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Abstract

We investigate the parameter-space geometry of recurrent neural networks (RNNs), and develop an
adaptation of path-SGD optimization method, attuned to this geometry, that can learn plain RNNs with
ReLU activations. On several datasets that require capturing long-term dependency structure, we show
that path-SGD can significantly improve trainability of ReLU RNNs compared to RNNs trained with
SGD, even with various recently suggested initialization schemes.

1 Introduction

Recurrent Neural Networks (RNNs) have been found to be successful in a variety of sequence learning
problems [4, 3, 9], including those involving long term dependencies (e.g., [1, 23]). However, most of the
empirical success has not been with “plain” RNNs but rather with alternate, more complex structures, such
as Long Short-Term Memory (LSTM) networks [7] or Gated Recurrent Units (GRUs) [3]. Much of the
motivation for these more complex models is not so much because of their modeling richness, but perhaps
more because they seem to be easier to optimize. As we discuss in Section 3, training plain RNNs using
gradient-descent variants seems problematic, and the choice of the activation function could cause a problem
of vanishing gradients or of exploding gradients.

In this paper our goal is to better understand the geometry of plain RNNs, and develop better optimization
methods, adapted to this geometry, that directly learn plain RNNs with ReLU activations. One motivation
for insisting on plain RNNs, as opposed to LSTMs or GRUs, is because they are simpler and might be
more appropriate for applications that require low-complexity design such as in mobile computing platforms
[22, 5]. In other applications, it might be better to solve optimization issues by better optimization methods
rather than reverting to more complex models. Better understanding optimization of plain RNNs can also
assist us in designing, optimizing and intelligently using more complex RNN extensions.

Improving training RNNs with ReLU activations has been the subject of some recent attention, with
most research focusing on different initialization strategies [12, 22]. While initialization can certainly have a
strong effect on the success of the method, it generally can at most delay the problem of gradient explosion
during optimization. In this paper we take a different approach that can be combined with any initialization
choice, and focus on the dynamics of the optimization itself.

Any local search method is inherently tied to some notion of geometry over the search space (e.g. the
space of RNNs). For example, gradient descent (including stochastic gradient descent) is tied to the Euclidean
∗Contributed equally.
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geometry and can be viewed as steepest descent with respect to the Euclidean norm. Changing the norm
(even to a different quadratic norm, e.g. by representing the weights with respect to a different basis in
parameter space) results in different optimization dynamics. We build on prior work on the geometry and
optimization in feed-forward networks, which uses the path-norm [16] (defined in Section 4) to determine a
geometry leading to the path-SGD optimization method. To do so, we investigate the geometry of RNNs
as feedforward networks with shared weights (Section 2) and extend a line of work on Path-Normalized
optimization to include networks with shared weights. We show that the resulting algorithm (Section 4) has
similar invariance properties on RNNs as those of standard path-SGD on feedforward networks, and can
result in better optimization with less sensitivity to the scale of the weights.

2 Recurrent Neural Nets as Feedforward Nets with Shared Weights

We view Recurrent Neural Networks (RNNs) as feedforward networks with shared weights.
We denote a general feedforward network with ReLU activations and shared weights is indicated by

N (G, π,p) where G(V,E) is a directed acyclic graph over the set of nodes V that corresponds to units
v ∈ V in the network, including special subsets of input and output nodes Vin, Vout ⊂ V , p ∈ Rm is a
parameter vector and π : E → {1, . . . ,m} is a mapping from edges in G to parameters indices. For any
edge e ∈ E, the weight of the edge e is indicated by we = pπ(e). We refer to the set of edges that share
the ith parameter pi by Ei = {e ∈ E|π(e) = i}. That is, for any e1, e2 ∈ Ei, π(e1) = π(e2) and hence
we1 = we2 = pπ(e1).

Such a feedforward network represents a function fN (G,π,p) : R|Vin| → R|Vout| as follows: For any
input node v ∈ Vin, its output hv is the corresponding coordinate of the input vector x ∈ R|Vin|. For each
internal node v, the output is defined recursively as hv =

[∑
(u→v)∈E wu→v · hu

]
+

where [z]+ = max(z, 0)

is the ReLU activation function1. For output nodes v ∈ Vout, no non-linearity is applied and their output
hv =

∑
(u→v)∈E wu→v ·hu determines the corresponding coordinate of the computed function fN (G,π,p)(x).

Since we will fix the graph G and the mapping π and learn the parameters p, we use the shorthand
fp = fN (G,π,p) to refer to the function implemented by parameters p. The goal of training is to find
parameters p that minimize some error functional L(fp) that depends on p only through the function fp.
E.g. in supervised learning L(f) = E [loss(f(x), y)] and this is typically done by minimizing an empirical
estimate of this expectation.

If the mapping π is a one-to-one mapping, then there is no weight sharing and it corresponds to standard
feedforward networks. On the other hand, weight sharing exists if π is a many-to-one mapping. Two
well-known examples of feedforward networks with shared weights are convolutional and recurrent networks.
We mostly use the general notation of feedforward networks with shared weights throughout the paper as this
will be more general and simplifies the development and notation. However, when focusing on RNNs, it is
helpful to discuss them using a more familiar notation which we briefly introduce next.

