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ABSTRACT

We propose a random search algorithm for solving simulation optimization problems with continuous

decision variables. The algorithm combines ideas from promising area search, shrinking ball methods, and

surrogate model optimization. We discuss the local convergence property of the algorithm and provide

numerical examples to illustrate its performance.

1 INTRODUCTION

Many systems arising in engineering design and manufacturing require the use of simulation optimization

(SO) techniques to improve their performance. In contrast to their deterministic counterparts, SO problems

are typically more difficult to solve because additional simulation effort needs to be expended to deal

with the noisy measurement of the objective function. For SO problems with little structure, one popular

and effective method is to use random search. This encompasses a broad class of algorithms that use a

sequence of randomly generated iterates (e.g., candidate solutions, probability models, promising subsets) to

approximate the optimal solution. Examples of random search techniques include the stochastic ruler method

(Yan and Mukai 1992), simulated annealing (Alrefaei and Andradóttir 1999), the nested partitions method

(Shi and Ólafsson 2000), adaptive shrinking ball methods (Andradóttir and Prudius 2010), COMPASS

(Hong and Nelson 2006, Xu et al. 2010), and model-based methods (Rubinstein and Kroese 2004, Hu

et al. 2008). These algorithms primarily differ in the type of iterates an algorithm produces and the

random strategy used to generate the iterates; see, e.g., Andradóttir (2014), Hu (2014) and Zabinsky (2014)

for recent reviews of these techniques. When computer experiments are computationally expensive, it

is often desirable to use surrogate (metamodels) to represent simulation input-output relations. This has

motivated the use of surrogate-based or response surface methods (RSMs) for simulation or “black-box”

optimization. A variety of RSMs have been proposed in the literature (e.g., Jones et al. 1998, Gutmann

2001, Nakayama et al. 2002, Sóbester et al. 2005, Regis and Shoemaker 2007), and their applications to

(stochastic) simulation optimization can be found in e.g., Huang et al. (2006), Chang et al. (2013), and

Kleijnen (2014).

In this paper, we propose an algorithm that integrates ideas from shrinking ball methods, promising

area search, and surrogate model optimization for solving SO problems. The algorithm proceeds iteratively

by constructing and optimizing a sequence of surrogate models, which are approximations of the objective

function on promising subsets of the solution space. Each iteration of the algorithm consists of the following

three basic steps: (1) Generate a set of candidate solutions by randomly sampling from the promising

region constructed in the previous iteration, and use the shrinking ball technique (Andradóttir and Prudius

2010) to estimate the performance of the sampled solutions; (2) Based on candidate solutions generated in

the current iteration, build a surrogate model of the objective function and optimize the fitted model; (3) A
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new promising region containing an optimal solution to the surrogate model is then constructed by using

an approach similar to that of Hong and Nelson (2006). Intuitively, the shrinking ball method reduces

the simulation noise at a sampled solution by averaging observations at solutions that are close to it, thus

avoiding the need to allocate multiple simulation replications to the same point. The use of promising area

helps to concentrate the computational effort on subsets of the solution space. Additionally, the surrogate

model uses sampling information to successively predict the response surface of the objective function,

and when employed in conjunction with promising area search, may quickly direct the search to regions

containing high quality solutions at no extra simulation effort. Under some appropriate conditions, we

show that the algorithm converges with probability one to the set of locally optimal solutions.

The rest of this paper is organized as follows. We introduce the problem setting in Section 2 and

provide a description of the algorithm in Section 3. The local convergence result is presented and its proof

is outlined in Section 4. We conduct computational experiments in Section 5 to illustrate the algorithm

and conclude in Section 6.

