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A B S T R A C T

The assumption that demand parameters D for realistic structures, i.e., complex, nonlinear dynamic systems,
subjected to seismic acceleration processes A(t) correlate satisfactorily with maxima Sa(T) of responses of single
degree of freedom (SDOF) linear systems to A(t) is the cornerstone of current definitions of seismic intensity
measures (IMs).

We show that, generally, Sa(T) and D are weakly dependent and conclude that fragilities defined as functions
of Sa(T) have large uncertainties. The analysis considers linear/nonliear systems and single/multiple ordinates
of Sa(T). Tools of random vibration, copula models, and multivariate extreme value theory are employed to
quantify the dependence between Sa(T) and D.

1. Introduction

Fragilities are probabilities that structural systems enter specified
damage states for given seismic intensity measures (IMs) and consti-
tute essential tools for performance-based earthquake engineering. To
be useful, IMs need to be efficient, i.e., structural demand parameters D
conditional on IMs have small variances, and sufficient, i.e., the
distributions of the conditional random variables D|IM are completely
defined for given IMs [4,11–13]. For efficient IMs, the distribution of
the conditional variables D|IM can be estimated from relatively small
sets of structural responses. For sufficient IMs, the conditional random
variables D|(seismic hazard) and D|IM have similar distributions so
that probability plots of structural damage versus IMs, i.e., fragilities,
are meaningful.

IMs used currently in performance-based earthquake engineering
are functionals of the seismic ground acceleration process A(t), and can
be divided in two groups. The first group includes functionals of
samples of A(t), e.g., the peak ground acceleration (PGA) and the peak
ground velocity (PGV). The second group consists of functionals of
filtered versions of samples of A(t), e.g., single/multiple ordinates of
the pseudo-acceleration response spectrum Sa(T) for selected periods
T. Our focus is on IMs in the second group since they are used
extensively in practice.

Efficiency, sufficiency, and other properties of IMs have been
studied extensively during the last two decades. Yet, these properties
could not be assessed precisely since the distributions of IMs and
demand parameters are not known due to the limited information on
the seismic acceleration process A(t). It has been proposed to (1) use
concepts of the information theory to quantify the information carried

by various IMs for selected demand parameter [4] and use it to rate
their performance or (2) assess the performance of IMs for selected
structural demand parameters based on benchmark studies [11–13].
These studies recognize that sufficient IMs may not exist and that
resulting ratings of IMs may be affected by the considered information
metrics and benchmark studies.

This paper examines critically the unstated assumption that
responses of complex nonlinear structural systems can be predicted
with satisfactory accuracy from those of linear SDOF systems. The
assumption is the cornerstone of current definitions of IMs. We confine
our analysis to seismic acceleration processes A(t) with known prob-
ability law so that the joint distribution of Sa(T) and structural demand
parameters D can be found. The seismological model in [16] and other
models are used to characterize the seismic acceleration process A(t).
Let X t( )sdof and X(t) denote responses of linear single degree of freedom
(SDOF) and complex nonlinear systems subjected to A(t). These
responses and, therefore, Sa(T) and D, cannot be independent as
functionals of the same process A(t). However, they are likely to be
weakly dependent for realistic structures since the stochastic processes
X t( )sdof and X(t) have very different sample properties and frequency
contents. Concepts of the random vibration and the multivariate
extreme value theories and copula models are used to quantify the
dependence between Sa(T) and D.

It is found that, for realistic structural systems, (1) the dependence
between Sa(T) and D is weak so that fragilities defined as functions of
Sa(T) have large uncertainties and (2) the fragilities defined as
functions of multiple ordinates of Sa(T) provide only a slight improve-
ment over those based on single ordinates of Sa(T). It is concluded that
fragilities need to be defined as functions of parameters of the law of
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A(t), e.g., fragility surfaces of the type introduced in [10], rather than
properties of functionals of samples of this process, e.g., ordinates of
the pseudo-acceleration response spectrum Sa(T).

2. Problem definition

Let P ξ P ξ P D I ξ( ) = ( IM = ) = ( ∈ IM = )f denote the probability
that a structural system enter a damage states if subjected to ground
motions with scalar/vector-valued intensity measure ξ, where I defines
the set of demand parameters which yield damage state . Fragilities
are plots of P ξ( )f against ξ. Generally, the probabilities P ξ( )f are
estimated from structural responses to seismic records scaled in some
manner [3] so that their accuracy depends on the sample size, scaling
procedure, and properties of IMs.

