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Abstract

We study the problem of distributed multi-

task learning with shared representation,

where each machine aims to learn a sepa-

rate, but related, task in an unknown shared

low-dimensional subspaces, i.e. when the pre-

dictor matrix has low rank. We consider a

setting where each task is handled by a dif-

ferent machine, with samples for the task

available locally on the machine, and study

communication-efficient methods for exploit-

ing the shared structure.

1 Introduction

Multi-task learning is widely used learning framework

in which similar tasks are considered jointly for the

purpose of improving performance compared to learn-

ing the tasks separately [13]. By transferring informa-

tion between related tasks it is hoped that samples will

be better utilized, leading to improved generalization

performance. Multi-task learning has been success-

fully applied, for example, in natural language under-

standing [15], speech recognition [32], remote sensing

[44], image classification [25], spam filtering [43], web

search [14], disease prediction [49], and eQTL mapping

[23] among other applications.

Here, we study multi-task learning in a distributed set-

ting, where each task is handled by a different ma-

chine and communication between machines is expen-

sive. That is, each machine has access to data for a

different task and needs to learn a predictor for that

task, where machines communicate with each other in

order to leverage the relationship between the tasks.

This situation lies between a homogeneous distributed

learning setting [e.g. 36], where all machines have data

from the same source distribution, and inhomogeneous

consensus problems [e.g. 30, 11, 6] where the goal is to

reach a single consensus predictor or iterate which is

the same on all machines. The main argument for this

setting is that if each machine indeed has access to dif-

ferent data (e.g. from a different geographical region or

different types of users), as in the consensus problems

studied by Balcan et al. [6], then we should allow a

different predictor for each distribution, instead of in-

sisting on a single consensus predictor, while still try-

ing to leverage the relationship and similarity between

data distributions, as in classical multi-task learning.

As was recently pointed out by Wang et al. [41], allow-

ing separate predictors for each task instead of insist-

ing on a consensus predictor changes the fundamental

nature of the distributed learning problem, allows for

different optimization methods, and necessitates a dif-

ferent analysis approach, more similar to homogeneous

distributed learning as studied by Shamir and Srebro

[36].

The success of multi-task learning relies on the relat-

edness between tasks. While Wang et al. [41] studied

tasks related through shared sparsity, here we turn to a

more general, powerful and empirically more successful

model of relatedness, where the predictors for differ-

ent tasks lie in some (a-priori unknown) shared low-

dimensional subspace and so the matrix of predictors

is of low rank [3, 2, 45, 4]. In a shared sparsity model,

information from all tasks is used to learn a subset of

the input features which are then used by all tasks. In

contrast, in a shared subspace model, novel features,

which are linear functions of the input features, are

learned. The model can thus be viewed as a two-layer

neural network, with the bottom layer learned jointly

across tasks and the top layer task-specific. Being ar-

guably the most complex multi-layer network that we

can fully analyze, studying such models can also serve

as a gateway to using deeper networks for learning

shared representations.

http://arxiv.org/abs/1603.02185v1


Multi-task learning with a shared subspace is well-

studied in a centralized setting, where data for all tasks

are on the same machine, and some global centralized

procedure is used to find a good predictor for each

task. In such a situation, nuclear norm regularization

is often used to leverage the low rank structure [e.g.

4, 2] and learning guarantees are known ([28] and see

also Section 2). With the growth of modern massive

data sets, where tasks and data often too big to handle

on a single machine, it is important to develop meth-

ods also for the distributed setting. Unfortunately,

the distributed multi-task setting is largely unexplored

and we are not aware of any prior for on distributed

multi-task learning with shared subspaces.

In this paper we focus on methods with efficient com-

munication complexity (i.e. with as small as possi-

ble communication between machines), that can still

leverage most of the statistical benefit of shared-

subspace multi-task learning. Although all our meth-

ods are also computationally tractable and can be im-

plemented efficiently, we are less concerned here with

minimizing the runtime on each machine separately,

considering communication, instead, as the main bot-

tleneck and the main resource to be minimized [8].

This is similar to the focus in distributed optimiza-

tion approaches such as ADMM [11] and DANE [37]

where optimization within each machine is taken as an

atomic step.

Contribution The main contributions of this article

are:

• Present and formalize the shared-subspace multi-

task learning [4] in the novel distributed multi-

task setting, identifying the relevant problems and

possible approaches. We analyze two baselines,

several representative first-order distributed opti-

mization methods, with careful sample and com-

munication complexity analysis.

• We proposed and analyzed two subspace pursuit

approaches which learns the shared representa-

tion in a greedy fashion, which leverage the low-

dimensional predictive structure in a communica-

tion efficient way.

• We conducted comprehensive experimental com-

parisons of the discussed approaches on both sim-

ulated and real datasets, where we demonstrated

that the proposed approaches are more communi-

cation efficient than first-order convex optimiza-

tion methods.

Table 1 summarized the approaches studied in this pa-

per, which will be discussed in detail in the following

sections.

Homogeneous, Inhomogeneous and Multi-Task

Distributed Learning. We briefly review the re-

lationship between homogeneous, inhomogeneous and

multi-task learning, as recently presented by Wang

et al. [41].

A typical situation considered in the literature is one

in which data on different machines are all drawn i.i.d

from the same source distribution. In this setting,

tasks on different machines are all the same, which

should be taken advantage of in optimization [37]. Fur-

thermore, as each machine has access to samples from

the source distribution it can perform computations

locally, without ever communicating with other ma-

chines. While having zero communication cost, this

approach does not compare favorably with the cen-

tralized approach, in which all data are communicated

to the central machine and used to obtain one predic-

tor, when measured in terms of statistical efficiency.