2 PROBLEM SETTING

We consider the optimization problem

min
x∈X

H(x) = Eφ [h(x,φ)], (1)

where X is a continuous compact subset of Rd , H is a deterministic, real-valued function, and φ is a random

variable representing the stochastic uncertainty of the system. For a given solution x, we assume that the

expected performance H(x) cannot be evaluated exactly, but its noisy estimate h(x,φ) can be obtained

through computer simulation. To simplify notation, we will sometimes suppress the dependency of h on

the sample path φ and simply write h(x) instead of h(x,φ).

3 ALGORITHM DESCRIPTION

We begin by introducing some notation. Let Nk be the number of candidate solutions sampled at the kth

iteration of the algorithm and Λk be the set of sampled solutions. Let {rk}k≥1 be a sequence of deterministic

positive real numbers. For a given x ∈X, B(x,r) = {y ∈X : d(x,y)< r} denotes the ball with radius r and

center x, where d is the Euclidean distance. At iteration k, the true performance H(x) at x is estimated

by H̃k(x), the average of the objective function observations collected at all sampled candidate solutions

in B(x,rk)∩Λk. Denote the number of elements in this set as Nk(x,rk) for every point x ∈ Λk at the kth

iteration. Let Sk(x) and Pk ⊆ X be the surrogate model fitted and the promising region constructed at the

kth iteration of the algorithm. The detailed algorithmic steps are given below.

Simulation Optimization via Promising Region Search and Surrogate Model Approximation (SOPS)

Step 0: Set the iteration counter k = 0, and P0 = X. Specify a small positive constant δ > 0 and a

shrinking ball strategy {rk}k≥1.

Step 1: Let k = k+1. Uniformly sample a set of Nk candidate solution Λk = {xk1
,xk2

, · · · ,xkNk
} from

the current promising region Pk−1. Obtain sample performance at each x ∈ Λk and use the

shrinking ball method to construct performance estimates H̃k(x) for all x ∈ Λk.

Step 2: Construct a surrogate model Sk(x) that interpolates the objective function estimates H̃k(x) at

the set of sampled points Λk.

Step 3: Optimize the surrogate model Sk(x) on Pk−1 to get a local minimizer x∗k . Construct a promising

area Pk based on x∗k as follows:

Pk =

{
x ∈ X : d (x, x∗k)≤ d

(
x, y+2(y− x∗k)

δ

d(x∗k ,y)

)
, ∀ y ∈ Λk

}
.
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Reiterate from Step 1 until a stopping condition is satisfied.

Note that at Step 1, any sampling measure Fk can be used to sample candidate solutions from the

promising region Pk−1, provided that Fk(A) > 0 for any measurable set A ⊆ Pk−1 with positive Lebesgue

measure. We have used a uniform distribution for simplicity. Step 2 requires the use of an interpolation-

based fitting strategy, which ensures that Sk(x) = H̃k(x) at all x ∈ Λk. The optimization at Step 3 can be

carried out using any algorithm for deterministic optimization. The underlying assumption is that simulation

experiments are much more expensive to run than evaluating the surrogate model, so that Sk(x) can be

optimized relatively efficiently without any additional simulation effort. The optimizer x∗k of Sk(x) is then

used to construct a new promising region Pk of the solution space. This is conducted in a way that is very

similar to the approach proposed in Hong and Nelson (2006), with the difference being that now there is

an additional positive constant δ > 0 involved to prevent Pk from degenerating into a single point when

the set of sampled points becomes dense in the neighborhood of x∗k .

It is easy to observe that in SOPS, if there is no surrogate model and the promising region is taken to

be the entire feasible region in all iterations, then the algorithm is identical to the deterministic shrinking

ball algorithm discussed in Andradóttir and Prudius (2010). On the other hand, if the solution space is

(discrete) integer-ordered, then since each ball B(x,rk) will only contain x itself (when rk is small enough),

the shrinking ball strategy reduces to the usual sample average approximation. Thus, the algorithm (without

the surrogate model) becomes the COMPASS algorithm of Hong and Nelson (2006). In this respect, SOPS

can be viewed as the extension of COMPASS to the continuous domain.