Suppose the seismic ground acceleration at a site can be modeled by
a stochastic process A(t), t τ∈ [0, ]. Let X t( )sdof and X(t) denote the
response of a single degree of freedom (SDOF) linear oscillator with
damping ratio ζ and period T and the response of an arbitrary
structural system subjected to the same ground acceleration A(t).
Generally, X(t) is a vector-valued process. For simplicity, we consider
real-valued demand parameters of the type D h X t= max ( ( ))t τ0≤ ≤ ,
where τ denotes the duration of the seismic event and h maps X(t)
into a real-valued response of interest, e.g., an interstory displacement
or a floor acceleration. The IM of interest is the pseudo-spectral
acceleration S T π T X t( ) = (2 / ) max | ( )|t τa

2
0≤ ≤ sdof . The input-output map-

pings A t X t X t S T D( )↦ ( ); ( )↦ ( );asdof show that Sa(T) and D are depen-
dent random variables as functionals of A(t), t τ0 ≤ ≤ .

Intuition suggests that Sa(T) and D are weakly dependent since
they are obtained from the stochastic processes X t( )sdof and X(t) which
have very different properties as solutions of simple linear and complex
nonlinear random vibration problems to A(t). For example, if A(t) is
Gaussian, X t( )sdof and X(t) are Gaussian and non-Gaussian processes
with very different frequency bands. If this intuition is correct,
fragilities defined as functions of single/multiple ordinates of Sa(T)
have significant uncertainties so that they are of limited practical use.
The main objective of this study is to quantify the dependence between
Sa(T) and D and determine implicitly whether fragilities defined as
functions of current IMs provide useful information for performance-
based earthquake engineering.

To achieve this objective, we quantify the dependence between
Sa(T) and D by using a broad range of statistical tools, which are
discussed in Section 3. If the dependence between Sa(T) and D is very
strong and weak, then Sa(T) is a very good and unsatisfactory IM.
Corresponding fragilities plotted against Sa(T) are informative and
provide at best limited information, respectively.

The remainder of this section illustrates the relationship between
S T( )a and D for earthquakes of increasing intensities, outlines our
formulation, and discusses briefly the computational tools used in
analysis.

2.1. An illustration

Suppose X(t) is the displacement of a Duffing oscillator with
parameters ν ζ β( , , )0 which is at rest at the initial time and is subjected
to a ground acceleration process A(t). Then, X(t) satisfies the differ-
ential equation

X t ζ ν X t ν X t β X t A t t τ¨ ( ) + 2 ˙ ( ) + ( ( ) + ( ) ) = − ( ), ∈ [0, ],0 0
2 3 (1)

with initial conditions X(0) = 0 and Ẋ(0) = 0. If β = 0 and ν π T= 2 /0 ,
then X t X t( ) = ( )sdof is the displacement of a linear oscillator with
damping ratio ζ and period T. Otherwise, X(t) is the response of a
simple oscillator with cubic nonlinearity. The random variables
S T π T X t( ) = (2 / ) max | ( )|t τa

2
0≤ ≤ sdof and D X t= max | ( )|t τ0≤ ≤ are dependent

since they are functionals of the same input, the seismic ground
acceleration process A(t).

The dependence between S T( )a and D varies with the intensity of the
ground motion and the magnitude of the nonlinear stiffness compo-
nent. For small seismic excitation, the contribution of the cubic
nonlinearity ν βX t( )0

2 3 to the displacement X(t) of the Duffing oscillator
is insignificant so that X(t) should be similar to the displacement
X t( )sdof of the associate linear oscillator β( = 0). In this case, the
dependence between S T( )a and D is expected to be strong so that
S T( )a is a very good IM. For large seismic excitations, the cubic
nonlinearity ν βX t( )0

2 3 contributes to X(t) so that both the frequency
contents and the distributions of X(t) and X t( )sdof differ. For example, if
A(t) is a Gaussian process, then X t( )sdof and X(t) are Gaussian and non-
Gaussian processes. In this case, the correlation between S T( )a and D is
expected to be weaker so that Sa(T) is a less satisfactory IM.

