gradient descent and AdaGrad for classifications tasks on
several benchmark datasets. This again demonstrates the importance of implicit regularization that
is introduced by optimization.

This summary paper combines material previously presented by the authors at the 3rd Interna-
tional Conference on Learning Representations (ICLR), the 28th Conference on Learning Theory
(COLT) and Advances in Neural Information Processing Systems (NIPS) 28, as well as Intel Col-
laborative Research Institutes retreats (Neyshabur et al., 2015a,b,c).

Notations A feedforward neural network that computes a function f : RD → RC can be repre-
sented by a directed acyclic graph (DAG) G(V,E) with D input nodes vin[1], . . . , vin[D] ∈ V , C
output nodes vout[1], . . . , vout[C] ∈ V , weights w : E → R and an activation function σ : R → R
that is applied on the internal nodes (hidden units). We denote the function computed by this
network as fG,w,σ. In this paper we focus on RELU (REctified Linear Unit) activation function
σRELU(x) = max{0, x}. We refer to the depth d of the network which is the length of the longest
directed path in G. For any 0 ≤ i ≤ d, we define V i

in to be the set of vertices with longest path of
length i to an input unit and V i

out is defined similarly for paths to output units. In layered networks
V i

in = V d−i
out is the set of hidden units in a hidden layer i.

2. Implicit Regularization

Consider training a feed-forward network by finding the weights minimizing the training error.
Specifically, we will consider a network with D real-valued inputs x = (x[1], . . . , x[D]), a single
hidden layer withH rectified linear units, andC outputs y[1], . . . , y[k] where the weights are learned
by minimizing a (truncated) soft-max cross entropy loss2 on n labeled training examples. The total
number of weights is then H(C +D).

2. When using soft-max cross-entropy, the loss is never exactly zero for correct predictions with finite mar-
gins/confidences. Instead, if the data is separable, in order to minimize the loss the weights need to be scaled up
toward infinity and the cross entropy loss goes to zero, and a global minimum is never attained. In order to be able
to say that we are actually reaching a zero loss solution, and hence a global minimum, we use a slightly modified
soft-max which does not noticeably change the results in practice. This truncated loss returns the same exact value
for wrong predictions or correct prediction with confidences less than a threshold but returns zero for correct predic-
tions with large enough margins: Let {si}ki=1 be the scores for k possible labels and c be the correct labels. Then
the soft-max cross-entropy loss can be written as `(s, c) = ln

∑
i exp(si − sc) but we instead use the differentiable
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Figure 1: The training error and the test error based on different stopping criteria when 2-layer NNs with different
number of hidden units are trained on MNIST and CIFAR-10. Images in both datasets are downsampled to
100 pixels. The size of the training set is 50000 for MNIST and 40000 for CIFAR-10. The early stopping is
based on the error on a validation set (separate from the training and test sets) of size 10000. The training
was done using stochastic gradient descent with momentum and mini-batches of size 100. The network
was initialized with weights generated randomly from the Gaussian distribution. The initial step size and
momentum were set to 0.1 and 0.5 respectively. After each epoch, we used the update rule µ(t+1) = 0.99µ(t)

for the step size and m(t+1) = min{0.9,m(t) + 0.02} for the momentum.

What happens to the training and test errors when we increase the network sizeH? The training
error will necessarily decrease. The test error might initially decrease as the approximation error is
reduced and the network is better able to capture the targets. However, as the size increases further,
we loose our capacity control and generalization ability, and should start overfitting. This is the
classic approximation-estimation tradeoff behavior.

Consider, however, the results shown in Figure 1, where we trained networks of increasing size
on the MNIST and CIFAR-10 datasets. Training was done using stochastic gradient descent with
momentum and diminishing step sizes, on the training error and without any explicit regularization.
As expected, both training and test error initially decrease. More surprising is that if we increase
the size of the network past the size required to achieve zero training error, the test error continues
decreasing! This behavior is not at all predicted by, and even contrary to, viewing learning as fitting
a hypothesis class controlled by network size. For example for MNIST, 32 units are enough to
attain zero training error. When we allow more units, the network is not fitting the training data any
better, but the estimation error, and hence the generalization error, should increase with the increase
in capacity. However, the test error goes down. In fact, as we add more and more parameters, even
beyond the number of training examples, the generalization error does not go up.

loss function ˆ̀(s, c) = ln
∑

i f(si − sc) where f(x) = exp(x) for x ≥ −11 and f(x) = exp(−11)[x + 13]2+/4
otherwise. Therefore, we only deviate from the soft-max cross-entropy when the margin is more than 11, at which
point the effect of this deviation is negligible (we always have

