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ABSTRACT

We propose a random search algorithm for solving simulation optimization problems with continuous
decision variables. The algorithm combines ideas from promising area search, shrinking ball methods, and
surrogate model optimization. We discuss the local convergence property of the algorithm and provide
numerical examples to illustrate its performance.

1 INTRODUCTION

Many systems arising in engineering design and manufacturing require the use of simulation optimization
(SO) techniques to improve their performance. In contrast to their deterministic counterparts, SO problems
are typically more difficult to solve because additional simulation effort needs to be expended to deal
with the noisy measurement of the objective function. For SO problems with little structure, one popular
and effective method is to use random search. This encompasses a broad class of algorithms that use a
sequence of randomly generated iterates (e.g., candidate solutions, probability models, promising subsets) to
approximate the optimal solution. Examples of random search techniques include the stochastic ruler method
(Yan and Mukai 1992), simulated annealing (Alrefaei and Andradéttir 1999), the nested partitions method
(Shi and Olafsson 2000), adaptive shrinking ball methods (Andradéttir and Prudius 2010), COMPASS
(Hong and Nelson 2006, Xu et al. 2010), and model-based methods (Rubinstein and Kroese 2004, Hu
et al. 2008). These algorithms primarily differ in the type of iterates an algorithm produces and the
random strategy used to generate the iterates; see, e.g., Andradéttir (2014), Hu (2014) and Zabinsky (2014)
for recent reviews of these techniques. When computer experiments are computationally expensive, it
is often desirable to use surrogate (metamodels) to represent simulation input-output relations. This has
motivated the use of surrogate-based or response surface methods (RSMs) for simulation or “black-box”
optimization. A variety of RSMs have been proposed in the literature (e.g., Jones et al. 1998, Gutmann
2001, Nakayama et al. 2002, Sébester et al. 2005, Regis and Shoemaker 2007), and their applications to
(stochastic) simulation optimization can be found in e.g., Huang et al. (2006), Chang et al. (2013), and
Kleijnen (2014).

In this paper, we propose an algorithm that integrates ideas from shrinking ball methods, promising
area search, and surrogate model optimization for solving SO problems. The algorithm proceeds iteratively
by constructing and optimizing a sequence of surrogate models, which are approximations of the objective
function on promising subsets of the solution space. Each iteration of the algorithm consists of the following
three basic steps: (1) Generate a set of candidate solutions by randomly sampling from the promising
region constructed in the previous iteration, and use the shrinking ball technique (Andradéttir and Prudius
2010) to estimate the performance of the sampled solutions; (2) Based on candidate solutions generated in
the current iteration, build a surrogate model of the objective function and optimize the fitted model; (3) A
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new promising region containing an optimal solution to the surrogate model is then constructed by using
an approach similar to that of Hong and Nelson (2006). Intuitively, the shrinking ball method reduces
the simulation noise at a sampled solution by averaging observations at solutions that are close to it, thus
avoiding the need to allocate multiple simulation replications to the same point. The use of promising area
helps to concentrate the computational effort on subsets of the solution space. Additionally, the surrogate
model uses sampling information to successively predict the response surface of the objective function,
and when employed in conjunction with promising area search, may quickly direct the search to regions
containing high quality solutions at no extra simulation effort. Under some appropriate conditions, we
show that the algorithm converges with probability one to the set of locally optimal solutions.

The rest of this paper is organized as follows. We introduce the problem setting in Section 2 and
provide a description of the algorithm in Section 3. The local convergence result is presented and its proof
is outlined in Section 4. We conduct computational experiments in Section 5 to illustrate the algorithm
and conclude in Section 6.

2 PROBLEM SETTING

We consider the optimization problem

minH (x) = Ey [h(x, )], (D
xeX
where X is a continuous compact subset of R?, H is a deterministic, real-valued function, and ¢ is a random
variable representing the stochastic uncertainty of the system. For a given solution x, we assume that the
expected performance H(x) cannot be evaluated exactly, but its noisy estimate A(x,¢) can be obtained
through computer simulation. To simplify notation, we will sometimes suppress the dependency of 4 on
the sample path ¢ and simply write i(x) instead of h(x,¢).