Recurrent Neural Networks Time-unfolded RNNs are feedforward networks with shared weights that
map an input sequence to an output sequence. Each input node corresponds to either a coordinate of the input
vector at a particular time step or a hidden unit at time 0. Each output node also corresponds to a coordinate
of the output at a specific time step. Finally, each internal node refers to some hidden unit at time t ≥ 1.
When discussing RNNs, it is useful to refer to different layers and the values calculated at different time-steps.
We use a notation for RNN structures in which the nodes are partitioned into layers and hit denotes the output
of nodes in layer i at time step t. Let x = (x1, . . . ,xT ) be the input at different time steps where T is the

1The bias terms can be modeled by having an additional special node vbias that is connected to all internal and output nodes,
where hvbias = 1.
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Input nodes Internal nodes Output nodes

FF (shared weights) hv = x[v] hv =
[∑

(u→v)∈E wu→vhu

]
+

hv =
∑

(u→v)∈E wu→vhu

RNN notation h0
t = xt,h

i
0 = 0 hi

t =
[
Wi

inh
i−1
t + Wi

rech
i
t−1
]
+

hd
t = Wouth

d−1
t

Table 1: Forward computations for feedforward nets with shared weights.

maximum number of propagations through time and we refer to it as the length of the RNN. For 0 ≤ i < d,
let Wi

in and Wi
rec be the input and recurrent parameter matrices of layer i and Wout be the output parameter

matrix. Table 1 shows forward computations for RNNs.The output of the function implemented by RNN
can then be calculated as fW,t(x) = hdt . Note that in this notations, weight matrices Win, Wrec and Wout
correspond to “free” parameters of the model that are shared in different time steps.

3 Non-Saturating Activation Functions

The choice of activation function for neural networks can have a large impact on optimization. We are
particularly concerned with the distinction between “saturating” and “non-starting” activation functions. We
consider only monotone activation functions and say that a function is “saturating” if it is bounded—this
includes, e.g. sigmoid, hyperbolic tangent and the piecewise-linear ramp activation functions. Boundedness
necessarily implies that the function values converge to finite values at negative and positive infinity, and
hence asymptote to horizontal lines on both sides. That is, the derivative of the activation converges to
zero as the input goes to both −∞ and +∞. Networks with saturating activations therefore have a major
shortcoming: the vanishing gradient problem [6]. The problem here is that the gradient disappears when the
magnitude of the input to an activation is large (whether the unit is very “active” or very “inactive”) which
makes the optimization very challenging.

While sigmoid and hyperbolic tangent have historically been popular choices for fully connected feed-
forward and convolutional neural networks, more recent works have shown undeniable advantages of
non-saturating activations such as ReLU, which is now the standard choice for fully connected and Convolu-
tional networks [15, 10]. Non-saturating activations, including the ReLU, are typically still bounded from
below and asymptote to a horizontal line, with a vanishing derivative, at −∞. But they are unbounded from
above, enabling their derivative to remain bounded away from zero as the input goes to +∞. Using ReLUs
enables gradients to not vanish along activated paths and thus can provide a stronger signal for training.

However, for recurrent neural networks, using ReLU activations is challenging in a different way, as even
a small change in the direction of the leading eigenvector of the recurrent weights could get amplified and
potentially lead to the explosion in forward or backward propagation [1].

To understand this, consider a long path from an input in the first element of the sequence to an output of
the last element, which passes through the same RNN edge at each step (i.e. through many edges in some Ei
in the shared-parameter representation). The length of this path, and the number of times it passes through
edges associated with a single parameter, is proportional to the sequence length, which could easily be a few
hundred or more. The effect of this parameter on the path is therefore exponentiated by the sequence length,
as are gradient updates for this parameter, which could lead to parameter explosion unless an extremely small
step size is used.

Understanding the geometry of RNNs with ReLUs could helps us deal with the above issues more
effectively. We next investigate some properties of geometry of RNNs with ReLU activations.

Invariances in Feedforward Nets with Shared Weights

Feedforward networks (with or without shared weights) are highly over-parameterized, i.e. there are many
parameter settings p that represent the same function fp. Since our true object of interest is the function
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Figure 1: An example of invariances in an
RNN with two hidden layers each of which
has 2 hidden units. The dashed lines corre-
spond to recurrent weights. The network on
the left hand side is equivalent (i.e. repre-
sents the same function) to the network on
the right for any nonzero α1
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α2
1 = c, α2
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f , and not the identity p of the parameters, it would be beneficial if optimization would depend only on
fp and not get “distracted” by difference in p that does not affect fp. It is therefore helpful to study the
transformations on the parameters that will not change the function presented by the network and come up
with methods that their performance is not affected by such transformations.

Definition 1. We say a network N is invariant to a transformation T if for any parameter setting p,
fp = fT (p). Similarly, we say an update rule A is invariant to T if for any p, fA(p) = fA(T (p)).