These observations are consistent with the numerical results in
Fig. 1 which show n=500 independent samples of the random vector
S T π T D( ( )/(2 / ) , )a

2 for a Duffing oscillator with ν π= 20 , ζ = 0.05, and
β = 3 that is subjected to a stationary Gaussian band-limited white
noise (BLWN) A(t) with mean 0, variance 1, and frequency band [0, 10]
during the time interval [0, 20]. The system is at rest at the initial time.
The left, middle, and right panels are for ground accelerations A(t)
scaled by 1, 5, and 10. For small ground excitations corresponding to a
scale factor of 1 (left panel), the dependence between S T π T( )/(2 / )a

2 and
D is nearly perfect (the estimated correlation coefficient is almost 1).
The differences between the responses X(t) and X t( )sdof are negligible.
For large ground excitations corresponding to a scale factor of 10 (right
panel), the dependence between S T π T( )/(2 / )a

2 and D is weaker (the
estimated correlation coefficient is 0.8107). The middle panel corre-
sponds to moderate earthquakes, the scale factor is 5. It represents a
transition between the extreme cases in the left and right panels.

The plots in Fig. 1 show, in agreement with findings in [10], that
Sa(T) can be viewed as a satisfactory IM for the Duffing oscillator. We
attribute this performance to the fact that the Duffing oscillator is a
conservative SDOF structure whose stiffness is a perturbation of the
stiffness of the associated linear SDOF β( = 0) and matches the stiffness
of this system for small displacements. Yet, even in this very favorable

Fig. 1. Scatter plots of n=500 independent samples of S T π T D( ( )/(2 / ) , )a
2 for β = 3 and a stationary Gaussian BLWN A(t) with mean 0, variance 1, and frequency band [0, 10] scaled by 1,

5, and 10 (left, middle, and right panels).
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setting, the predictive capability of Sa(T) decreases with the magnitude
of the structural responses. For example, the correlation coefficients
between the top m samples of the demand parameter D (scale factor
10) and the corresponding samples of Sa(T) are 0.8107, 0.7684,
0.6418, 0.4381, and 0.3408 for m=10,000, 9000, 1200, 600, and 150.

2.2. Fragility estimates

Suppose the event D I{ ∈ } defines a damage state for a structural
system, where the interval I of the real line gives the range of a demand
parameter D associated with . Fragilities are plots of the probabilities
P ξ P ξ P D I ξ( ) = ( IM = ) = ( ∈ IM = )f against values ξ of an IM.

The following three-step approach is commonly used to construct
fragilities. First, a finite set of intensity measures ξ{ }k is selected.
Second, finite sets of seismic acceleration records are associated with
each intensity measure ξ{ }k by the following procedure. The available
seismic records are scaled to have the selected IMs and subsets of these
scaled records are associated with each ξk via an optimality criterion
[3]. Third, fragilities are estimated by P ξ d I n( ) = ∑ 1( ∈ )/f k j

n
k j k=1 ,

k , where
1(·) denotes the indicator function, nk is the number of seismic records
selected for the intensity measure ξk, and d{ }k j, , j n= 1, …, k , denote
demand parameters corresponding to the seismic records selected for
this IM. The set of probabilities P ξ{ ( )}f viewed as functions of ξ defines
the fragility for damage state .

The accuracy of the resulting fragility estimates P ξ( )f is difficult to
assess since it depends in complex manner on the sample size n{ }k , the
procedure used to select seismic records, and the effects of scaling
seismic records. For example, scaling changes the statistics of the
original records and yields records which are inconsistent with the
observed relationship between the frequency content of seismic records
and earthquake magnitudes. Also, Sa(T) increases linearly with the
scaling factor while responses of nonlinear structures do not.

We note that the only source of error in our setting relates to
properties of IMs since the law of the seismic acceleration process A(t)
is known. The fragility is

∫P ξ P D I ξ E D I ξ f x ξ dx( ) = ( ∈ IM = ) = [1( ∈ IM = )] = ( | ) ,f
I D|IM (2)

where f ξ(· )D|IM denotes the density of the conditional variable
D ξ|(IM = ). It can be obtained from the above formula by integration
or from the estimate d I n∑ 1( ∈ )/i

n
i=1 , where d{ }i , i n= 1, …, , are

independent samples of D.
If the dependence between D and IM is strong, the random variable

D|IM has small variance and the conditional density f ξ(· )D|IM is
concentrated about its expectation. This density becomes a δ-function
in the limit as D and IM are perfectly dependent. The opposite holds for
weakly dependent demand parameters and IMs. In this case, the
random variable D|IM has large variance and corresponding fragilities,
which are expectations (see Eq. (2)), may yield only course information
on structural performance. In the limit as D and IM are independent,
the random variables D|IM and D are equal in distribution so that the
fragility ∫P ξ f x dx( ) = ( )f I D does not depend on ξ.