3 ALGORITHM DESCRIPTION

We begin by introducing some notation. Let N; be the number of candidate solutions sampled at the kth
iteration of the algorithm and A be the set of sampled solutions. Let {ry },>1 be a sequence of deterministic
positive real numbers. For a given x € X, B(x,r) = {y € X : d(x,y) < r} denotes the ball with radius r and
center x, where d is the Euclidean distance. At iteration k, the true performance H(x) at x is estimated
by Hy (x), the average of the objective function observations collected at all sampled candidate solutions
in B(x,r;) N Ag. Denote the number of elements in this set as Ny (x,r,) for every point x € Ay at the kth
iteration. Let Sg(x) and P, C X be the surrogate model fitted and the promising region constructed at the
kth iteration of the algorithm. The detailed algorithmic steps are given below.

Simulation Optimization via Promising Region Search and Surrogate Model Approximation (SOPS)

Step 0:  Set the iteration counter k = 0, and Py = X. Specify a small positive constant 6 > 0 and a
shrinking ball strategy {ri}x>1.

Step 1: Let k = k+ 1. Uniformly sample a set of N candidate solution Ay = {xz,,xx,,- - ,kak} from
the current promising region P,_;. Obtain sample performance at each x € A; and use the
shrinking ball method to construct performance estimates ﬁk(x) for all x € Ag.

Step 2:  Construct a surrogate model Sy(x) that interpolates the objective function estimates Hj (x) at
the set of sampled points Ag.

Step 3:  Optimize the surrogate model Si(x) on P;_; to get a local minimizer x;. Construct a promising
area Py based on x; as follows:

0
Pk: {XGX: d(x, XZ) Sd(x, y+2(y_xZ)d(x*y)> y vyEAk}
=
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Reiterate from Step 1 until a stopping condition is satisfied.

Note that at Step 1, any sampling measure F; can be used to sample candidate solutions from the
promising region P;_;, provided that F;(A) > 0 for any measurable set A C P,_; with positive Lebesgue
measure. We have used a uniform distribution for simplicity. Step 2 requires the use of an interpolation-
based fitting strategy, which ensures that Si(x) = Hi(x) at all x € A;. The optimization at Step 3 can be
carried out using any algorithm for deterministic optimization. The underlying assumption is that simulation
experiments are much more expensive to run than evaluating the surrogate model, so that Sy(x) can be
optimized relatively efficiently without any additional simulation effort. The optimizer x; of Si(x) is then
used to construct a new promising region P, of the solution space. This is conducted in a way that is very
similar to the approach proposed in Hong and Nelson (2006), with the difference being that now there is
an additional positive constant 6 > 0 involved to prevent P, from degenerating into a single point when
the set of sampled points becomes dense in the neighborhood of xj.

It is easy to observe that in SOPS, if there is no surrogate model and the promising region is taken to
be the entire feasible region in all iterations, then the algorithm is identical to the deterministic shrinking
ball algorithm discussed in Andradéttir and Prudius (2010). On the other hand, if the solution space is
(discrete) integer-ordered, then since each ball B(x,r;) will only contain x itself (when r; is small enough),
the shrinking ball strategy reduces to the usual sample average approximation. Thus, the algorithm (without
the surrogate model) becomes the COMPASS algorithm of Hong and Nelson (2006). In this respect, SOPS
can be viewed as the extension of COMPASS to the continuous domain.