The goal in this setting is to obtain performance close

to that of the centralized approach, using the same

number of samples, but with low communication and

computation costs [36, 20, 48, 47, 26]. Another setting

considered in the distributed optimization literature

is that of consensus optimization. Here each machine

has data from a different distribution and the goal is

to find one vector of coefficients that is good for all the

separate learning or optimization problems [11, 30, 6].

The difficulty of consensus problems is that the local

objectives might be rather different, and, as a result,

one can obtain lower bounds on the amount of com-

munication that must be exchanged in order to reach

a joint optimum.

In this paper we suggest a novel setting that combines

aspects of the above two settings. On one hand, we

assume that each machine has a different source dis-

tributions Dj , corresponding to a different task, as in

consensus problems. For example, each machine serves

a different geographical location, or each is at a dif-

ferent hospital or school with different characteristics.

But if indeed there are differences between the source

distributions, it is natural to learn different predictors

wj for each machine, so that wj is good for the dis-

tribution typical to that machine. In this regard, our

distributed multi-task learning problem is more simi-

lar to single-source problems, in that machines could

potentially learn on their own given enough samples

and enough time. Furthermore, availability of other

machines just makes the problem easier by allowing



Approach Samples Rounds Communication Worker Comp. Master Comp.

Local A2

ε2
1 0 ERM 0

Centralize A2

ǫ2

(

r
m

+ r
p̃

)

1 A2

ǫ2

(

r
m

+ r
p̃

)

0 Nuclear Norm Minimization

ProxGD A2

ǫ2

(

r
m

+ r
p̃

)

mHA2

ε
2 · p Gradient Comp. SV Shrinkage

AccProxGD A2

ǫ2

(

r
m

+ r
p̃

)
√

mHA2

ε
2 · p Gradient Comp. SV Shrinkage

ADMM A2

ǫ2

(

r
m

+ r
p̃

)

mA2

ε
3 · p ERM SV Shrinkage

DFW A2

ǫ2

(

r
m

+ r
p̃

)

mHA2

ε
2 · p Gradient Comp. Leading SV Comp.

DGSP −
mHA2

ε
2 · p ERM Leading SV Comp.

DNSP − − 2 · p ERM Leading SV Comp.

Table 1: Summary of resources required by different approaches to distributed multi-task learning with shared represen-
tations (for squared loss), in units of vector operations/communications, ignoring log-factors.

transfer between the machine, thus reducing the sam-

ple complexity and potentially runtime. The goal,

then, is to leverage as much transfer as possible, while

limiting communication and runtime. As with single-

source problems, we compare our method to the two

baselines, where we would like to be much better than

the local approach, achieving performance nearly as

good as the centralized approach, but with minimal

communication and efficient runtime.

2 Setting, Formulation and Baselines

We consider a setting with m tasks, each characterized

by a source distribution Dj(X, Y ) over feature vectors

X ∈ R
p and associated labels Y , and out goal is to

find linear predictorsw1, . . . ,wm ∈ R
p minimizing the

overall expected loss (risk) across tasks:

L(W ) =
1

m

m∑

j=1

E(Xj ,Yj)∼Dj

[
ℓ(wT

j Xj , Yj)
]
, (2.1)

where for convenience we denote W ∈ R
p×m for the

matrix with columns wi, and ℓ(·, ·) is some specified

instantaneous loss function.

In the learning setting, we cannot observe L(W ) di-

rectly and only have access to i.i.d. sample {xji, yji}nj

i=1

from each distribution Dj , j = 1, . . . ,m. For sim-

plicity of presentation, we will assume that nj = n,

j = 1, . . . ,m, throughout the paper. We will denote

the empirical loss Ln(W ) = 1
m

∑m
j=1 Lnj(wj) where

Lnj(wj) =
1

n

n∑

i=1

ℓ(wT
j xji, yji)

is the local (per-task) empirical loss.

We consider a distributed setting, where each task is

handled on one of m separate machines, and each ma-

chine j has access only to the samples drawn from

Dj . Communication between the machines is by send-

ing real-valued vectors. Our methods work either in a

broadcast communication setting, where at each itera-

tion each machine sends a vector which is received by

all other machines, or in a master-at-the-center topol-

ogy where each machine sends a vector to the master

node, whom in turn performs some computation and

broadcasts some other vectors to all machines. Either

way, we count to total number of vectors communi-

cated.

As in standard agnostic-PAC type analysis, our goal

will be to obtain expected loss L(W ) which is not much

larger then the expected loss of some (unknown) ref-

erence predictor1 W ∗, and we will measure the excess

error over this goal. To allow obtaining such guaran-

tees we will assume:

Assumption 2.1. The loss function ℓ(·) is 1-Lipschitz
and bounded2 by 1, be twice differentiable and H-

smooth, that is

|ℓ′(a, c)− ℓ′(b, c)| ≤ H |a− b|, ∀a, b, c ∈ R.

All the data points are bounded by unit length, i.e.

||xji||2 ≤ 1, ∀i, j,
and the reference predictors have bounded norm:

max
j∈[m]

||w∗
j ||22 ≤ A2

for some A <∞.

The simplest approach, which we refer to as Local, is

to learn a linear predictor on each machine indepen-

dently of other machines. This single task learning ap-

proach ignores the fact that the tasks are related and

1Despite the notation, W ∗ need not be the minimizer
of the expected loss. We can think of it as the minimizer
inside some restricted hypothesis class, though all analysis
and statements hold for any chosen reference predictor W ∗.

2This is only required for the high probability bounds.



that sharing information between them could improve

statistical performance. However, the communication

cost for this procedure is zero, and with enough sam-

ples it can still drive the excess error to zero. However,

compared to procedures discussed later, sample com-

plexity (number of samples n required to achieve small

excess error) is larger. A standard Rademacher com-

plexity argument [7] gives the following generalization

guarantee, which is an extension of Theorem 26.12 in

Shalev-Shwartz and Ben-David [33].