3. Dependence metrics

Our main objective is to determine weather fragilities defined as
functions of current IMs characterize accurately the performance of
structural systems subjected to earthquakes. To achieve this objective,
we examine the dependence between structural demand parameters
and IMs, i.e., the random variables D and Sa(T), by using three
statistical tools: correlation coefficients, copula models (CMs), and
concepts of the multivariate extreme value theory (MEVT). This section
presents essential features and limitations of these tools. The subse-
quent section quantifies the dependence between D and Sa(T) for a few
dynamic systems by using correlation coefficients, CMs, and MEVT-
based estimates.

3.1. Correlation coefficients

Correlation coefficients are attractively simple but rather crude
metrics for the dependence between random variables. We illustrate
some of the limitations of the correlation coefficients by the following
examples.

Suppose X N∼ (0, 1) is a standard Gaussian variable with mean 0
and variance 1. The non-Gaussian random variable Y X= − 12 has
mean 0 and variance 2. The Pearson correlation coefficient of X and Y
is proportional to E X Y E X E X[ ] = [ ] − [ ] = 03 so that X and Y are said to
be uncorrelated. Yet, Y XVar[ ] = 0 since, given X, Y is known. Other
correlation models also view X and Y as nearly uncorrelated, e.g.,
estimates of the Spearman and Blomqvis correlation coefficients [1]
based on 100,000 independent samples of X are 0.0062 and 0.0014.

Correlation coefficients may also provide misleading information on
the dependence between Gaussian variables if the focus is on large
values of these variables. Let X X X= ( , …, )d1 be an d-dimensional
Gaussian vectors with equally correlated, standard components, i.e.,
E X[ ] = 0i , E X[ ] = 1i

2 , and E X X ρ[ ] =i j , i j≠ . According to the normal
comparison lemma [14] (Corollary 4.2.4), we have

⎛
⎝⎜

⎞
⎠⎟P X x Φ x O αx∩ { ≤ } − ( ) ∼ (exp( − )),

i

d
i

d

=1

2

where Φ denotes the distribution of the standard Gaussian variable and
α > 0 is a constant. The discrepancy between the joint distribution
P X x(∩ { ≤ })i

d
i=1 of X and the distribution Φ x( )d of an d-dimensional

Gaussian vector Xind with independent, standard components vanishes
as x → ∞ for ρ| | < 1. This means that extremes of the components of X
are asymptotically independent irrespective of their correlation. The
dash lines in Fig. 2 are the probabilities Φ x1 − ( )d and Φ x1 − ( ), d=10,
i.e., the probabilities P X x1 − (∩ { ≤ })i

d
i=1 for X with independent and

perfectly correlated components. The upper and lower solid lines are
estimates of the probabilities P X x1 − (∩ { ≤ })i

d
i=1 for ρ = 0.7 and

ρ = 0.99. They approach Φ x1 − ( )d as x increases with rates of
convergence that depend on the correlation coefficient ρ.

These examples show that correlation coefficients may fail to
capture the dependence between non-Gaussian variables and between
Gaussian variables if the focus is on simultaneously large values of
these variables. These observations suggest that correlation coefficients
may only provide qualitative descriptions of the dependence between
Sa(T) and D.

Fig. 2. Probabilities P X x1 − ( ∩ { ≤ })i
d

i=1 , Φ x1 − ( )d , and Φ x1 − ( ) for d=10.
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3.2. Copula models

Copulas are models for the joint distributions of random vectors
with arbitrary marginal distributions. They have been used extensively
in applications, see [1] (Chap. 5), [5], and cited references. Copula
models are conceptually simple and can be calibrated to observations
by using familiar statistical tolls [5].