4 LOCAL CONVERGENCE OF SOPS

In this section, we show that the sequence of surrogate model optimizers {x;};>1 converges to the set
of locally optimal solutions of (1) with probability one (w.p.1). Throughout this paper, a sequence ay is
said to be Q(k") if 3 ¢ >0 and ko > 0, s.t. ¥V k > ko, ax > ck" and to be O(k") if 3 ¢1,c2 >0, I ko >
0, s.t. V k> ko, c1k" < a; < cok". The following assumptions are needed in our analysis:

Al:  The objective function H(x) is Lipschitz continuous with Lipschitz constant L;.

A2:  31>2 ReR* st E[(h(x)—H(x))*] <R, V x €X, where h(x) is the sample performance at x.

A3:  The surrogate model S (x) satisfies Sg(x) = Hi(x), Vx € Ar. Moreover, all Si(x) are twice differ-
entiable with their Lipschitz constants uniformly bounded by L, for all £ w.p.1.

A4: 3 8 > 0 such that P(B(x;,80) ¢ int(Pr_y) i.0.) =0, where int(P_;) is the interior of P,_;.

AS: I k>0, st infiepe ) Amin (Hs (x)) > & for all k w.p.1, where Hg, (x) is the Hessian matrix of
Sy at x and A, (Hg, (x)) indicates its smallest eigenvalue.

A6: Ny =0O(k*) and ry = Q(k~P/?) with limy_e.ry =0, where 1 —p<s<I—1and p<1—(s+1)/L

Al and A2 are the respective assumptions on the true objective function and the simulation noise. A3 is
the condition imposed on the fitting strategy. A4 requires the local minimizer x; to lie in the interior of
the promising area and A5 states that the Hessian matrix of the surrogate model remains strictly positive
definite within a small neighborhood of the local minimizer. A6 controls the sample size Ny used at each
iteration and the decreasing speed of the shrinking ball radius.

Let M be the set of all local minimizers of (1). Our main convergence result shows that the sequence
of the dp-neighborhood of the surrogate model minimizers B(x}, &) will contain M infinitely often (i.o0.)
w.p.1. By construction, it is easy to observe that the d-neighborhood of xj, B(x},8) C Py for all k. The
next result shows that the collection of sampled solutions will eventually become dense in P;_;.
Lemma 1. For any € >0 and x; € P, define Ag(x,€) = {3 x € A, d(xx,x) < €}. If Al and A6 hold,
then P(A(xi,€) i.0.) = 0.

Proof.  Define %, = 6{A1,h(A1),A2,h(A2),- - , Ak, h(Ax)}, k=1,2,--- as the sequence of increasing
o-fields generated by the set of all sampled solutions and their performance estimates obtained up to
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iteration k. Note that given .7, x; is completely determined. Now we claim that for any x; € P,

3 P >0, s.t. Fr(B(xx,€)) > Pe, where recall that Fj is the uniform sampling measure used at the kth
iteration. To see this, we let = min{2 S5} and z=x + (%, —xk)ﬁ. Then for any 7’ € B(z,n),
k—17

we have

( ]7Z/)

(xk7 /)

Therefore, B(z,n) C B(x;_,,6)NB(x,€), which implies that B(z,n) C P,_; NB(xx, €). Since Fy is uniform,
we have Fy (B(x;,€)) > F; (B( ,M)) > Pe >0, where P := VOZI(( )) with Vol(By) being the volume of any
ball with radius 7. ) )

Consequently, we have P (Ay(xy,€)) = E [P(Ak(xk,€)|-Fk—1)] < (1= Pe)™ for each k > 1, and by A6,

Yo P (Ax(xk, €)) < Yio(1—Pe)Nk < co. By the Borel-Cantelli lemma, we obtain P (Ag(xy, €) i.0.) =0. [

(XZ—laZ)‘Fd(ZaZ/) Smax(ﬂaa—n)+’7 S 5 = Z/ EB(XE—1>5)-
d(x,z) +d(z,7) <n+n<e = 7 €Bx,e).