4 LOCAL CONVERGENCE OF SOPS

In this section, we show that the sequence of surrogate model optimizers {x∗k}k≥1 converges to the set

of locally optimal solutions of (1) with probability one (w.p.1). Throughout this paper, a sequence ak is

said to be Ω(kn) if ∃ c > 0 and k0 > 0, s.t. ∀ k ≥ k0, ak ≥ ckn and to be Θ(kn) if ∃ c1,c2 > 0, ∃ k0 >
0, s.t. ∀ k > k0, c1kn ≤ ak ≤ c2kn. The following assumptions are needed in our analysis:

A1: The objective function H(x) is Lipschitz continuous with Lipschitz constant L1.

A2: ∃ l ≥ 2, R ∈ R+,s.t. E[(h(x)−H(x))2l]≤ R, ∀ x ∈ X, where h(x) is the sample performance at x.

A3: The surrogate model Sk(x) satisfies Sk(x) = H̃k(x), ∀x ∈ Λk. Moreover, all Sk(x) are twice differ-

entiable with their Lipschitz constants uniformly bounded by L2 for all k w.p.1.

A4: ∃ δ0 > 0 such that P(B(x∗k ,δ0)� int(Pk−1) i.o.) = 0, where int(Pk−1) is the interior of Pk−1.

A5: ∃ κ > 0, s.t. infx∈B(x∗k ,δ0) λmin (HSk
(x))> κ for all k w.p.1, where HSk

(x) is the Hessian matrix of

Sk at x and λmin(HSk
(x)) indicates its smallest eigenvalue.

A6: Nk = Θ(ks) and rk = Ω(k−p/d) with limk→∞ rk = 0, where 1− p ≤ s < l −1 and p < 1− (s+1)/l.

A1 and A2 are the respective assumptions on the true objective function and the simulation noise. A3 is

the condition imposed on the fitting strategy. A4 requires the local minimizer x∗k to lie in the interior of

the promising area and A5 states that the Hessian matrix of the surrogate model remains strictly positive

definite within a small neighborhood of the local minimizer. A6 controls the sample size Nk used at each

iteration and the decreasing speed of the shrinking ball radius.

Let M be the set of all local minimizers of (1). Our main convergence result shows that the sequence

of the δ0-neighborhood of the surrogate model minimizers B(x∗k ,δ0) will contain M infinitely often (i.o.)

w.p.1. By construction, it is easy to observe that the δ -neighborhood of x∗k , B(x∗k ,δ ) ⊆ Pk for all k. The

next result shows that the collection of sampled solutions will eventually become dense in Pk−1.

Lemma 1. For any ε > 0 and xk ∈ Pk−1, define Ak(xk,ε) = {∃ x ∈ Λk, d(xk,x)< ε}. If A1 and A6 hold,

then P(Āk(xk,ε) i.o.) = 0.

Proof. Define Fk = σ{Λ1,h(Λ1),Λ2,h(Λ2), · · · ,Λk,h(Λk)}, k = 1,2, · · · as the sequence of increasing

σ -fields generated by the set of all sampled solutions and their performance estimates obtained up to

651



Fan and Hu

iteration k. Note that given Fk, x∗k is completely determined. Now we claim that for any xk ∈ Pk−1,

∃ Pε > 0, s.t. Fk(B(xk,ε)) ≥ Pε , where recall that Fk is the uniform sampling measure used at the kth

iteration. To see this, we let η = min{ δ
2
, ε

2
} and z = xk +(x∗k−1 − xk)

η
d(x∗k−1,xk)

. Then for any z′ ∈ B(z,η),

we have

d(x∗k−1,z
′)≤ d(x∗k−1,z)+d(z,z′)≤ max(η ,δ −η)+η ≤ δ =⇒ z′ ∈ B(x∗k−1,δ ).

d(xk,z
′)≤ d(xk,z)+d(z,z′)≤ η +η ≤ ε =⇒ z′ ∈ B(xk,ε).