Invariances have also been studied as different mappings from the parameter space to the same function
space [19] while we define the transformation as a mapping inside a fixed parameter space. A very important
invariance in feedforward networks is node-wise rescaling [17]. For any internal node v and any scalar α > 0,
we can multiply all incoming weights into v (i.e. wu→v for any (u → v) ∈ E) by α and all the outgoing
weights (i.e. wv→u for any (v → u) ∈ E) by 1/α without changing the function computed by the network.
Not all node-wise rescaling transformations can be applied in feedforward nets with shared weights. This is
due to the fact that some weights are forced to be equal and therefore, we are only allowed to change them by
the same scaling factor.

Definition 2. Given a network N , we say an invariant transformation T̃ that is defined over edge weights
(rather than parameters) is feasible for parameter mapping π if the shared weights remain equal after the
transformation, i.e. for any i and for any e, e′ ∈ Ei, T̃ (w)e = T̃ (w)e′ .

Therefore, it is helpful to understand what are the feasible node-wise rescalings for RNNs. In the
following theorem, we characterize all feasible node-wise invariances in RNNs.

Theorem 1. For any α such that αij > 0, any Recurrent Neural Network with ReLU activation is invariant
to the transformation Tα ([Win,Wrec,Wout]) = [Tin,α (Win) , Trec,α (Wrec) , Tout,α (Wout)] where for any
i, j, k:

Tin,α(Win)i[j, k] =

{
αijW

i
in[j, k] i = 1,(

αij/α
i−1
k

)
Wi

in[j, k] 1 < i < d,
(1)

Trec,α(Wrec)
i[j, k] =

(
αij/α

i
k

)
Wi

rec[j, k], Tout,α(Wout)[j, k] =
(

1/αd−1
k

)
Wout[j, k].

Furthermore, any feasible node-wise rescaling transformation can be presented in the above form.

The proofs of all theorems and lemmas are given in Appendix A. The above theorem shows that there
are many transformations under which RNNs represent the same function. An example of such invariances
is shown in Fig. 1. Therefore, we would like to have optimization algorithms that are invariant to these
transformations and in order to do so, we need to look at measures that are invariant to such mappings.
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4 Path-SGD for Networks with Shared Weights

As we discussed, optimization is inherently tied to a choice of geometry, here represented by a choice of
complexity measure or “norm”2. Furthermore, we prefer using an invariant measure which could then lead to
an invariant optimization method. In Section 4.1 we introduce the path-regularizer and in Section 4.2, the
derived Path-SGD optimization algorithm for standard feed-forward networks. Then in Section 4.3 we extend
these notions also to networks with shared weights, including RNNs, and present two invariant optimization
algorithms based on it. In Section 4.4 we show how these can be implemented efficiently using forward and
backward propagations.

4.1 Path-regularizer

The path-regularizer is the sum over all paths from input nodes to output nodes of the product of squared
weights along the path. To define it formally, let P be the set of directed paths from input to output units
so that for any path ζ =

(
ζ0, . . . , ζlen(ζ)

)
∈ P of length len(ζ), we have that ζ0 ∈ Vin, ζlen(ζ) ∈ Vout and

for any 0 ≤ i ≤ len(ζ) − 1, (ζi → ζi+1) ∈ E. We also abuse the notation and denote e ∈ ζ if for some i,
e = (ζi, ζi+1). Then the path regularizer can be written as:

γ2
net(w) =

∑
ζ∈P

len(ζ)−1∏
i=0

w2
ζi→ζi+1

(2)

Equivalently, the path-regularizer can be defined recursively on the nodes of the network as:

γ2
v(w) =

∑
(u→v)∈E

γ2
u(w)w2

u→v , γ2
net(w) =

∑
u∈Vout

γ2
u(w) (3)

4.2 Path-SGD for Feedforward Networks

Path-SGD is an approximate steepest descent step with respect to the path-norm. More formally, for a
network without shared weights, where the parameters are the weights themselves, consider the diagonal
quadratic approximation of the path-regularizer about the current iterate w(t):

γ̂2
net(w

(t) + ∆w) = γ2
net(w

(t)) +
〈
∇γ2

net(w
(t)),∆w

〉
+

1

2
∆w> diag

(
∇2γ2

net(w
(t))
)

∆w (4)

Using the corresponding quadratic norm ‖w −w′‖2γ̂2net(w(t)+∆w) = 1
2

∑
e∈E

∂2γ2net
∂w2

e
(we − w′e)2, we can

define an approximate steepest descent step as:

w(t+1) = min
w

η
〈
∇L(w),w −w(t)

〉
+
∥∥∥w −w(t)

∥∥∥2

γ̂2net(w
(t)+∆w)

. (5)

Solving (5) yields the update:

w(t+1)
e = w(t)

e −
η

κe(w(t))

∂L

∂we
(w(t)) where: κe(w) =

1

2

∂2γ2
net(w)

∂w2
e

. (6)

The stochastic version that uses a subset of training examples to estimate ∂L
∂wu→v

(w(t)) is called Path-SGD
[16]. We now show how Path-SGD can be extended to networks with shared weights.