Proposition 2.2. Suppose Assumption 2.1 holds.

Then with probability at least 1− δ,

L(Ŵlocal)− L(W ∗) ≤ 2A√
n
+

√
2 ln(2m/δ)

n
,

where Ŵlocal = [ŵ1, . . . , ŵm] with ŵj =

argmin||w||≤ALnj(w).

That is, in order to ensure ǫ excess error, we need

n = O
(
A2

ǫ2

)

samples from each task.

At the other extreme, if we ignore all communication

costs, and, e.g. communicate all data to a single ma-

chine, we can significantly leverage the shared sub-

space. To understand this, we will first need to in-

troduce two assumptions: one about the existence of

a shared subspace (i.e. that the reference predictor is

indeed low-rank), and the other about the spread of

the data:

Assumption 2.3. rank(W ∗) ≤ r

Assumption 2.4. There is a constant p̃, such that

∣∣∣∣
∣∣∣∣
1

m

m∑

j=1

E(Xj ,Yj)∼Dj

[
XjX

T
j

] ∣∣∣∣
∣∣∣∣
2

≤ 1

p̃
.

Since the data is bounded, we always have 1 ≤ p̃ ≤ p,

with p̃ being a measure of how spread out the data is in

different direction. A value of 1 = p̃ indicates the data

is entirely contained in a one-dimensional line. In this

case, the predictor matrix will also always be rank-

one, imposing a low-rank structure is meaningless and

we can’t expect to gain from it. However, when p̃ is

close to p, or at least high, the data is spread in many

directions and the low-rank assumption is meaningful.

We can think of p̃ as the “effective dimensionality” of

the data, and hope to gain when r ≪ p̃.

With these two assumptions in hand, we can think

of minimizing the empirical error subject to a rank

constraint on W . This is a hard and non-convex op-

timization task, but we can instead use the nuclear

norm (aka trace-norm) ||W ||∗ as a convex surrogate

for the rank. This is because if Assumptions 2.1 and

2.3 hold, then we also have:

||W ∗||∗ ≤
√
rmA. (2.2)

With this in mind, we can define the following central-

ized predictor:

Ŵcentralize = arg min
||W ||∗≤

√
rmA
Ln(W ) (2.3)

which achieves the improved excess error guarantee:

Proposition 2.5. (Theorem 1 in Maurer and Pon-

til [28]) Suppose Assumptions 2.1, 2.3 and 2.4 hold.

Then with probability at least 1− δ,

L(Ŵcentralize) ≤L(W ∗) +

√
2 ln(2/δ)

nm

+ 2
√
rA

(√
1

p̃n
+ 5

√
ln(mn) + 1

mn

)

The sample complexity per task, up to logarithmic fac-

tors, is thus only:

n = Õ
(
A2

ǫ2

(
r

m
+

r

p̃

))

When p̃ ≫ m, this is a reduction by a factor of r/m.

That is, it is as if we needed to only learn r linear

predictors instead of m.

The problem is that a naive computation of Ŵcentralize

requires collecting all data on a single machine,

i.e. communicating O(n) = Õ
(

A2

ǫ2

(
r
m

+ r
p̃

))
samples

per machine. In the next Sections, we aim at develop-

ing methods of approximating Ŵcentralized using com-

munication efficient methods, or computing an alter-

nate predictor with similar statistical properties but

using much less communication.

3 Distributed Convex Optimization

In this section, we study how to obtain the sharing

benefit of the centralized approach using distributed

convex optimization techniques, while keeping the

communication requirements at low.

To enjoy the benefit of nuclear-norm regularization

while avoid heavy communication cost of Centralize,

a flexible strategy is to solve the convex objective (2.3)

via distributed optimization techniques. Let W (t) be

the solution at t-iteration for some iterative distributed



optimization algorithm for the following constrained

objective:

min
||W ||∗≤

√
rmA
Ln(W ). (3.1)

By the generalization error decompsition [10],

L(W (t))− L(W ∗) ≤2ǫ+ ǫopt,

Suppose W (t) satisfying Ln(W (t)) ≤ Ln(Ŵ )+O(ǫopt)
with ǫopt = O(ǫ). Then W (t) will have the gener-

alization error of order O(ǫ). Therefore in order to

study the generalization performance, we will study

how the optimization error decreases as the function

of the number of iterations t.

Constrained vs Regularized Objective Note

that the constrained objective (3.1) is equivalent to the

following regularized objective with a proper choice of

λ:

min
W
Ln(W ) + λ||W ||∗. (3.2)

Though they are equivalent, specific optimization al-

gorithms might sometimes be more suitable for one

particular type of objectives 3. For convenience in

the following discussion we didn’t distinguish between

these two formulations.

3.1 Distributed Proximal Gradient

Maybe the simplest distributed optimization algo-

rithm for (3.2) is the proximal gradient descent. It

is not hard to see that computation of the gradient

∇Ln(W ) can be easily done in a distributed way as

the losses are decomposable across machines:

∇Ln(W ) =
[
∇Ln1(w1), . . . ,∇Lnm(wm)

]

where

∇Lnj(wj) =
1

nm

n∑

i=1

ℓ′(〈wj ,xji〉, yji)xji.

Thus each machine j needs to compute the gradient

∇Lnj(wj) on the local dataset and send it to the mas-

ter. The master concatenates the gradient vectors to

form the gradient matrix ∇Ln(W ). Finally, the mas-

ter computes the proximal step

W (t+1) = argmin
W
||W − (W (t) − η∇Ln(W (t)))||2F
+ λ||W ||∗, (3.3)

3e.g. ADMM for regularized objective and Frank-Wolfe
for constrained objective. Gradient descent methods can
be adopted for both, leads to proximal and projected meth-
ods, respectively.

which has the following closed form solution [12]: let

W (t) − η∇Ln(W (t)) = UΣV T be the SVD of W (t) −
η∇Ln(W (t)), then W (t+1) = U (Σ− 0.5λI)+ V T with

(x)+ = max{0, x} applied element-wise.