However, the usefulness of copulas is not universally accepted. It is
argued in [15] that copulas present no particular advantage relative to
a direct use of models for multivariate distributions, cannot be used to
characterize joint extremes of random variables, and may misrepresent
the dependence between the components of random vectors. The latter
limitation relates to the two-step approach for fitting copulas to
observations which separates the calibration of the dependence func-
tion, i.e., the functional form of postulated copula models, from that of
the marginal distributions. Two versions of this approach are discussed
later in this section.

3.2.1. Generalities
Let X X X= ( , …, )d1 be a d-dimensional random vector with joint

distribution F x P X x X x( ) = ( ≤ , …, ≤ )d d1 1 , x x x= ( , …, ) ∈d
d

1 , and
marginal distributions F ξ P X ξ{ ( ) = ( ≤ )}i i , i d= 1, …, , assumed to be
continuous. The components of the d-dimensional random vector

U U U F X F X= ( , …, ) = ( ( ), …, ( ))d d d1 1 1 (3)

are uniformly distributed. The copulaC: [0, 1] → [0, 1]d of X is the joint
distribution of U, i.e.,

C u u P U u U u P X F u X F u( , …, ) = ( ≤ , …, ≤ ) = ( ≤ ( ), …, ≤ ( )),d d d d d1 1 1 1 1
−1

1
−1

1

(4)

where the latter equality holds if the mappings Ui↦F X( )i i , i d= 1…, , are
bijections. In summary, copulas C: [0, 1] → [0, 1]d are joint distribu-
tions on the unit cube [0, 1]d with uniform marginals so that (1)
C u u u u( , …, , 0, , …, ) = 0i i d1 −1 +1 and C u u(1, …, 1, , 1, …, 1) =i i for all
i d= 1, …, , and (2) ∫ dC u( ) ≥ 0

B
on any rectangle B ⊂ [0, 1]d . We also

note that the inequalities d umax{1 − + ∑ , 0}≤i
d

i=1
C u u u u( , …, ) ≤ min{ , …, }d d1 1 hold and that finite sums

λ C u u∑ ( , …, )k k k d1 of copulas C{ }k are copulas provided λ ≥ 0k and
λ∑ = 1k k .

For two-dimensional copulasC: [0, 1] → [0, 1]2 these conditions are
(1) C u C v( , 0) = (0, ) = 0, C u u( , 1) = and C v v(1, ) = for u v, ∈ [0, 1],
and (2) C u v C u v C u v C u v( , ) − ( , ) − ( , ) + ( , ) ≥ 02 2 2 1 1 2 1 1 for all
u u v v, , , ∈ [0, 1]1 2 1 2 such that u u≤1 2 and v v≤1 2. The second require-
ment constitutes the finite difference version of the condition

C u v u v∂ ( , )/∂ ∂ ≥ 02 and implies ∫ dC u( ) ≥ 0
B

.
The Sklar theorem ([1], Chap. 5) connects the joint distributions of

random vectors to copulas. It states that (1) every distribution F of a
random vector X X X= ( , …, )d1 admits the representation

F x x C F x F x x x x( , …, ) = ( ( ), …, ( )), = ( , …, ) ∈ ,d d d d
d

1 1 1 1 (5)

where C: [0, 1] → [0, 1]d is a copula, and (2) copulas are unique on the
cartesian product R F= × Ran( )i

d
i=1 of the ranges F{Ran( )}i of the

marginal distributions of X, which implies that the copula is unique
if the marginal distributions of X are continuous. Also, given a copula
C: [0, 1] → [0, 1]d and marginal distributions F{ }i , i d= 1, …, , then
C F x F x( ( ), …, ( ))d d1 1 is a d-dimensional joint distribution.

A large catalog of copulas is available. Gaussian and Archimedean
copulas are briefly presented since they are frequently used in applica-
tions. The Gaussian copula has the form:

C u u Φ Φ u Φ u Φ Φ F x Φ F x( , …, ) = ( ( ), …, ( )) = ( ( ( )), …, ( ( )))d d d d d d1
−1

1
−1 −1

1 1
−1

(6)

for u u u= ( , …, ) ∈ [0, 1]d
d

1 and x x x R F= ( , …, ) ∈ = × Ran( )d i
d

i1 =1 ,
where Φd denotes the joint distribution of an d-dimensional
Gaussian vector G G G= ( , …, )d1 with specified covariance matrix and

components with zero means and unit variances. Since F X Φ G( ) = ( )i i i ,
i d= 1, …, , we have

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟P X x P F G x P G Φ F x∩ { ≤ } = ∩ { (Φ( )) ≤ } = ∩ { ≤ ( ( ))} ,

i

d
i i

i

d
i i i

i

d
i i i

=1 =1

−1

=1

−1

i.e., the copula model in Eq. (6) for u F x= ( )i i i , i d= 1, …, . Note also
that the Gaussian copula coincides with the translation random vector
model in [8] (Chap. 3).