Therefore, B(z,η)⊆ B(x∗k−1,δ )∩B(xk,ε), which implies that B(z,η)⊆ Pk−1∩B(xk,ε). Since Fk is uniform,

we have Fk (B(xk,ε))≥ Fk (B(z,η))≥ Pε > 0, where Pε :=
Vol(Bη )
Vol(X) with Vol(Bη) being the volume of any

ball with radius η .

Consequently, we have P
(
Āk(xk,ε)

)
= E

[
P(Āk(xk,ε)

∣∣Fk−1)
]
≤ (1−Pε)

Nk for each k ≥ 1, and by A6,

∑
∞
k=0 P

(
Āk(xk,ε)

)
≤∑

∞
k=0(1−Pε)

Nk <∞. By the Borel-Cantelli lemma, we obtain P
(
Āk(xk,ε) i.o.

)
= 0.

Lemma 2 below states that on the promising area Pk−1, the true objective function H(x) can be closely

approximated by the surrogate model Sk(x).
Lemma 2. For any ε > 0 and xk ∈ Pk−1, let ∆k(xk,ε) = {|Sk(xk)−H(xk)|> ε} . If A1-A3 and A6 hold,

then P(∆k(xk,ε) i.o.) = 0.

Proof. Define Dk = {∀ xk ∈ Λk, Nk (xk,rk) ≥ Lk}, where Nk (xk,rk) is the number of elements in

the set B(xk,rk)∩Λk, as defined before, and Lk = Θ(kq), where q satisfies p+ q < 1 and ql − s > 1.

It is not hard to see when A6 is satisfied, this q exists. Since rk → 0 as k → ∞, Nk = Θ(ks), then

∃ k′ ∈N, c1, c2 ∈R+, s.t. ∀ k ≥ k′, rk ≤ ε
4L1

, Lk ≥ c1kq, Nk ≤ c2ks, and also let ε ′ = ε
2(L1+L2)

. So for any

k > k′, ∀ xk ∈ Pk−1,

P
(
|Sk(xk)−H(xk)|> ε

∣∣Fk−1

)

≤ P
(
|Sk(xk)−H(xk)|> ε, Ak(xk,ε

′)
∣∣Fk−1

)
+P

(
Āk(xk,ε

′)
∣∣Fk−1

)

= P
(
|Sk(xk)−H(xk)|> ε, ∪x′k∈Λk

d(xk,x
′
k)< ε ′ ∣∣Fk−1

)
+P

(
Āk(xk,ε

′)
∣∣Fk−1

)

≤ |Λk|P
(
|Sk(xk)−H(xk)|> ε, d(xk,x

′
k)< ε ′ ∣∣Fk−1

)
+P

(
Āk(xk,ε

′)
∣∣Fk−1

)

≤ NkP
(∣∣Sk(xk)−Sk(x

′
k)
∣∣+

∣∣Sk(x
′
k)−H(x′k)

∣∣+
∣∣H(x′k)−H(xk)

∣∣> ε, d(xk,x
′
k)< ε ′ ∣∣Fk−1

)

+P
(
Āk(xk,ε

′)
∣∣Fk−1

)

≤ c2ksP
(∣∣Sk(x

′
k)−H(x′k)

∣∣> ε/2
∣∣Fk−1

)
+P

(
Āk(xk,ε

′)
∣∣Fk−1

)

≤ c2ksP
(∣∣Sk(x

′
k)−H(x′k)

∣∣> ε/2, Dk

∣∣Fk−1

)
+P

(
Āk(xk,ε

′)
∣∣Fk−1

)
+ c2ksP

(
D̄k

∣∣Fk−1

)

= c2ksP

(∣∣∣∣∑
Nk(x′k,rk)
i=1

(
h(xi)−H(x′k)