The algorithm is summarized in Algorithm 4 (in Ap-

pendix), which has well established convergence rates

[5]:

Ln(W (t))− Ln(Ŵ ) ≤ mHA2

2t
.

To obtain ε-generalization error, the distributed

proximal gradient descent requires O
(

mHA2

ε

)
rounds

of communication, with a total O
(

mHA2p
ε

)
bits

communications per machine.

3.2 Distributed Accelerated Gradient

It is also possible to use Nesterov’s acceleration idea

[29] to improve the convergence of the proximal gra-

dient algorithm from O
(
1
t

)
to O

(
1
t2

)
[22]. Using the

distributed accelerated proximal gradient descent, one

needs O
(√

mHA2

ε

)
rounds of communication with

a total O
(√

mHA2

ε
· p
)

bits communicated per ma-

chine to achieve ε-generalization error. The algorithm

is summarized in Algorithm 5 (in Appendix), where

the master maintains two sequences: W and Z. First,

a proximal gradient update of W is done based on Z

W (t+1) = argmin
Z
||Z − (Z(t) − η∇Ln(Z(t)))||2F
+ λ||Z||∗ (3.4)

and then Z is updated based on a combination of the

current W and the difference with previous W

Z(t+1) = W (t+1) + γt(W
(t+1) −W (t)). (3.5)

ADMM and DFW We also discuss the implemen-

tation and guarantees for two other popular optimiza-

tion methods: ADMM and Frank-Wolfe, which are

presented in the Appendix A and B.

4 Greedy Representation Learning

In this section we propose two distributed algorithms

which select the subspaces in a greedy fashion, instead

of solving the nuclear norm regularized convex pro-

gram.



Algorithm 1: DGSP: Distributed Gradient Subspace

Pursuit.

1 for t = 1, 2, . . . do

2 Workers:

3 for j = 1, 2, . . . ,m do

4 Each worker compute the its gradient

direction ∇Lnj(w(t)
j ), and send it to the

master
5 end

6 if Receive u from the master then

7 Update the projection matrix U = [U u];

8 Solve the projected ERM problem:

vj = argminvj
Lnj(Uvj);

9 Update w
(t+1)
j = Uvj .

10 end

11 Master:

12 if Receive ∇Lnj(w(t)
j ) from all workers then

13 Concatenate the gradient vectors, and

compute the largest singular vectors:

(u,v) = SV(∇Ln(W (t)));

14 Send u to all workers.

15 end

16 end

4.1 Distributed Greedy Subspace Pursuit

Our greedy approach is inspired by the methods used

for sparse signal reconstruction [39, 34]. Under the

assumption that the optimal model W ∗ is low-rank,

say rank r, we can write W ∗ as a sum of r rank-1

matrices:

W ∗ =

r∑

i=1

aiuiv
T
i = UV T ,

where ai ∈ R,ui ∈ R
p,vi ∈ R

m, and ||ui||2 = ||vi||2 =

1. In the proposed approach, the projection matrix U

is learned in a greedy fashion. At every iteration, a

new one-dimensional subspace is identified that leads

to an improvement in the objective. This subspace is

then included into the existing projection matrix. Us-

ing the new expanded projection matrix as the current

feature representation, we refit the model to obtain

the coefficient vectors V . In the distributed setting,

there is a master that gathers local gradient informa-

tion from each task. Based on this information, it

then computes the subspace to be added to the pro-

jection matrix and sends it to each machine. The key

step in the distributed greedy subspace pursuit algo-

rithm is the addition of the subspace. One possible

choice is the principle component of the gradient di-

rection; after the master collected the gradient matrix

∇Ln(W (t)), it computes the top left and right singular

vectors of ∇Ln(W (t)). Let (u,v) = SV(∇Ln(W (t)))

be the largest singular vectors of ∇Ln(W (t)). The left

singular vector u is used as a new subspace to be added

to the projection matrix U . This vector is sent to each

machine, which then concatenate it to the projection

matrix and refit the model with the new representa-

tion. Algorithm 1 details the steps.

Distributed gradient subspace pursuit (DGSP), detailed

in Algorithm 1, creates subspaces that are orthogonal

to each other, as shown in the following proposition

which is proved in Appendix D:

Proposition 4.1. At every iteration of Algorithm 1,

the columns of U are orthonormal.

Both the distributed gradient subspace pursuit and the

distributed Frank-Wolfe use the leading singular vector

of the gradient matrix iteratively. Moreover, leading

singular vectors of the gradient matrix have been used

in greedy selection procedures for solving low-rank ma-

trix learning problems [35, 42]. However, DGSP utilize

the learned subspace in a very different way: GECO

[35] re-fit the low-rank matrix under a larger subspace

which is spanned by all left and right singular vectors;

while OR1MP [42] only adjust the linear combination pa-

rameters {ai}ri=1 of the rank-1 matrices. The DGSP al-

gorithm do not restrict on the joint subspaces {uiv
T
i },

but focused on the low-dimensional subspace induced

the projection matrix U , and estimate the task specific

predictors V based on the learned representation.

Next, we present convergence guarantees for the dis-

tributed gradient subspace pursuit. First, note that

the smoothness of ℓ(·) implies the smoothness prop-

erty for any rank-1 update.

Proposition 4.2. Suppose Assumption 2.1 holds.

Then for any W and unit length vectors u ∈ R
p and

v ∈ R
m, we have

Ln(W + ηuvT ) ≤ Ln(W ) + uT∇Ln(W )v +
Hη2

2
.