∣∣∣`(s, c)− ˆ̀(s, c)
∣∣∣ ≤ 0.000003k)—if there are any

actual errors the behavior on them would completely dominate correct examples with margin over 11, and if there
are no errors we are just capping the amount by which we need to scale up the weights.
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(c) Poor updates in an unbalanced network

Figure 2: (a): Evolution of the cross-entropy error function when training a feed-forward network on MNIST with two
hidden layers, each containing 4000 hidden units. The unbalanced initialization (blue curve) is generated
by applying a sequence of rescaling functions on the balanced initializations (red curve). (b): Updates for a
simple case where the input is x = 1, thresholds are set to zero (constant), the stepsize is 1, and the gradient
with respect to output is δ = −1. (c): Updated network for the case where the input is x = (1, 1), thresholds
are set to zero (constant), the stepsize is 1, and the gradient with respect to output is δ = (−1,−1).

What is happening here? A possible explanation is that the optimization is introducing some
implicit regularization. That is, we are implicitly trying to find a solution with small “complexity”,
for some notion of complexity, perhaps norm. This can explain why we do not overfit even when
the number of parameters is huge. Furthermore, increasing the number of units might allow for
solutions that actually have lower “complexity”, and thus generalization better. Perhaps an ideal
then would be an infinite network controlled only through this hidden complexity.

We want to emphasize that we are not including any explicit regularization, neither as an explicit
penalty term nor by modifying optimization through, e.g., drop-outs, weight decay, or with one-pass
stochastic methods. We are using a stochastic method, but we are running it to convergence—
we achieve zero surrogate loss and zero training error. In fact, we also tried training using batch
conjugate gradient descent and observed almost identical behavior. But it seems that even still, we
are not getting to some random global minimum—indeed for large networks the vast majority of
the many global minima of the training error would horribly overfit. Instead, the optimization is
directing us toward a “low complexity” global minimum.

We have argued that the implicit regularization is due to the optimization. It is therefore ex-
pected that different optimization methods introduce different implicit regularizations which leads
to different generalization properties. In an attempt to find an optimization method with better gen-
eralization properties, we recall that the optimization is also tied to a choice of geometry/distance
measure in the parameter space. We look into the desirable properties of a geometry for neural
networks and suggest an optimization algorithm that is tied to that geometry.
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3. The Geometry of Optimization: Rescaling and Unbalanceness

In this section, we look at the behavior of the Euclidean geometry under rescaling and unbalance-
ness. One of the special properties of RELU activation function is non-negative homogeneity. That
is, for any scalar c ≥ 0 and any x ∈ R, we have σRELU(c · x) = c · σRELU(x). This interesting
property allows the network to be rescaled without changing the function computed by the network.
We define the rescaling function ρc,v(w), such that given the weights of the network w : E → R, a
constant c > 0, and a node v, the rescaling function multiplies the incoming edges and divides the
outgoing edges of v by c. That is, ρc,v(w) maps w to the weights w̃ for the rescaled network, where
for any (u1 → u2) ∈ E:

w̃(u1→u2) =


c.w(u1→u2) u2 = v,
1
cw(u1→u2) u1 = v,

w(u1→u2) otherwise.

(1)

It is easy to see that the rescaled network computes the same function, i.e. fG,w,σRELU = fG,ρc,v(w),σRELU
.

We say that the two networks with weights w and w̃ are rescaling equivalent denoted by w ∼ w̃ if
and only if one of them can be transformed to another by applying a sequence of rescaling functions
ρc,v.

Given a training set S = {(x1, yn), . . . , (xn, yn)}, our goal is to minimize the following objec-
tive function:

L(w) =
1

n

n∑
i=1

`(fw(xi), yi). (2)

Let w(t) be the weights at step t of the optimization. We consider update step of the following form
w(t+1) = w(t) + ∆w(t+1). For example, for gradient descent, we have ∆w(t+1) = −η∇L(w(t)),
where η is the step-size. In the stochastic setting, such as SGD or mini-batch gradient descent, we
calculate the gradient on a small subset of the training set.

Since rescaling equivalent networks compute the same function, it is desirable to have an update
rule that is not affected by rescaling. We call an optimization method rescaling invariant if the
updates of rescaling equivalent networks are rescaling equivalent. That is, if we start at either one
of the two rescaling equivalent weight vectors w̃(0) ∼ w(0), after applying t update steps separately
on w̃(0) and w(0), they will remain rescaling equivalent and we have w̃(t) ∼ w(t).

Unfortunately, gradient descent is not rescaling invariant. The main problem with the gradient
updates is that scaling down the weights of an edge will also scale up the gradient which, as we see
later, is exactly the opposite of what is expected from a rescaling invariant update.