)
/Nk

(
x′k,rk

)∣∣∣∣> ε/2, Dk

∣∣Fk−1

)

+P
(
Āk(xk,ε

′)
∣∣Fk−1

)
+ c2ksP

(
D̄k

∣∣Fk−1

)

≤ c2ksP

(
∑

Nk(x′k,rk)
i=1

(
|h(xi)−H(xi)|+

∣∣H(xi)−H(x′k)
∣∣)/Nk

(
x′k,rk

)
> ε/2, Dk

)

+P
(
Āk(xk,ε

′)
)
+ c2ksP

(
D̄k

∣∣Fk−1

)

≤ c2ksP

(∣∣∣∣∑
Nk(x′k,rk)
i=1

(h(xi)−H(xi))/Nk

(
x′k,rk

)∣∣∣∣> ε/4, Dk

∣∣Fk−1

)

+P
(
Āk(xk,ε

′)
∣∣Fk−1

)
+ c2ksP

(
D̄k

∣∣Fk−1

)
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≤ C

kql−s
+P

(
Āk(xk,ε

′)
∣∣Fk−1

)
+ c2ksP

(
D̄k

∣∣Fk−1

)
, (2)

where x′k ∈ Λk is a sampled point during iteration k that is at most ε ′ away from xk, and {xi}Nk(x
′
k,rk)

i=1 are those

points in B(x′k,rk)∩Λk. The fourth inequality is true because of d(xk,x
′
k)< ε ′ and the Lipschitz continuous

property of the original function and the surrogate model. The seventh inequality holds since every xi is

within radius rk of x′k and rk ≤ ε
4L1

. The first term in the last inequality is a direct result of lemma 1 in

Andradóttir and Prudius (2010). So (2) implies P(|Sk(xk)−H(xk)|> ε)≤ C
kql−s +P

(
Āk(xk,ε

′)
)
+c2ksP(D̄k)

when k > k′.
As a result, we can obtain ∑

∞
k=1 P(|Sk(xk)−H(xk)|> ε)< ∞ by noticing that ql− s > 1 and applying

the result of lemma 1 and a slightly modification of lemma 2 in Andradóttir and Prudius (2010) with the

simple size on the order of Θ(ks) (s ≥ 1− p). The result then follows from the Borel-Cantelli lemma.

Let cl
(
B(x∗k ,δ0)

)
be the closure of B(x∗k ,δ0). Since cl

(
B(x∗k ,δ0)

)
is compact, by using an argument

similar to the proof of lemma 4.1 in Hu et al. (2012), it can be seen that the result in lemma 2 holds

uniformly on cl
(
B(x∗k ,δ0)

)
.

Proposition 1. For any ε > 0, if A1-A4 and A6 hold, then P
(

max
x∈cl(B(x∗k ,δ0)) |Sk(x)−H(x)|> ε i.o.

)
= 0.

The main result is shown in Theorem 1 below.

Theorem 1 If A1-A6 hold, then for any 0 < δ ′ ≤ δ0, P
(
B(x∗k ,δ

′)∩M =∅ i.o.
)
= 0.

Proof. For any 0 < δ ′ ≤ δ0, let xk = argminx∈cl(B(x∗k ,δ
′))H(x). If B(x∗k ,δ

′)∩M =∅, then xk must lie on

the boundary of B(x∗k ,δ
′) and d(xk,x

∗
k) = δ ′. Consider the Taylor expansion of Sk(x) in the neighborhood

of x∗k ,

Sk(xk) = Sk(x
∗
k)+∇T Sk(x

∗
k)(xk − x∗k)+

1

2
(xk − x∗k)

T HSk
(x̄)(xk − x∗k),

where x̄ ∈ B(x∗k ,δ
′). If B(x∗k ,δ

′)⊆ int(Pk−1), since x∗k = argminx∈B(x∗k ,δ
′)Sk(x), we have ∇T Sk(x

∗
k) = 0, and

by A5, (xk − x∗k)
T HSk

(x̄)(xk − x∗k) ≥ λmin (HSk
(x̄))d(xk,x

∗
k)