We defer the proof in Appendix E. The following the-

orem states the number of iterations needed for the

distributed gradient subspace pursuit to find an ε-

suboptimal solution.

Theorem 4.3. Suppose Assumption 2.1 holds. Then

the distributed gradient subspace pursuit finds W (t)

such that Ln(W (t)) ≤ Ln(W ∗) + ε when

t ≥
⌈
4HmA2

ε

⌉
.



We defer the proof in Appendix F. Theorem 4.3 tells us

that for the distributed gradient subspace pursuit re-

quires O
(

mHA2

ε

)
iterations to reach ǫ accuracy. Since

each iteration requires communicating p number, the

communication cost per machine is O
(

mHA2

ε
· p
)
. In

some applications this communication cost might be

still too high and in order to improve it we will try

to reduce the number of rounds of communication.

To that end, we develop a procedure that utilizes the

second-order information to improve the convergence.

Algorithm 6 describes the Distributed Newton Sub-

space Pursuit algorithm (DNSP). Note that distributed

optimization with second-order information have been

studied recently to achieve communication efficiency

[37, 46].

Compared to the gradient based methods, the DNSP
algorithm uses second-order information to find sub-
spaces to work with. At each iteration, each machine
computes the Newton direction

∆Lnj(wj) =[∇2
Lnj(wj)]

−1
∇Lnj(wj)

=

[

1

mn

n
∑

i=1

ℓ
′′(wT

j xji, yji)xjix
T
ji

]

−1

∇Lnj(wj),

based on the current solution and sends it to the mas-

ter. The master computes the overall Newton direction

by concatenating the Newton direction for each task

∆Ln(W ) = [∆Ln1(w1),∆Ln2(w2), . . . ,∆Lnm(wm)]

and computes the top singular vectors of ∆Ln(W ).

The top left singular vector u is is sent back to every

machine, which is then concatenated to the current

projection matrix. Each machine re-fits the predictors

using the new representation. Note that at every it-

eration a Gram-Schmidt step is performed to ensure

that the learned basis are orthonormal.

DNSP is a Newton-like method which uses second-order

information, thus its generic analysis is not immedi-

ately apparent. However empirical results in the next

section illustrate good performance of the proposed

DNSP.

5 Experiments

We first illustrate performance of different procedures

on simulated data. We generate data according to

yji | xji ∼ N (wT
j xji, 1)

for regression problems and

yji | xji ∼ Bernoulli
((

1 + exp(−wT
j xji)

)−1
)

for classification problems. We generate the low-

rank W ∗ as follows. We first generate two matrices

A ∈ R
p×r, B ∈ R

m×r with entries sampled indepen-

dently from a standard normal distribution. Then we

extract the left and right singular vectors of ABT ,

denoted as U, V . Finally, we set W ∗ = USV T ,

where S is a diagonal matrix with exponentially decay-

ing entries: diag(S) = [1, 1/1.5, 1/(1.5)2, . . . , 1/(1.5)r].

The feature vectors xji are sampled from a mean

zero multivariate normal with the covariance matrix

Σ = (Σab)a,b∈[p], Σab = 2−|a−b|. The regularization

parameters for all approaches were optimized to give

the best prediction performance over a held-out vali-

dation dataset. For ProxGD and AccProxGD, we initial-

ized the solution from Local. Our simulation results

are averaged over 10 independent runs.

We investigate how the performance of various pro-

cedures changes as a function of problem parameters

(n, p,m, r). We compare the following procedures: i)

Local, where each machine solves an empirical risk

minimization problem (ordinary least squares or lo-

gistic regression) . ii) Nuclear-norm regularization:

which is a popular Centralize approach: all machines

send their data to the master, the master solves a

nuclear-norm regularized loss minimization problem.

iii) Learning with the best representation (BestRep):

which assumes the true projection matrix U is known,

and just fit ordinal least squares or logistic regres-

sion model in the projected low-dimensional subspace .

Note that this is not a practical approach since in prac-

tice we do not know the best low-dimensional represen-

tations of the data. iv) Convex optimization approach

which runs distributed optimization algorithms over

the nuclear norm-regularized objective: here we imple-

mented and compared the following algorithms: dis-

tributed proximal gradient (ProxGD); distributed ac-

celerated proximal gradient, (AccProxGD); distributed

alternating direction method of multipliers (ADMM); dis-

tributed Frank-Wolfe (DFW) . v) The proposed DGSP

and DNSP approaches. The simulation results for re-

gression and classification problems are shown in Fig-

ure 1 and 24, respectively. We plot how the excess

prediction error decreases as the number of rounds

of communications increases (Local, Centralize and

BestRep are one shot approaches thus the lines are

horizontal). From the plots, we have the following ob-

servations:

• Nuclear norm regularization boosts the prediction

performance over plain single task learning signif-

icantly, which shows clear advantage of leveraging

4For better visualization, here we omit the plot for DFW
as its performance is significantly worse than others.
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Figure 1: Excess prediction error for multi-task regression.
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Figure 2: Excess prediction error for multi-task classification.

the shared representation in multi-task learning.

• ADMM and AccProxGD perform reasonably well , es-

pecially ADMM. One reason for the effectiveness of

ADMM is that for the problem of nuclear norm reg-

ularized multi-task learning considered here, the

ADMM update solves regularized ERM problems at

every iteration. ADMM and AccProxGD clearly out-

perform ProxGD.

• ProxGD and DGSP perform similarly. DGSP usually

becomes worse as the iterations increases , while

ProxGD converges to a global optimum of the nu-

clear norm regularized objective.

• DNSP is the most communication-efficient method,

and usually converges to a solution that is slightly

better compared to the optimum of the nuclear

regularization. This shows that second-order in-

formation helps a lot in reducing the communica-

tion cost.