I/\ I/\

Lemma 2 below states that on the promising area P;_1, the true objective function H(x) can be closely
approximated by the surrogate model Sy (x).
Lemma 2. For any € >0 and x; € Pr_1, let Ap(x,€) = {|Sk(xx) —H(xx)| > €}. If Al-A3 and A6 hold,
then P(Ay(xy,€) i.0.) =0.

Proof.  Define Dy = {V x; € Ay, Ni(xx,rx) > Ly}, where Ny (xg,rg) is the number of elements in
the set B(xg,rx) N Ay, as defined before, and L, = @(k9), where g satisfies p+¢ <1 and gl —s > 1.
It is not hard to see when A6 is satisﬁed this ¢ exists. Since rp, — 0 as k — oo, Ny = O(k*), then

K EN, ¢,  €RT, st VESK, i < 4L , Ly > c1k?, Ny < cok®, and also let €' = m So for any
k > k/, V x; € P_q,

P (|Sk(xx) —H(xp)| > & | Fir)

< P (|Sk(xx) —H(xe)| > €, Ap(xi, €') | Fre1) + P (Ak(xx, €') | Fir)

:P<|Sk(xk) H(x)| > €, Ux/eAkd<xk7xk <& | P 1>+P(Ak X, €') | Fior)

< |Ak|P(‘Sk(xk) —H(xk)| > €, d(xk,xk <€ ‘Jk 1) —|—P(Ak Xk, € ‘Jk 1

§NkP(|Sk xk —Sk(x,,( |—|— {Sk xk — xk }—|— |H xk —H(xk)‘ > €, d(xk,xk <¢ ‘yk—l)
+ P (A(xx, €) | Fir)

§Csz(‘Sk xk —H(xk)|>8/2 ‘Jk 1)—|—P(Ak Xk, € ‘Jk 1)

< CQkSP(‘Sk x;c —H(xk)‘ > 8/2 Dy, ‘Jk 1) +P(Ak Xk, € }Jk 1) + ck* P(Dk ‘Jk 1)

= k' P <'2Nk 0 —H(x})) /Ni (X}, 1)
+ P (Ak(xs, € !331( 1)+62kP(Dk |\ Fi-1)

< kP (z,.N_kEW (i) — H )|+ [ () — HQ) /N () > /2, Dk)
+P(Ak(xk,8/)) +CszP (Dk ‘ﬂkfl)

< eok'P <’fo§"f’~’k> (h(x) — H(x2)) /Ne (Xiri)

+ P (Ax(xy, € |=/k 1) +c2k*P (Dy ‘Jk 1)

>¢€/2, Dy ‘yk 1>

> 8/4, Dy, ‘ﬁk_1>
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C
SW‘i‘P(Ak X, €) | Fio1) + 2k*P (Dy | Fiy) 2
where x), € Ay is a sampled point during iteration k that is at most €’ away from xy, and {xi}?ﬁgx"’rk ) are those

points in B(x}, rx) N Ag. The fourth inequality is true because of d(x;,x) < €' and the Lipschitz continuous
property of the original function and the surrogate model. The seventh inequality holds since every x; is
within radius r; of x; and ry < i. The first term in the last inequality is a direct result of lemma 1 in
Andradéttir and Prudius (2010). So (2) implies P (|Sk(x¢) — H (xi)| > €) < 2 + P (A (xi, €')) +c2k* P (Dy)
when k > k.

As a result, we can obtain Y7 P (|Sk(xx) — H(xx)| > €) < e by noticing that g/ —s > 1 and applying
the result of lemma 1 and a slightly modification of lemma 2 in Andradéttir and Prudius (2010) with the
simple size on the order of ®(k*) (s > 1 — p). The result then follows from the Borel-Cantelli lemma. [J

Let cl (B(x},8)) be the closure of B(x},&). Since ¢l (B(x},8)) is compact, by using an argument
similar to the proof of lemma 4.1 in Hu et al. (2012), it can be seen that the result in lemma 2 holds
uniformly on ¢/ (B(x}, &)).