Furthermore, gradient descent performs very poorly on “unbalanced” networks. We say that
a network is balanced if the norm of incoming weights to different units are roughly the same or
within a small range. For example, Figure a shows a huge gap in the performance of SGD initialized
with a randomly generated balanced networkw(0), when training on MNIST, compared to a network
initialized with unbalanced weights w̃(0). Here w̃(0) is generated by applying a sequence of random
rescaling functions on w(0) (and therefore w(0) ∼ w̃(0)).

In an unbalanced network, gradient descent updates could blow up the smaller weights, while
keeping the larger weights almost unchanged. This is illustrated in Figure b. If this were the only
issue, one could scale down all the weights after each update. However, in an unbalanced network,
the relative changes in the weights are also very different compared to a balanced network. For

6
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example, Figure c shows how two rescaling equivalent networks could end up computing a very
different function after only a single update.

4. Magnitude/Scale measures for deep networks

Following Neyshabur et al. (2015b), we consider the grouping of weights going into each node
of the network. This forms the following generic group-norm type regularizer, parametrized by
1 ≤ p, q ≤ ∞:

µp,q(w) =

∑
v∈V

 ∑
(u→v)∈E

∣∣w(u→v)
∣∣pq/p


1/q

. (3)

Two simple cases of above group-norm are p = q = 1 and p = q = 2 that correspond to overall
`1 regularization and weight decay respectively. Another form of regularization that is shown to be
very effective in RELU networks is the max-norm regularization, which is the maximum over all
units of norm of incoming edge to the unit3 (Goodfellow et al., 2013; Srivastava et al., 2014). The
max-norm correspond to “per-unit” regularization when we set q = ∞ in equation (4) and can be
written in the following form:

µp,∞(w) = sup
v∈V

 ∑
(u→v)∈E

∣∣w(u→v)
∣∣p1/p

(4)

Weight decay is probably the most commonly used regularizer. On the other hand, per-unit
regularization might not seem ideal as it is very extreme in the sense that the value of regularizer
corresponds to the highest value among all nodes. However, the situation is very different for
networks with RELU activations (and other activation functions with non-negative homogeneity
property). In these cases, per-unit `2 regularization has shown to be very effective (Srivastava et al.,
2014). The main reason could be because RELU networks can be rebalanced in such a way that
all hidden units have the same norm. Hence, per-unit regularization will not be a crude measure
anymore.

Since µp,∞ is not rescaling invariant and the values of the scale measure are different for rescal-
ing equivalent networks, it is desirable to look for the minimum value of a regularizer among all
rescaling equivalent networks. Surprisingly, for a feed-forward network, the minimum `p per-unit
regularizer among all rescaling equivalent networks can be efficiently computed by a single forward
step. To see this, we consider the vector π(w), the path vector, where the number of coordinates
of π(w) is equal to the total number of paths from the input to output units and each coordinate of
π(w) is the equal to the product of weights along a path from an input nodes to an output node. The
`p-path regularizer is then defined as the `p norm of π(w) (Neyshabur et al., 2015b):

φp(w) = ‖π(w)‖p =

 ∑
vin[i]

e1→v1
e2→v2...

ed→vout[j]

∣∣∣∣∣
d∏

k=1

wek

∣∣∣∣∣
p


1/p

(5)

3. This definition of max-norm is a bit different than the one used in the context of matrix factorization (Srebro and
Shraibman, 2005). The later is similar to the minimum upper bound over `2 norm of both outgoing edges from the
input units and incoming edges to the output units in a two layer feed-forward network.
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The following Lemma establishes that the `p-path regularizer corresponds to the minimum over all
equivalent networks of the per-unit `p norm:

Lemma 4.1 (Neyshabur et al. (2015b)) φp(w) = min
w̃∼w

(
µp,∞(w̃)

)d
The definition (5) of the `p-path regularizer involves an exponential number of terms. But it can
be computed efficiently by dynamic programming in a single forward step using the following
equivalent form as nested sums:

φp(w) =

 ∑
(vd−1→vout[j])∈E

∣∣w(vd−1→vout[j])

∣∣p ∑
(vd−2→vd−1)∈E

· · ·
∑

(vin[i]→v1)∈E

∣∣w(vin[i]→v1)
∣∣p1/p

A straightforward consequence of Lemma 4.1 is that the `p path-regularizer φp is invariant to rescal-
ing, i.e. for any w̃ ∼ w, φp(w̃) = φp(w).