2 ≥ κδ ′2. This implies that |Sk(xk)− Sk(x
∗
k)| ≥

κδ ′2/2. On the other hand,

|Sk(xk)−Sk(x
∗
k)| ≤ |Sk(xk)−H(xk)|+ |H(xk)−Sk(x

∗
k)|

≤ max
x∈cl(B(x∗k ,δ

′)) |Sk(x)−H(x)|+ |min
x∈cl(B(x∗k ,δ

′))H(x)−min
x∈cl(B(x∗k ,δ

′)) Sk(x)|

≤ 2max
x∈cl(B(x∗k ,δ

′)) |Sk(x)−H(x)|

Consequently, B(x∗k ,δ
′)∩M =∅ and B(x∗k ,δ

′)⊆ int(Pk−1) implies max
x∈cl(B(x∗k ,δ

′)) |Sk(x)−H(x)| ≥ κδ ′2/4.

It follows that

P
(
{B(x∗k ,δ

′)∩M =∅}∩{B(x∗k ,δ
′)⊆ int(Pk−1)}

)
≤ P

(
max

x∈cl(B(x∗k ,δ
′))
|Sk(x)−H(x)| ≥ κδ ′2/4

)

Hence, by directly applying Proposition 1, we obtain

P
(
{B(x∗k ,δ

′)∩M =∅}∩{B(x∗k ,δ
′)⊆ int(Pk−1)} i.o.

)

≤ P

(
max

x∈cl(B(x∗k ,δ
′))
|Sk(xk)−H(xk)| ≥ κδ ′2/4 i.o.

)

= 0,

If follows that if B(x∗k ,δ
′)∩M = ∅ occurs infinitely often, then B(x∗k ,δ

′) � int(Pk−1) must also occur

infinitely often. This in turn implies that P
(
B(x∗k ,δ

′)∩M =∅ i.o.
)
= 0 by Assumption A4.
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5 NUMERICAL EXAMPLES

In this section, we illustrate the performance of SOPS on several continuous stochastic optimization problems.

In our implementation, we have used a MCMC technique discussed in Smith (1984) to sample candidate

solutions from the promising region at each iteration. It has been shown that this method asymptotically

generates uniform points in a bounded region. The surrogate model is constructed using the radial basis

function (RBF) approximation (Bishop 1995), which has been successfully used as a curve fitting tool in

surrogate model-based optimization. The specific approximator considered here is a linear combination

of RBFs of the following form: Sk(x) = ∑
Nk

i=1 wiφ(‖x− xi‖), where φ(r) = r3, Nk is the total number of

solutions sampled during iteration k, xi’s are the sampled solutions, and wi’s are the weights that can be

obtained by solving a system of linear equations. In all testing cases, we set δ = 0.1. Since the shrinking

ball radius is on the order Ω(k−p/d) and the choice of the sample size Nk is on the order of Θ(ks), where

1− p ≤ s ≤ l−1, p < 1− (s+1)/l and d is the dimension of the problem, we simply choose the radius in

the form of a

k0.5/d and the sample size to be max(
√

k,4), with the value of a taken to be 5% of the length

of the domain in each direction.

The following four test functions with additive noise are used in our experiments.

(1) Goldstein-Price function with additive noise

h1(x,φ1) =(1+(x1 + x2 +1)2(19−14x1 +3x2
1 −14x2 +6x1x2 +3x2

2))

(30+(2x1 −3x2)
2(18−32x1 +12x2

1 +48x2 −36x1x2 +27x2
2))+φ1

where −3 ≤ xi ≤ 3, i = 1,2 and φ1 ∼ N (0,100). The function H1(x) = Eφ1
[h1(x,φ1)] has three

local minima (−0.6,−0.4),(1.8,0.2),(1.2,0.8) and a global minumum x∗1 = (0,−1) with function

value H1(x
∗
1) = 3.