Proposition 1. For any € > 0, if AI-A4 and A6 hold, then P (maxxa A(bsg.a0) 16() —H(x)| > & i.o.) =0,
The main result is shown in Theorem 1 below.
Theorem 1 If A1-A6 hold, then for any 0 < 8’ < &, P (B(x,8')"\M =@ i.0.) =0.

Proof.  For any 0 < 8" < &, let xx = argmin,cp(:: 5)H (x). If B(x,8") "M = &, then x; must lie on
the boundary of B(x},d’) and d(xy,x;) = &’. Consider the Taylor expansion of Si(x) in the neighborhood
of xp,
* 1 =
Silooe) = Sk(0) + V7 8k (0) (o= ) + 5 (e — ) " Hs, (8) (o = ),

)
where ¥ € B(x;,8"). If B(x},08") Cint(Pc—1), since x; = argmin,cp(: 5/ Sk(x), we have VTSk(x;) =0, and
by AS, (xk —XZ)THSk()Z)(xk —XZ) > Ain (Hsk()f))d(xk,x;:)2 > k8’2, This implies that \Sk(xk) —Sk(x,’;)\ >
k82 /2. On the other hand,

ISk (x) — Sk ()| < Sk () — H (i) | + [H (i) — S ()|
< maxxevl(B(x;,E’)) ‘Sk(x) - H(X)’ + ‘ mianCZ(B(xz,S’)) H(X) - mianCI(B(xz,S/)) Sk(x)’
< 2maxx€d(3(x;75,)) Sk (x) — H(x)|

Consequently, B(x;,0')\M = & and B(x},8") C int (P, ) implies MaX, o) (p(x;,57)) |Sk(x) —H(x)| > k8" /4.
It follows that

P({B(x;:,sf) M =2} {B(x,58') C im(Pk,l)}) <P ( max  [Sp(x) — H(x)| > x5’2/4>
xECl(B(xzﬁ’))

Hence, by directly applying Proposition 1, we obtain

P({B(x;, §\NM = @} N {B(x],8) Cint(P_1)} i.o.)

<P < max ]Sk(xk) —H(xk)] > K'512/4 i.0.>
xecl(B(x,’;,S’))

=0,

If follows that if B(xk,5’ )M = & occurs infinitely often, then B(x},08") € int(P,_;) must also occur
infinitely often. This in turn implies that P (B(x},8') "M = @ i.0.) =0 by Assumption A4. O

653



Fan and Hu

5 NUMERICAL EXAMPLES

In this section, we illustrate the performance of SOPS on several continuous stochastic optimization problems.
In our implementation, we have used a MCMC technique discussed in Smith (1984) to sample candidate
solutions from the promising region at each iteration. It has been shown that this method asymptotically
generates uniform points in a bounded region. The surrogate model is constructed using the radial basis
function (RBF) approximation (Bishop 1995), which has been successfully used as a curve fitting tool in
surrogate model-based optimization. The specific approximator considered here is a linear combination
of RBFs of the following form: Si(x) = Zi.vzkl wid (||x — x;||), where ¢(r) = r3, Ni is the total number of
solutions sampled during iteration k, x;’s are the sampled solutions, and w;’s are the weights that can be
obtained by solving a system of linear equations. In all testing cases, we set 0 = 0.1. Since the shrinking
ball radius is on the order Q(k7/¢) and the choice of the sample size Nj is on the order of ®(k*), where
l1-p<s<Il—1, p<1—(s+1)/l and d is the dimension of the problem, we simply choose the radius in
the form of ;557 and the sample size to be max(v/k,4), with the value of a taken to be 5% of the length
of the domain in each direction.
The following four test functions with additive noise are used in our experiments.