5. Path-SGD: An Approximate Path-Regularized Steepest Descent

Motivated by empirical performance of max-norm regularization and the fact that path-regularizer
is invariant to rescaling, we are interested in deriving the steepest descent direction with respect to
the path regularizer φp(w):

w(t+1) = arg min
w

η
〈
∇L(w(t)), w

〉
+

1

2

∥∥∥π(w)− π(w(t))
∥∥∥2
p

(6)

= arg min
w

η
〈
∇L(w(t)), w

〉
+

 ∑
vin[i]

e1→v1
e2→v2...

ed→vout[j]

(
d∏

k=1

wek −
d∏

k=1

w(t)
ek

)

)p
2/p

= arg min
w
J (t)(w)

The steepest descent step (6) is hard to calculate exactly. Instead, we will update each coordinate
we independently (and synchronously) based on (6). That is:

w(t+1)
e = arg min

we

J (t)(w) s.t. ∀e′ 6=e we′ = w
(t)
e′ (7)

Taking the partial derivative with respect to we and setting it to zero we obtain:

0 = η
∂L

∂we
(w(t))−

(
we − w(t)

e

) ∑
vin[i]···

e→...vout[j]

∏
ek 6=e

∣∣∣w(t)
e

∣∣∣p


2/p

where vin[i] · · · e→ . . . vout[j] denotes the paths from any input unit i to any output unit j that includes
e. Solving for we gives us the following update rule:

ŵ(t+1)
e = w(t)

e −
η

γp(w(t), e)

∂L

∂w
(w(t)) (8)

8
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where γp(w, e) is given as

γp(w, e) =

 ∑
vin[i]···

e→...vout[j]

∏
ek 6=e
|wek |

p


2/p

(9)

We call the optimization using the update rule (8) path-normalized gradient descent. When used in
stochastic settings, we refer to it as Path-SGD.

Now that we know Path-SGD is an approximate steepest descent with respect to the path-
regularizer, we can ask whether or not this makes Path-SGD a rescaling invariant optimization
method. The next theorem proves that Path-SGD is indeed rescaling invariant.

Theorem 5.1 Path-SGD is rescaling invariant.

Proof It is sufficient to prove that using the update rule (8), for any c > 0 and any v ∈ E, if
w̃(t) = ρc,v(w

(t)), then w̃(t+1) = ρc,v(w
(t+1)). For any edge e in the network, if e is neither

incoming nor outgoing edge of the node v, then w̃(e) = w(e), and since the gradient is also the
same for edge e we have w̃(t+1)

e = w
(t+1)
e . However, if e is an incoming edge to v, we have that

w̃(t)(e) = cw(t)(e). Moreover, since the outgoing edges of v are divided by c, we get γp(w̃(t), e) =
γp(w(t),e)

c2
and ∂L

∂we
(w̃(t)) = ∂L

c∂we
(w(t)). Therefore,

w̃(t+1)
e = cw(t)

e −
c2η

γp(w(t), e)

∂L

c∂we
(w(t))

= c

(
w(t) − η

γp(w(t), e)

∂L

∂we
(w(t))

)
= cw(t+1)

e .

A similar argument proves the invariance of Path-SGD update rule for outgoing edges of v. There-
fore, Path-SGD is rescaling invariant.

Efficient Implementation: The Path-SGD update rule (8), in the way it is written, needs to con-
sider all the paths, which is exponential in the depth of the network. However, it can be calculated
in a time that is no more than a forward-backward step on a single data point. That is, in a mini-
batch setting with batch size B, if the backpropagation on the mini-batch can be done in time BT ,
the running time of the Path-SGD on the mini-batch will be roughly (B + 1)T – a very moderate
runtime increase with typical mini-batch sizes of hundreds or thousands of points. Algorithm 1
shows an efficient implementation of the Path-SGD update rule.

We next compare Path-SGD to other optimization methods in both balanced and unbalanced
settings.

6. Experiments on Path-SGD

We compare `2-Path-SGD to two commonly used optimization methods in deep learning, SGD
and AdaGrad. We conduct our experiments on four common benchmark datasets: the standard
MNIST dataset of handwritten digits (LeCun et al., 1998); CIFAR-10 and CIFAR-100 datasets

9
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Algorithm 1 Path-SGD update rule

1: ∀v∈V 0
in
γin(v) = 1 . Initialization

2: ∀v∈V 0
out
γout(v) = 1

3: for i = 1 to d do
4: ∀v∈V i

in
γin(v) =

∑
(u→v)∈E γin(u)

∣∣w(u,v)

∣∣p
5: ∀v∈V i

out
γout(v) =

∑
(v→u)∈E

∣∣w(v,u)