2The path-norm which we define is a norm on functions, not on weights, but as we prefer not getting into this technical discussion
here, we use the term “norm” very loosely to indicate some measure of magnitude [18].
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4.3 Extending to Networks with Shared Weights

When the networks has shared weights, the path-regularizer is a function of parameters p and therefore the
quadratic approximation should also be with respect to the iterate p(t) instead of w(t) which results in the
following update rule:

p(t+1) = min
p
η
〈
∇L(p),p− p(t)

〉
+
∥∥∥p− p(t)

∥∥∥
γ̂2net(p

(t)+∆p)
. (7)

where ‖p− p′‖2γ̂2net(p(t)+∆p) = 1
2

∑m
i=1

∂2γ2net
∂p2i

(pi − p′i)2. Solving (7) gives the following update:

p
(t+1)
i = p

(t)
i −

η

κi(p(t))

∂L

∂pi
(p(t)) where: κi(p) =

1

2

∂2γ2
net(p)

∂p2
i

. (8)

The second derivative terms κi are specified in terms of their path structure as follows:

Lemma 1. κi(p) = κ
(1)
i (p) + κ

(2)
i (p) where

κ
(1)
i (p) =

∑
e∈Ei

∑
ζ∈P

1e∈ζ

len(ζ)−1∏
j=0

e6=(ζj→ζj+1)

p2
π(ζj→ζj+1) =

∑
e∈Ei

κe(w), (9)

κ
(2)
i (p) = p2

i

∑
e1,e2∈Ei
e1 6=e2

∑
ζ∈P

1e1,e2∈ζ

len(ζ)−1∏
j=0

e1 6=(ζj→ζj+1)

e2 6=(ζj→ζj+1)

p2
π(ζj→ζj+1), (10)

and κe(w) is defined in (6).

The second term κ
(2)
i (p) measures the effect of interactions between edges corresponding to the same

parameter (edges from the same Ei) on the same path from input to output. In particular, if for any path from
an input unit to an output unit, no two edges along the path share the same parameter, then κ(2)(p) = 0. For
example, for any feedforward or Convolutional neural network, κ(2)(p) = 0. But for RNNs, there certainly
are multiple edges sharing a single parameter on the same path, and so we could have κ(2)(p) 6= 0.

The above lemma gives us a precise update rule for the approximate steepest descent with respect to the
path-regularizer. The following theorem confirms that the steepest descent with respect to this regularizer is
also invariant to all feasible node-wise rescaling for networks with shared weights.

Theorem 2. For any feedforward networks with shared weights, the update (8) is invariant to all feasible
node-wise rescalings. Moreover, a simpler update rule that only uses κ(1)

i (p) in place of κi(p) is also
invariant to all feasible node-wise rescalings.

Equations (9) and (10) involve a sum over all paths in the network which is exponential in depth of the
network. However, we next show that both of these equations can be calculated efficiently.

4.4 Simple and Efficient Computations for RNNs

We show how to calculate κ(1)
i (p) and κ(2)

i (p) by considering a network with the same architecture but with
squared weights:

6



Theorem 3. For any networkN (G, π, p), considerN (G, π, p̃) where for any i, p̃i = p2
i . Define the function

g : R|Vin| → R to be the sum of outputs of this network: g(x) =
∑|Vout|

i=1 fp̃(x)[i]. Then κ(1) and κ(2) can be
calculated as follows where 1 is the all-ones input vector:

κ(1)(p) = ∇p̃g(1), κ
(2)
i (p) =

∑
(u→v),(u′→v′)∈Ei
(u→v)6=(u′→v′)

p̃i
∂g(1)

∂hv′(p̃)

∂hu′(p̃)

∂hv(p̃)
hu(p̃). (11)

In the process of calculating the gradient ∇p̃g(1), we need to calculate hu(p̃) and ∂g(1)/∂hv(p̃) for
any u, v. Therefore, the only remaining term to calculate (besides∇p̃g(1)) is ∂hu′(p̃)/∂hv(p̃).

Recall that T is the length (maximum number of propagations through time) and d is the number of
layers in an RNN. Let H be the number of hidden units in each layer and B be the size of the mini-batch.
Then calculating the gradient of the loss at all points in the minibatch (the standard work required for any
mini-batch gradient approach) requires time O(BdTH2). In order to calculate κ(1)

i (p), we need to calculate
the gradient ∇p̃g(1) of a similar network at a single input—so the time complexity is just an additional
O(dTH2). The second term κ(2)(p) can also be calculated for RNNs in O(dTH2(T +H)) 3. Therefore,
the ratio of time complexity of calculating the first term and second term with respect to the gradient over
mini-batch isO(1/B) andO((T+H)/B) respectively. Calculating only κ(1)

i (p) is therefore very cheap with
minimal per-minibatch cost, while calculating κ(2)

i (p) might be expensive for large networks. Beyond the low
computational cost, calculating κ(1)

i (p) is also very easy to implement as it requires only taking the gradient
with respect to a standard feed-forward calculation in a network with slightly modified weights—with most
deep learning libraries it can be implemented very easily with only a few lines of code.