(1)  Goldstein-Price function with additive noise

Ry (x,01) =(1 4 (x; +x2 4+ 1)2(19 — 14x; + 3x7 — 14x2 + 6x1x2 4 3x3))
(30 + (2x1 — 3x2)% (18 — 321 + 12x7 +48x; — 36x1x2 +27x3)) + ¢

where —3 <x; <3, i=1,2 and ¢ ~ .4#7(0,100). The function H;(x) = Ey, [hi(x,¢;)] has three
local minima (—0.6,—0.4),(1.8,0.2),(1.2,0.8) and a global minumum x} = (0, —1) with function
value H, (x}) = 3.

(2)  Schwefel function with additive noise (d=10)

xisin(\/|xi|) + ¢

where —200 <x; <250, i=1,2,---,d and ¢» ~ .4#7(0,100). The function H>(x) = Ey, [h2(x, ¢2)]
has global minimum at x; = (203.814,203.814,---,203.814) with function value Hy(x}) = 0.
(3) Rastrigin function with additive noise (d=10)

d
ha(x,0,) = 201.8432n —

i=1

d
h3(x,93) = 10d + Y x7 — 10cos(27x;) + 3
i=1

where —5.12 <x; <5.12, i=1,2,--- ,d and ¢3 ~ .47(0,25). The function H3(x) = Ey, [h3(x, ¢3)]
has global minimum at x§ = (0,0,---,0) with function value H3(x3) = 0.
(4)  Trigonometric function with additive noise (d=10)

M=~

ha(x,04) = [8 sin (7(x; —0.9)%) + 6sin® (14(x; — 0.9)%) + (x; — 0.9)2} + 04

—_

where —2 <x; <3, i=1,2,---,d and ¢4 ~ 47(0,25). The function Hy(x) = Ey, [h4(x,¢4)] has
global minimum at x; = (0.90009,0.90009, - - - ,0.90009) with function value Hy(x}) = 0.

5.1 Numerical Results

We compare the performance of our algorithm with that of the the well-known simultaneous perturbation
stochastic approximation (SPSA) (Spall 1992). To illustrate the effect of surrogate models on the algorithm

654



Fan and Hu

performance, we have also included in our comparison a version of the SOPS algorithm called SOP. SOP
has the same structure as SOPS but without the surrogate model approximation at each iteration. The
choices of the parameters for these algorithms are listed in Table 1 and Table 2, where & is the number of
iterations, ry is the shrinking ball radius, & is used in constructing the promising area as defined in Step
3 of SOPS, and oy, c; are the respective step size and the simultaneous perturbation size used in SPSA,
which are chosen by trial and error.

Table 1: The Choices of r; and 6 in SOPS and Table 2: The Choices of 0 and ¢y in SPSA.

SOP.
T 15} Ok Ck
h(d =2) kg-SZ/Z 0.1 hi(d =2) (k+5%)00)1 (k+50(§00)°-25
h(d=10) | 2% 0.1 h(d=10) | @iy | Gswops
h3(d = 10) % 0.1 h3(d = 10) (k+1})00)1 (k+50500)0-25
hy(d = 10) Wlm 0.1 ha(d =10) (k+1%)00)1 (k+50(1)00)°-25

Figure 1 shows the performance of the three comparison algorithms, averaged over 30 independent
replication runs on each test case. The use of promising region search in SOPS and SOP allows the
algorithms to quickly locate promising subsets of the solution space. We see that both algorithms show
faster initial improvements than SPSA in all cases. Moreover, as compared with SOP, SOPS uses a surrogate
model to approximate the response surface of the objective function. This may provide a better and accurate
prediction of promising regions, leading to improved algorithm performance. We see that in almost all
cases, SOPS finds better solutions than SOP does.

6 CONCLUSION

We have proposed a random search-based optimization algorithm for solving SO problems with continuous
decision variables. The algorithm combines ideas of promising area search and surrogate model approx-
imation, and estimates the objective function values at sampled points using the shrinking ball method.
We have discussed the local convergence property of the algorithm and carried out preliminary simulation
experiments to illustrate its performance.
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Figure 1: Averaged Performance of the Test Functions.
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