• The DFW performs the worst in most cases, even

though DFW shares some similarity with DGSP in

learning the subspace. The empirical results sug-

gest the re-fitting step in DGSP is very important.

One-shot SVD truncation A natural question to

ask is whether there exists a one-shot communication

method for the shared representation problem consid-

ered here, that still matches the performance of cen-

tralized methods. One reasonable solution is to con-

sider the following SVD truncation approach, which is

based on the following derivation: consider the follow-

ing well specified linear regression model:

yji = 〈xji,w
∗
j 〉+ ǫji,

where ǫji is drawn from mean-zero Gaussian noise. It

is easy to verify the following equation for OLS esti-

mation:

ŵlocal(j) = w∗
j +

(∑

i

xjix
T
ji

)−1 (∑

i

ǫjixji

)
.

Since Ŵlocal is just W
∗ plus some mean-zero Gaussian

noise, it is natural to consider the following low-rank

matrix denoising estimator:

min
W
||Ŵlocal −W ||2F s.t. rank(W ) = r.

where the solution is a simple SVD truncation, and

can be implemented in a one-shot way: each worker

send its Local solution to the master, which then per-

forms an SVD truncation step to maintain the top-r

components

Ŵsvd = UrSrV
T
r , where USV T = SVD(Ŵlocal),
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Figure 3: Excess prediction error for multi-task regression, with highly correlated features.

and send the resulting estimation back to each worker,

where Ur, Sr, Vr are top-r components of U, S, V .

Though this approach might work well for some simple

scenarios, but will generally fail when the features are

highly correlated: although the Local solution Ŵlocal

can output normal estimation of W ∗, the estimation

noise
(∑

i xjix
T
ji

)−1
(
∑

i ǫjixji) might be highly cor-

related (depend on the correlation between features),

which makes the SVD truncation estimation not re-

liable. To illustrate this, consider a more complex

simulation which follows the same setup as above set-

ting, except that now the feature vectors xji are sam-

pled from a higher correlation matrix Σ = (Σab)a,b∈[p],

Σab = 2−0.1|a−b|. The regression simulation results

are shown in Figure 3, where we see that the one-shot

SVD truncation approach does not significantly out-

performs Local, sometimes even slightly worse.

Besides simulation, we also conducted extensive exper-

iments on real world datasets, which are presented in

Appendix H due to space limitation.

6 Conclusion

We studied the problem of distributed representa-

tion learning for multiple tasks, discussed the imple-

mentation and guarantees for distributed convex op-

timization methods, and presented two novel algo-

rithms to learn low-dimensional projection in a greedy

way, which can be communication more efficient than

distributed convex optimization approaches. All ap-

proaches are extensively evaluated on simulation and

real world datasets.
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Appendix

A Distributed Alternating Direction

Methods of Multipliers

The Alternating Direction Methods of Multipliers

(ADMM) is also a popular method for distributed opti-

mization (11) and can be used to solve the distributed

low-rank multi-task learning problem. We first write

the objective (2.3) as

argmin
W,Z

Ln(W ) + λ||Z||∗, subject to W = Z.

By introducing the Lagrangian and augmented terms,

we get the following unconstrained problem:

L̃(W,Z,Q) =Ln(W ) + λ||Z||∗ + 〈W − Z,Q〉
+

ρ

2
||W − Z||2F ,

where ρ is a parameter controlling the augmentation

level. Note that except for Z, the augmented La-

grangian objective are decomposable across tasks. To

implement the distributed ADMM algorithm, we let

the workers maintain the data and W , while the mas-

ter maintains Z and Q. At round t, each machine

separately solves

w
(t+1)
j = argmin

w
Lnj(wj) + 〈w(t+1)

j − z
(t)
j ,q

(t)
j 〉

+
ρ

2
||w(t+1)

j − z
(t)
j ||2, (A.1)

which is minimizing the local loss plus a regularization

term. Next, each worker sends their solution to the

master, which performs the following updates for Z

and Q

Z(t+1) =argmin
Z
〈W (t+1) − Z,Qt〉+ λ||Z||∗

+
ρ

2
||W (t+1) − Z||2F , (A.2)

Q(t+1) =Q(t) + ρ(W (t+1) − Z(t+1)), (A.3)

which have closed-form solutions.

The algorithm ADMM is summarized in Algorithm 2.

Note that compared to methods discussed before, ADMM

needs to communicate three p-dimensional vectors be-

tween each worker and the master at each round, while

the proximal gradient approaches only communicate

two p-dimensional vectors per round. Based on con-

vergence results of ADMM (17), O
(

mA2

ε

)
rounds of

communication are needed to obtain ε-generalization

error.

B Distributed Frank-Wolfe Method

Another approach we consider is the distributed

Frank-Wolfe method (16, 19, 9). This methods does

not require performing SVD, which might bring addi-

tional computational advantages. Instead of directly

minimizing the nuclear norm regularized objective, the

Frank-Wolfe algorithm considers the equivalent con-

strained minimization problem

min
W
Ln(W ) subject to ||W ||∗ ≤ R.

At each step, Frank-Wolfe algorithm considers the fol-

lowing direction to update

Z(t) = arg min
||Z||∗≤R

〈∇Ln(W (t)), Z〉 = −R · uvT ,

where (u,v) = SV(∇Ln(W (t))) is the leading singular

vectors of ∇Ln(W (t)). The next iterate is obtained as

W (t+1) = (1− γ)W (t) + γZ(t),

where γ is a step size parameter. To implement this

algorithm in a distributed way, the master first collects

the gradient matrix∇Ln(W (t)) and computes u and v.