5 Experiments

5.1 The Contribution of the Second Term

As we discussed in section 4.4, the second term κ(2) in the update rule can be computationally expensive for
large networks. In this section we investigate the significance of the second term and show that at least in our
experiments, the contribution of the second term is negligible. To compare the two terms κ(1) and κ(2), we
train a single layer RNN with H = 200 hidden units for the task of word-level language modeling on Penn
Treebank (PTB) Corpus [13]. Fig. 2 compares the performance of SGD vs. Path-SGD with/without κ(2). We
clearly see that both version of Path-SGD are performing very similarly and both of them outperform SGD
significantly. This results in Fig. 2 suggest that the first term is more significant and therefore we can ignore
the second term.

To better understand the importance of the two terms, we compared the ratio of the norms
∥∥κ(2)

∥∥
2
/
∥∥κ(1)

∥∥
2

for different RNN lengths T and number of hidden units H . The table in Fig. 2 shows that the contribution of
the second term is bigger when the network has fewer number of hidden units and the length of the RNN is
larger (H is small and T is large). However, in many cases, it appears that the first term has a much bigger
contribution in the update step and hence the second term can be safely ignored. Therefore, in the rest of our
experiments, we calculate the Path-SGD updates only using the first term κ(1).

3 For an RNN, κ(2)(Win) = 0 and κ(2)(Wout) = 0 because only recurrent weights are can be shared multiple
times along an input-output path. κ(2)(Wrec) can be written and calculated in the matrix form: κ(2)(Wi

rec) = W′irec �∑T−3
t1=0

[((
W′irec

)t1)> �∑T−t1−1
t2=2

∂g(1)

∂hi
t1+t2+1

(p̃)

(
hi
t2

(p̃)
)>] where for any i, j, k we have W′i

rec[j, k] =
(
Wi

rec[j, k]
)2. The only

terms that require extra computation are powers of Wrec which can be done in O(dTH3) and the rest of the matrix computations
need O(dT 2H2).
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5.2 SyntheticProblemswithLong-termDependencies

TrainingRecurrentNeuralNetworksisknowntobehardformodelinglong-termdependenciesdueto
thegradientvanishing/explodingproblem[6,2].Inthissection,weconsidersyntheticproblemsthatare
specificallydesignedtotesttheabilityofamodeltocapturethelong-termdependencystructure.Specifically,
weconsidertheadditionproblemandthesequentialMNISTproblem.
Additionproblem:Theadditionproblemwasintroducedin[7]. Here,eachinputconsistsoftwo

sequencesoflengthT,oneofwhichincludesnumberssampledfromtheuniformdistributionwithrange
[0,1]andtheothersequenceservesasamaskwhichisfilledwithzerosexceptfortwoentries.Thesetwo
entriesindicatewhichofthetwonumbersinthefirstsequenceweneedtoaddandthetaskistooutputthe
resultofthisaddition.
SequentialMNIST:InsequentialMNIST,eachdigitimageisreshapedintoasequenceoflength784,
turningthedigitclassificationtaskintosequenceclassificationwithlong-termdependencies[12,1].
Forbothtasks,wecloselyfollowtheexperimentalprotocolin[12].Wetrainasingle-layerRNNconsisting

of100hiddenunitswithpath-SGD,referredtoasRNN-Path.WealsotrainanRNNofthesamesizewith
identityinitialization,aswasproposedin[12],usingSGDasourbaselinemodel,referredtoasIRNN.We
performedgridsearchforthelearningratesover{10−2,10−3,10−4}forbothourmodelandthebaseline.
Non-recurrentweightswereinitializedfromtheuniformdistributionwithrange[−0.01,0.01].Similarto[1],
wefoundtheIRNNtobefairlyunstable(withSGDoptimizationtypicallydiverging).ThereforeforIRNN,
weran10differentinitializationsandpickedtheonethatdidnotexplodetoshowitsperformance.
Inourfirstexperiment,weevaluatePath-SGDontheadditionproblem.Theresultsareshownin

Fig.3withincreasingthelengthTofthesequence:{100,400,750}.Wenotethatthisproblembecomes
muchharderasTincreasesbecausethedependencybetweentheoutput(thesumoftwonumbers)andthe
correspondinginputsbecomesmoredistant. WealsocompareRNN-Pathwiththepreviouslypublished
results,includingidentityinitializedRNN[12](IRNN),unitaryRNN[1](uRNN),andnp-RNN4introduced
by[22].Table2showstheeffectivenessofusingPath-SGD.Perhapsmoresurprisingly,withthehelp
ofpath-normalization,asimpleRNNwiththeidentityinitializationisabletoachievea0%erroronthe
sequencesoflength750,whereasalltheothermethods,includingLSTMs,fail.ThisshowsthatPath-SGD
mayhelpstabilizethetrainingandalleviatethegradientproblem,soastoperformwellonlongersequence.
Wenexttriedtomodelthesequenceslengthof1000,butwefoundthatforsuchverylongsequencesRNNs,
evenwithPath-SGD,failtolearn.