∣∣p γout(u)
6: end for
7: ∀(u→v)∈E γ(w(t), (u, v)) = γin(u)2/pγout(v)2/p

8: ∀e∈Ew(t+1)
e = w

(t)
e − η

γ(w(t),e)
∂L
∂we

(w(t)) . Update Rule

Table 1: General information on datasets used in the experiments on feedforward networks.
Data Set Dimensionality Classes Training Set Test Set

CIFAR-10 3072 (32× 32 color) 10 50000 10000
CIFAR-100 3072 (32× 32 color) 100 50000 10000

MNIST 784 (28× 28 grayscale) 10 60000 10000
SVHN 3072 (32× 32 color) 10 73257 26032

of tiny images of natural scenes (Krizhevsky and Hinton, 2009); and Street View House Numbers
(SVHN) dataset containing color images of house numbers collected by Google Street View (Netzer
et al., 2011). Details of the datasets are shown in Table 1.

In all of our experiments, we trained feed-forward networks with two hidden layers, each con-
taining 4000 hidden units. We used mini-batches of size 100 and the step-size of 10−α, where α
is an integer between 0 and 10. To choose α, for each dataset, we considered the validation errors
over the validation set (10000 randomly chosen points that are kept out during the initial training)
and picked the one that reaches the minimum error faster. We then trained the network over the
entire training set. All the networks were trained both with and without dropout. When training
with dropout, at each update step, we retained each unit with probability 0.5.

The optimization results are shown in Figure 3. For each of the four datasets, the plots for
objective function (cross-entropy), the training error and the test error are shown from left to right
where in each plot the values are reported on different epochs during the optimization. The dropout
is used for the experiments on CIFAR-100 and SVHN. Please see Neyshabur et al. (2015a) for a
more complete set of experimental results.

We can see in Figure 3 that not only does Path-SGD often get to the same value of objective
function, training and test error faster, but also the plots for test errors demonstrate that implicit regu-
larization due to steepest descent with respect to path-regularizer leads to a solution that generalizes
better. This provides further evidence on the role of implicit regularization in deep learning.

The results suggest that Path-SGD outperforms SGD and AdaGrad in two different ways. First,
it can achieve the same accuracy much faster and second, the implicit regularization by Path-SGD
leads to a local minima that can generalize better even when the training error is zero. This can
be better analyzed by looking at the plots for more number of epochs which we have provided
in Neyshabur et al. (2015a). We should also point that Path-SGD can be easily combined with

10
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Figure 3: Learning curves using different optimization methods for 4 datasets without dropout. Left panel displays
the cross-entropy objective function; middle and right panels show the corresponding values of the training
and test errors, where the values are reported on different epochs during the course of optimization.We tried
both balanced and unbalanced initializations. In balanced initialization, incoming weights to each unit v
are initialized to i.i.d samples from a Gaussian distribution with standard deviation 1/

√
fan-in(v). In the

unbalanced setting, we first initialized the weights to be the same as the balanced weights. We then picked
2000 hidden units randomly with replacement. For each unit, we multiplied its incoming edge and divided its
outgoing edge by 10c, where c was chosen randomly from log-normal distribution. Although we proved that
Path-SGD updates are the same for balanced and unbalanced initializations, to verify that despite numerical
issues they are indeed identical, we trained Path-SGD with both balanced and unbalanced initializations.
Since the curves were exactly the same we only show a single curve. Best viewed in color.

AdaGrad or Adam to take advantage of the adaptive stepsize or used together with a momentum
term. This could potentially perform even better compare to Path-SGD.
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7. Discussion

We demonstrated the implicit regularization in deep learning through experiments and discussed
the importance of geometry of optimization in finding a “low complexity” solution. Based on that,
we revisited the choice of the Euclidean geometry on the weights of RELU networks, suggested an
alternative optimization method approximately corresponding to a different geometry, and showed
that using such an alternative geometry can be beneficial. In this work we show proof-of-concept
success, and we expect Path-SGD to be beneficial also in large-scale training for very deep convolu-
tional networks. Combining Path-SGD with AdaGrad, with momentum or with other optimization
heuristics might further enhance results.

Although we do believe Path-SGD is a very good optimization method, and is an easy plug-in for
SGD, we hope this work will also inspire others to consider other geometries, other regularizers and
perhaps better, update rules. A particular property of Path-SGD is its rescaling invariance, which we
argue is appropriate for RELU networks. But Path-SGD is certainly not the only rescaling invariant
update possible, and other invariant geometries might be even better.

Finally, we choose to use steepest descent because of its simplicity of implementation. A bet-
ter choice might be mirror descent with respect to an appropriate potential function, but such a
construction seems particularly challenging considering the non-convexity of neural networks.
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