The vector vju is sent to j-th machine, which performs

the following update:

w
(t+1)
j = (1− γ)w

(t)
j − γRvju. (B.1)

The algorithm is summarized in Algorithm 3. Sim-

ilar to the distributed (accelerated) proximal gra-

dient descent, the distributed Frank-Wolfe only re-

quires communication of two p-dimensional vectors per

round. Though computationally cheaper compared

to other methods considered in this section, the dis-

tributed Frank-Wolfe algorithm enjoys similar conver-

gence guarantees to the distributed proximal gradient

descent (19), that is, after O
(

mHA2

ε

)
iterations, the

solution will be ε suboptimal.

C Pseudocode of the algorithms

D Proof of Proposition 4.1

Proof. It is sufficient to prove that at every iteration,

the current projection matrix U and the subspace to

be added u are orthogonal to each other. Note that

by the optimality condition:

∇V

(
Ln(UV T )

)
= UT∇Ln(W (t)) = 0.

Since u is the leading left singular vector of

∇Ln(W (t)), we have UTu = 0. Each column of U has

unit length, since it is a left singular vector of some

matrix.



E Proof of Proposition 4.2

Proof. It is sufficient to prove that the largest eigen-

value of∇2Ln(W ) does not exceedH . Since∇2Ln(W )

is a block diagonal matrix, it is sufficient to show that

for every block j ∈ [m], the largest eigenvalue of the

block ∇2Lnj(wj) is not larger than H .

This is true by the H-smoothness of ℓ(·) and the fact

that the data points have bounded length:

||∇2Lnj(wj)||2 ≤ H ·max
i,j
||xji||2 ≤ H.

F Proof of Theorem 4.3

Proof. By the smoothness of Ln, we know

Ln(W (t+1)) ≤min
b
Ln(W (t) + buvT )

≤Ln(W (t)) + b〈uvT ,∇Ln(W (t))〉+ Hb2

2

≤Ln(W (t)) +
b〈W ∗,∇Ln(W (t))〉

||W ∗||F
+

Hb2

2
.

(F.1)

Let W (t) = UV T . Since V is a mini-

mizer of Ln(UV T ) with respect to V , we

have UT∇Ln(W (t)) = 0 and therefore

〈W (t),∇Ln(W (t))〉 = trace(V UT∇Ln(W (t))) = 0.

From convexity of Ln(·), we have

〈W ∗,∇Ln(W (t))〉 =〈W ∗ −W (t),∇Ln(W (t))〉
≤Ln(W ∗)− Ln(W (t)).

Combining with the display above

Ln(W (t))− Ln(W (t+1)) ≥b(Ln(W (t))− Ln(W ∗))

||W ∗||F

− Hb2

2
.

By choosing

b =
Ln(W (t))− Ln(W ∗)

H ||W ∗||F
we have

Ln(W (t))− Ln(W (t+1)) ≥
(
Ln(W (t))− Ln(W ∗)

)2

2H ||W ∗||2F

≥
(
Ln(W (t))− Ln(W ∗)

)2

2mHA2
.

Using Lemma G.1 in Appendix we know that after

t ≥
⌈
2mHA2

ε

⌉

iterations, we have Ln(W (t)) ≤ Ln(W ∗) + ε.

G An auxiliary lemma

Lemma G.1. (Lemma B.2 of Shalev-Shwartz et al.

(34)) Let x > 0 and let ε0, ε1, ... be a sequence such

that ε ≤ εt − rε2t for all t. Let ε be a positive scalar

and t be a positive integer such that t ≥ ⌈ 1
xε
⌉. Then

εt ≤ ε.

H Evaluation on Real World Datasets

We also evaluate discussed algorithms on several real

world data sets, with 20% of the whole dataset as

training set, 20% as held-out validation, then report

the testing performance on the remaining 60%. For

the real data, we have observed that adding ℓ2 regu-

larization usually helps improving the generalization

performance. For the Local procedure we added an

ℓ2 regularization term (leads to ridge regression or ℓ2
regularized logistic regression). For DGSP and DNSP, we

also add an ℓ2 regularization in finding the subspaces

and refitting . We have worked on the following multi-

task learning datasets:

School.5 The dataset consists of examination scores

of students from London’s secondary schools during

the years 1985, 1986, 1987. There are 27 school-

specific and student-specific features to describe each

student. The instances are divided by different

schools, and the task is to predict the students’ perfor-

mance. We only considered schools with at least 100

records, which results in 72 tasks in total. The max-

imum number of records for each individual school is

260.

Computer Survey. The data is taken from a con-

joint analysis experiment (27) which surveyed 180 per-

sons about the probability of purchasing 20 kinds of

personal computers. There are 14 variables for each

computer, the response is an integer rating with scale

0− 10.

ATP.6 The task here is to predict the airline ticket

price (38). We are interested in the minimum prices

next day for some specific observation date and depar-

ture date pairs. Each case is described by 411 features,

and there are 6 target minimum prices for different air-

lines to predict. The sample size is 337.

Protein. Given the amino acid sequence, we are inter-

ested predicting the protein secondary structure (31).

We tackle the problem by considering the following

three binary classification tasks: coil vs helix, helix vs

5http://cvn.ecp.fr/personnel/andreas/code/mtl/index.html
6http://mulan.sourceforge.net/datasets.html

http://cvn.ecp.fr/personnel/andreas/code/mtl/index.html
http://mulan.sourceforge.net/datasets.html
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Figure 4: Prediction Error on real data.

Algorithm 2: ADMM: Distributed ADMM for Multi-

Task Learning.

1 for t = 1, 2, . . . do

2 Workers:

3 for j = 1, 2, . . . ,m do

4 Each worker solves the regularized ERM

problem as (A.1) to get w
(t+1)
j , and send it to

the master;

5 Wait;

6 Receive z
(t+1)
j ,q

(t+1)
j from master.