4Theoriginalpaperdoesnotincludeanyresultfor750,soweimplementednp-RNNforcomparison. However,inour
implementationthenp-RNNisnotabletoevenlearnsequencesoflengthof200.Thusweput“>2”forlengthof750.
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Figure 3: Test errors for the addition problem of different lengths.

Adding Adding Adding
100 400 750 sMNIST

IRNN [12] 0 16.7 16.7 5.0
uRNN [1] 0 3 16.7 4.9
LSTM [1] 0 2 16.7 1.8

np-RNN[22] 0 2 >2 3.1

IRNN 0 0 16.7 7.1
RNN-Path 0 0 0 3.1

Table 2: Test error (MSE) for the adding problem with
different input sequence lengths and test classification error
for the sequential MNIST.

PTB text8

RNN+smoothReLU [20] - 1.55
HF-MRNN [14] 1.42 1.54
RNN-ReLU[11] 1.65 -
RNN-tanh[11] 1.55 -
TRec,β = 500[11] 1.48 -

RNN-ReLU 1.55 1.65
RNN-tanh 1.58 1.70
RNN-Path 1.47 1.58
LSTM 1.41 1.52

Table 3: Test BPC for PTB and text8.

Next, we evaluate Path-SGD on the Sequential MNIST problem. Table 2, right column, reports test error
rates achieved by RNN-Path compared to the previously published results. Clearly, using Path-SGD helps
RNNs achieve better generalization. In many cases, RNN-Path outperforms other RNN methods (except for
LSTMs), even for such a long-term dependency problem.

5.3 Language Modeling Tasks

In this section we evaluate Path-SGD on a language modeling task. We consider two datasets, Penn Treebank
(PTB-c) and text8 5. PTB-c: We performed experiments on a tokenized Penn Treebank Corpus, following
the experimental protocol of [11]. The training, validations and test data contain 5017k, 393k and 442k
characters respectively. The alphabet size is 50, and each training sequence is of length 50. text8: The text8
dataset contains 100M characters from Wikipedia with an alphabet size of 27. We follow the data partition
of [14], where each training sequence has a length of 180. Performance is evaluated using bits-per-character
(BPC) metric, which is log2 of perplexity.

Similar to the experiments on the synthetic datasets, for both tasks, we train a single-layer RNN consisting
of 2048 hidden units with path-SGD (RNN-Path). Due to the large dimension of hidden space, SGD can take
a fairly long time to converge. Instead, we use Adam optimizer [8] to help speed up the training, where we
simply use the path-SGD gradient as input to the Adam optimizer.

We also train three additional baseline models: a ReLU RNN with 2048 hidden units, a tanh RNN
with 2048 hidden units, and an LSTM with 1024 hidden units, all trained using Adam. We performed grid
search for learning rate over {10−3, 5 · 10−4, 10−4} for all of our models. For ReLU RNNs, we initialize the
recurrent matrices from uniform[−0.01, 0.01], and uniform[−0.2, 0.2] for non-recurrent weights. For LSTMs,
we use orthogonal initialization [21] for the recurrent matrices and uniform[−0.01, 0.01] for non-recurrent
weights. The results are summarized in Table 3.

5http://mattmahoney.net/dc/textdata
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We also compare our results to an RNN that uses hidden activation regularizer [11] (TRec,β = 500),
Multiplicative RNNs trained by Hessian Free methods [14] (HF-MRNN), and an RNN with smooth version
of ReLU [20]. Table 3 shows that path-normalization is able to outperform RNN-ReLU and RNN-tanh, while
at the same time shortening the performance gap between plain RNN and other more complicated models
(e.g. LSTM by 57% on PTB and 54% on text8 datasets). This demonstrates the efficacy of path-normalized
optimization for training RNNs with ReLU activation.

6 Conclusion

We investigated the geometry of RNNs in a broader class of feedforward networks with shared weights and
showed how understanding the geometry can lead to significant improvements on different learning tasks.
Designing an optimization algorithm with a geometry that is well-suited for RNNs, we closed over half of the
performance gap between vanilla RNNs and LSTMs. This is particularly useful for applications in which we
seek compressed models with fast prediction time that requires minimum storage; and also a step toward
bridging the gap between LSTMs and RNNs.
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A Proofs

A.1 Proof of Theorem 1

We first show that any RNN is invariant to Tα by induction on layers and time-steps. More specifically, we
prove that for any 0 ≤ t ≤ T and 1 ≤ i < d, hit (Tα(W)) [j] = αijh

i
t(W)[j]. The statement is clearly true

for t = 0; because for any i, j, hi0 (Tα(W)) [j] = αijh
i
0(W)[j] = 0.