(2) Schwefel function with additive noise (d=10)

h2(x,φ2) = 201.8432n−
d

∑
i=1

xisin(
√
|xi|)+φ2

where −200 ≤ xi ≤ 250, i = 1,2, · · · ,d and φ2 ∼ N (0,100). The function H2(x) = Eφ2
[h2(x,φ2)]

has global minimum at x∗2 = (203.814,203.814, · · · ,203.814) with function value H2(x
∗
2) = 0.

(3) Rastrigin function with additive noise (d=10)

h3(x,φ3) = 10d +
d

∑
i=1

x2
i −10cos(2πxi)+φ3

where −5.12 ≤ xi ≤ 5.12, i = 1,2, · · · ,d and φ3 ∼ N (0,25). The function H3(x) = Eφ3
[h3(x,φ3)]

has global minimum at x∗3 = (0,0, · · · ,0) with function value H3(x
∗
3) = 0.

(4) Trigonometric function with additive noise (d=10)

h4(x,φ4) =
d

∑
i=1

[
8sin2

(
7(xi −0.9)2

)
+6sin2

(
14(xi −0.9)2

)
+(xi −0.9)2

]
+φ4

where −2 ≤ xi ≤ 3, i = 1,2, · · · ,d and φ4 ∼ N (0,25). The function H4(x) = Eφ4
[h4(x,φ4)] has

global minimum at x∗4 = (0.90009,0.90009, · · · ,0.90009) with function value H4(x
∗
4) = 0.

5.1 Numerical Results

We compare the performance of our algorithm with that of the the well-known simultaneous perturbation

stochastic approximation (SPSA) (Spall 1992). To illustrate the effect of surrogate models on the algorithm
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performance, we have also included in our comparison a version of the SOPS algorithm called SOP. SOP

has the same structure as SOPS but without the surrogate model approximation at each iteration. The

choices of the parameters for these algorithms are listed in Table 1 and Table 2, where k is the number of

iterations, rk is the shrinking ball radius, δ is used in constructing the promising area as defined in Step

3 of SOPS, and αk, ck are the respective step size and the simultaneous perturbation size used in SPSA,

which are chosen by trial and error.

Table 1: The Choices of rk and δ in SOPS and

SOP.

rk δ

h1(d = 2) 0.2
k0.5/2 0.1

h2(d = 10) 20

k0.5/10 0.1

h3(d = 10) 0.4
k0.5/10 0.1

h4(d = 10) 1
k0.5/10 0.1

Table 2: The Choices of αk and ck in SPSA.

αk ck

h1(d = 2) 1
(k+5000)1

1
(k+50000)0.25

h2(d = 10) 10
(k+1)1

1
(k+50000)0.25

h3(d = 10) 1
(k+1000)1

1
(k+50000)0.25

h4(d = 10) 1
(k+1000)1

1
(k+50000)0.25

Figure 1 shows the performance of the three comparison algorithms, averaged over 30 independent

replication runs on each test case. The use of promising region search in SOPS and SOP allows the

algorithms to quickly locate promising subsets of the solution space. We see that both algorithms show

faster initial improvements than SPSA in all cases. Moreover, as compared with SOP, SOPS uses a surrogate

model to approximate the response surface of the objective function. This may provide a better and accurate

prediction of promising regions, leading to improved algorithm performance. We see that in almost all

cases, SOPS finds better solutions than SOP does.

6 CONCLUSION

We have proposed a random search-based optimization algorithm for solving SO problems with continuous

decision variables. The algorithm combines ideas of promising area search and surrogate model approx-

imation, and estimates the objective function values at sampled points using the shrinking ball method.

We have discussed the local convergence property of the algorithm and carried out preliminary simulation

experiments to illustrate its performance.
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