7 end

8 Master:

9 if Receive w
(t+1)
j from all workers then

10 Concatenate the current solutions w
(t+1)
j , and

update Z(t+1) as (A.2);

11 Update Q(t+1) as (A.3);

12 Send z
(t+1)
j ,q

(t+1)
j to the corresponding

worker.
13 end

14 end

strand, strand vs coil. Each sequence is described by

357 features. There are 24,387 instances in total.

Landmine. The data is collected from 19 landmine

detection tasks (44). Each landmine field is repre-

sented by a 9-dimensional vector extracted from radar

images, containing moment-based, correlation-based,

energy ratio, and spatial variance features. The sam-

ple size for each task varies from 445 to 690.

Cal500.7 This music dataset (40) consists of 502

songs, where for each song 68 features are extracted.

Each task is to predict whether a particular musically

relevant semantic keyword should be an annotation for

the song. We only consider tags with at least 50 times

apperance, which results in 78 prediction tasks.

We compared various approaches as in the simulation

study, except the BestRep as the best low-dimensional

representation is unknown. We also compared with

AltMin, which learns low-rank prediction matrix us-

ing the alternating minimization (21). The results are

shown in Figure 4. Since the labels for the real world

classification datasets are often unbalanced, we report

averaged area under the curve (AUC) instead of classi-

fication accuracy. We have the following observations:

• The distributed first-order approaches converge

much slower than in simulations, especially on

7http://eceweb.ucsd.edu/~gert/calab/

http://eceweb.ucsd.edu/~gert/calab/


Algorithm 3: DFW: Distributed Frank-Wolfe for

Multi-Task Learning.

1 for t = 0, 2, . . . do

2 Workers:

3 for j = 1, 2, . . . ,m do

4 Each worker compute the its gradient

direction ∇Lnj(w(t)
j ), and send it to the

master;
5 end

6 if Receive vju from the master then

7 Set γ = 2
t+2 ;

8 Update w
(t+1)
j as (B.1).

9 end

10 Master:

11 if Receive ∇Lnj(w(t)
j ) from all workers then

12 Concatenate the gradient vectors, and

compute the largest singular vectors:

(u,v) = SV(∇Ln(W (t)));

13 Send vju to j-th worker.

14 end

15 end

ATP and Cal500. We suspect this is because in

the simulation study, the generated data are usu-

ally well conditioned, which makes faster conver-

gence possible for such methods (1, 18). On real

data, the condition number can be much worse.

• In most case, DNSP is the best in terms of

communication-efficiency. DGSP also has reason-

able performance with fewer round of commu-

nications compared to distributed first-order ap-

proaches.

• Among the first-order distributed convex opti-

mization methods, AccProxGD is overall the most

communication-efficient, while DFW is the worst,

though it might have some advantages in terms

of computation. Also, we observed significant zig-

zag behavior of the DFW algorithm, as discussed in

(24).

I Full experimental results with

Distributed Frank-Wolfe

Algorithm 4: ProxGD: Distributed Proximal Gradi-

ent.

1 for t = 1, 2, . . . do

2 Workers:

3 for j = 1, 2, . . . ,m do

4 Each worker compute the its gradient

direction

∇Lnj(w(t)
j ) = 1

mn

∑n
i=1 ℓ

′(〈w(t)
j ,xji〉, yji)xji,

and send it to the master;

5 Wait;

6 Receive w
(t+1)
j from master.

7 end

8 Master:

9 if Receive ∇Lnj(w(t)
j ) from all workers then

10 Concatenate the gradient vectors, and update

W (t+1) as (3.3);

11 Send w
(t+1)
j to all workers.

12 end

13 end

Algorithm 5: AccProxGD: Accelerated Distributed

Proximal Gradient for Multi-Task Learning.

1 for t = 1, 2, . . . do

2 Workers:

3 for j = 1, 2, . . . ,m do

4 Each worker compute the its gradient

direction

∇Ln(z(t)j ) = 1
mn

∑n

i=1 ℓ
′(〈z(t)j ,xji〉, yji)xji,

and send it to the master;

5 Wait;

6 Receive z
(t+1)
j from master.

7 end

8 Master:

9 if Receive ∇Ln(z(t)j ) from all workers then

10 Concatenate the gradient vectors, and update

W (t+1) as (3.4);

11 Update Z(t+1) as (3.5);

12 Send z
(t+1)
j to all workers.

13 end

14 end
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Figure 5: Excess prediction error for multi-task regression.

Algorithm 6: DNSP: Distributed Newton Subspace

Pursuit.

1 for t = 1, 2, . . . do

2 Workers:

3 for j = 1, 2, . . . ,m do

4 Each worker computes the Newton direction

∆Lnj(w(t)
t ) =

(
∇2Lnj(w(t)

t )
)−1

∇Lnj(w(t)
t )

and sends it to the master.
5 end

6 if Receive u from the master then

7 Perform Gram-Schmidt orthogonalization:

8 u← u−∑t−1
k=1〈Uk,u〉;

9 Normalize u = u/||u||2;
10 Update the projection matrix U = [U u];

11 Solve the projected ERM problem:

12 vj = argminvj

1
n

∑n
i=1 ℓ(〈vj , U

TXji〉, yji);
13 Update w

(t+1)
j = Uvj .

14 end

15 Master:

16 if Receive ∆Lnj(w(t)
t ) from all workers then

17 Concatenate the Newton vectors, and

compute the largest singular vectors:

(u,v) = SV(∆Ln(W (t)));

18 Send u to all workers.

19 end

20 end
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Figure 6: Excess prediction error for multi-task classification.
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Figure 7: Excess prediction error for multi-task regression, with highly correlated features.
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Figure 8: Prediction Error on real data.
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