Next, we show that for i = 1, if we assume that the statement is true for t = t′, then it is also true for
t = t′ + 1:

h1
t′+1 (Tα(W)) [j] =

∑
j′

Tin,α(Win)1[j, j′]xt′+1[j′] + Trec,α(Wrec)
1[j, j′]h1

t′ (Tα(W)) [j′]


+

=

∑
j′

α1
jW

1
in[j, j′]xt′+1[j′] +

(
α1
j/α

1
j′
)
W1

rec[j, j
′]α1

j′h
1
t′(W))[j′]


+

= α1
jh

i
t(W)[j]

We now need to prove the statement for 1 < i < d. Assuming that the statement is true for t ≤ t′ and the
layers before i, we have:

hit′+1 (Tα(W)) [j] =

∑
j′

Tin,α(Win)i[j, j′]hi−1
t′+1 (Tα(W)) [j′] + Trec,α(Wrec)

i[j, j′]hit′ (Tα(W)) [j′]


+

=

∑
j′

αij

αi−1
j′

Wi
in[j, j′]αi−1

j′ hi−1
t′+1(W))[j′] +

αij
αij′

Wi
rec[j, j

′]αij′h
i
t′(W))[j′]


+

= αijh
i
t(W)[j]

Finally, we can show that the output is invariant for any j at any time step t:

fT (W),t(xt)[j] =
∑
j′

Tout,α(Wout)[j, j
′]hd−1

t (Tα(W)[j′] =
∑
j′

(1/αd−1
j′ )Wout[j, j

′]αd−1
j′ hd−1

t (W)[j′]

=
∑
j′

Wout[j, j
′]hd−1

t (W)[j′] = fW,t(xt)[j]

We now show that any feasible node-wise rescaling can be presented as Tα. Recall that node-wise
rescaling invariances for a general feedforward network can be written as T̃β(w)u→v = (βv/βu)wu→v for
some β where βv > 0 for internal nodes and βv = 1 for any input/output nodes. An RNN with T = 0 has
no weight sharing and for each node v with index j in layer i, we have βv = αij . For any T > 0 however,
we there is no invariance that is not already counted. The reason is that by fixing the values of βv for the
nodes in time step 0, due to the feasibility, the values of β for nodes in other time-steps should be tied to the
corresponding value in time step 0. Therefore, all invariances are included and can be presented in form of
Tα.

�

12



A.2 Proof of Lemma 1

We prove the statement simply by calculating the second derivative of the path-regularizer with respect to
each parameter:

κi(p) =
1

2

∂2γ2
net

∂p2
i

=
1

2

∂

∂pi

 ∂

∂pi

∑
ζ∈P

len(ζ)−1∏
j=0

w2
ζj→ζj+1


=

1

2

∂

∂pi

 ∂

∂pi

∑
ζ∈P

len(ζ)−1∏
j=0

p2
π(ζj→ζj+1)

 =
1

2

∑
ζ∈P

∂

∂pi

 ∂

∂pi

len(ζ)−1∏
j=0

p2
π(ζj→ζj+1)



Taking the second derivative then gives us both terms after a few calculations:

κi(p) =
1

2

∑
ζ∈P

∂

∂pi

 ∂

∂pi

len(ζ)−1∏
j=0

p2
π(ζj→ζj+1)

 =
∑
ζ∈P

∂

∂pi

pi ∑
e∈Ei

1e∈ζ

len(ζ)−1∏
j=0

e6=(ζj→ζj+1

p2
π(ζj→ζj+1)



=
∑
ζ∈P

pi ∂∂pi
∑
e∈Ei

1e∈ζ

len(ζ)−1∏
j=0

e6=(ζj→ζj+1

p2
π(ζj→ζj+1)

+
∑
e∈Ei

1e∈ζ

len(ζ)−1∏
j=0

e6=(ζj→ζj+1

p2
π(ζj→ζj+1)



= p2
i

∑
e1,e2∈Ei
e1 6=e2


∑
ζ∈P

1e1,e2∈ζ

len(ζ)−1∏
j=0

e1 6=(ζj→ζj+1)

e2 6=(ζj→ζj+1)

p2
π(ζj→ζj+1)

+
∑
e∈Ei

∑
ζ∈P

1e∈ζ

len(ζ)−1∏
j=0

e6=(ζj→ζj+1)

p2
π(ζj→ζj+1)



�

A.3 Proof of Theorem 2

Node-wise rescaling invariances for a feedforward network can be written as Tβ(w)u→v = (βv/βu)wu→v
for some β where βv > 0 for internal nodes and βv = 1 for any input/output nodes. Any feasible invariance
for a network with shared weights can also be written in the same form. The only difference is that some of
βvs are now tied to each other in a way that shared weights have the same value after transformation. First,
note that since the network is invariant to the transformation, the following statement holds by an induction
similar to Theorem 1 but in the backward direction:

∂L

∂hv
(Tβ(p)) =

1

βv

∂L

∂hu
(p) (12)

for any (u → v) ∈ E. Furthermore, by the proof of the Theorem 1 we have that for any (u → v) ∈ E,
hu(Tβ(p)) = βuhu(p). Therefore,

∂L

∂Tβ(p)i
(Tβ(p)) =

∑
(u→v)∈Ei

∂L

∂hv
(Tβ(p))hu(Tβ(p)) =

βu′

βv′

∂L

∂pi
(p) (13)

13



where (u′ → v′) ∈ Ei. In order to prove the theorem statement, it is enough to show that for any edge
(u→ v) ∈ Ei, κi(Tβ(p)) = (βu/βv)

2κi(p) because this property gives us the following update:

Tβ(p)i −
η

κi(Tβ(p))

∂L(Tβ(p))

∂Tβ(p)i
=
βv
βu
pi −

η

(βu/βv)2κi(p)

βu
βv

∂L

∂pi
(p) = Tβ(p+)i

Therefore, it is remained to show that for any edge (u→ v) ∈ Ei v, κi(Tβ(p)) = (βu/βv)
2κi(p). We show

that this is indeed true for both terms κ(1) and κ(2) separately.
We first prove the statement for κ(1). Consider each path ζ ∈ P . By an inductive argument along the

path, it is easy to see that multiplying squared weights along this path is invariant to the transformation:

len(ζ)−1∏
j=0

Tβ(p)2
π(ζj→ζj+1) =

len(ζ)−1∏
j=0

p2
π(ζj→ζj+1)

Therefore, we have that for any edge e ∈ E and any ζ ∈ P ,

len(ζ)−1∏
j=0

e6=(ζj→ζj+1)

Tβ(p)2
π(ζj→ζj+1) =

(
βu
βv

)2 len(ζ)−1∏
j=0

e6=(ζj→ζj+1)

p2
π(ζj→ζj+1)

Taking sum over all paths ζ ∈ P and all edges e = (u→ v) ∈ E completes the proof for κ(1). Similarly for
κ(2), considering any two edges e1 6= e2 and any path ζP , we have that:

Tβ(p)2
i

len(ζ)−1∏
j=0

e1 6=(ζj→ζj+1)

e2 6=(ζj→ζj+1)

Tβ(p)2
π(ζj→ζj+1) =

(
βv
βu

)2

p2
i

(
βu
βv

)4 len(ζ)−1∏
j=0

e1 6=(ζj→ζj+1)

e2 6=(ζj→ζj+1)

p2
π(ζj→ζj+1)

where (u→ v) ∈ Ei. Again, taking sum over all paths ζ and all edges e1 6= e2 proves the statement for κ(2)

and consequently for κ(1) + κ(2).
�

A.4 Proof of Theorem 3

First, note that based on the definitions in the theorem statement, for any node v, hv(p̃) = γ2
v(p) and therefore

g(1) = γ2
net(p). Using Lemma 1, main observation here is that for each edge e ∈ Ei and each path ζ ∈ P ,

the corresponding term in κ(1) is nothing but product of the squared weights along the path except the weights
that correspond to the edge e:

1e∈ζ

len(ζ)−1∏
j=0

e6=(ζj→ζj+1)

p2
π(ζj→ζj+1)

This path can therefore be decomposed into a path from input to edge e and a path from edge e to the output.
Therefore, for any edge e, we can factor out the number corresponding to the paths that go through e and
rewrite κ(1) as follows:

κ(1)(p) =
∑

(u→v)∈Ei

 ∑
ζ∈Pin→u

len(ζ)−1∏
j=0

p2
π(ζj→ζj+1)

 ∑
ζ∈Pv→out

len(ζ)−1∏
j=0

p2
π(ζj→ζj+1)

 (14)
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where Pin→u is the set of paths from input nodes to node v and Pv→out is defined similarly for the output
nodes.

By induction on layers of N (G, π, p̃), we get the following:

∑
ζ∈Pin→u

len(ζ)−1∏
j=0

p2
π(ζj→ζj+1) = hu(p̃) (15)

∑
ζ∈Pv→out

len(ζ)−1∏
j=0

p2
π(ζj→ζj+1) =

∂g(1)

∂hv(p̃)
(16)

Therefore, κ(1) can be written as:

κ(1)(p) =
∑

(u→v)∈Ei

∂g(1)

∂hv(p̃)
hu(p̃) =

∑
(u→v)∈Ei

∂g(1)

∂w′u→v
=
∂g(1)

∂p̃i
(17)

Next, we show how to calculate the second term, i.e. κ(2). Each term in κ(2) corresponds to a path that goes
through two edges. We can decompose such paths and rewrite κ(2) similar to the first term:

κ(2)(p) = p2
i

∑
(u→v)∈Ei
(u′→v′)∈Ei

(u→v)6=(u′→v′)

 ∑
ζ∈Pin→u

len(ζ)∏
j=0

p2
π(ζj→ζj+1)


 ∑
ζ∈Pv→u′

len(ζ)−1∏
j=0

p2
π(ζj→ζj+1)

 ∑
ζ∈Pv′→out

len(ζ)−1∏
j=0

p2
π(ζj→ζj+1)


=

∑
(u→v)∈Ei
(u′→v′)∈Ei

(u→v)6=(u′→v′)

p̃i
∂g(1)

∂hv′(p̃)

∂hu′(p̃)

∂hv(p̃)
hu(p̃)

where Pu→v is the set of all directed paths from node u to node v.
�
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