Of the Archimedean copulas, frequently used two-dimensional
copulas have the form

C u v uv
θ u v

θ

C u v u v θ

C u v u v θ

( , ) =
1 − (1 − ), (1 − )

, − 1 ≤ < 1,

( , ) = [max{ + − 1, 0}] , ( − 1 ≤ < ∞)⧹{0}, and

( , ) = exp[−(( − log( )) + ( − log( )) ) ], 1 ≤ < ∞.

θ θ θ

θ θ θ

− − −1/

1/
(7)

The second model is referred to as the Clayton copula. The limit case
θ = 0 corresponds to a vector X with independent components.

3.2.2. Fitted copulas
Properties of copulas are well-established and discussed extensively

in the literature. Yet, the construction of copulas for d-dimensional
random vectors X from independent samples of these vectors poses
difficulties since the copula-based approximations of the joint distribu-
tions of X are sensitive to the form of the mapping u C u↦ ( ) and the
marginal distributions F{ }i of X.

Suppose n independent samples x x x= ( , …, )k k
d

k( )
1
( ) ( ) , k n= 1, …, , of

an d-dimensional random vector X are available. We describe two
methods for calibrating copulas to samples of X which are commonly
used in applications. For extensive discussions on this topic, including
the accuracy of copula models, see [1,5,6]. The first method is
parametric and involves two steps. First, parametric families of copulas
and marginal distributions, C u θ{ ( ; )}0 and F x θ{ ( ; )}i i i , i d= 1, …, ,
indexed by θ0 and θ{ }i are postulated. It is assumed that the postulated
copulas admit densities c u θ C u θ u u{ ( ; ) = ∂ ( ; )/∂ ⋯∂ }d

d0 0 1 for each θ0.
Second, the vector θ θ θ θ= ( , , …, )d0 1 of unknown parameters in the
definition of the postulated models is characterized by the log-like-
lihood function

∑θ x k n c F x θ F x θ θℓ( | , = 1, …, ) = log[ ( ( ; ), …, ( ; ); )].k

k

n
k

d d
k

d
( )

=1
1 1

( )
1

( )
0

(8)

This function can be used to find the maximum likelihood estimate
(MLE) θ of θ, which introduced in Eq. (5) yields the copula-based
model

F x C F x θ F x θ θ x x x( ) = ( ( ; ), …, ( ; ); ), = ( , …, ) ∈ ,d d d d
d

1 1 1 0 1 (9)

for the distribution of X. We also note that the likelihood function in
Eq. (8) can be used to construct posterior distributions for θ if the
analysis uses the Bayesian framework.

The second method is semi-parametric and also involves two steps.
First, a parametric family C u θ{ ( ; )}0 of copulas with densities
c u θ C u θ u u{ ( ; ) = ∂ ( ; )/∂ ⋯∂ }d

d0 0 1 is postulated as in the previous method.
Second, empirical distributions F{ }i , rather than postulated parametric
models, are used for the unknown marginal distributions F{ }i of X to
construct the log-likelihood function of θ0. The corresponding log-
likelihood function has the form:

∑

∑

θ x k n c F x F x θ

c r n r n θ

ℓ( | , = 1, …, ) = log[ ( ( ), …, ( ); )]

= log[ ( /( + 1), …, /( + 1); )],

k

k

n
k

d
k

k

n
k

d
k

0
( )

=1
1 1

( )
1

( )
0

=1
1
( ) ( )

0

(10)

where F ξ x ξ n( ) = ∑ 1( ≤ )/( + 1)i s
n

i
s

=1
( ) and r x x= ∑ 1( ≤ )i

k
s
n

i
s

i
k( )

=1
( ) ( ) de-

note the empirical distribution of Xi and the rank of observation k for
component i d= 1, …, in ascending order [5]. Note that, if xi

k( )0 is the
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smallest or the largest observation for component i, its rank is r = 1i
k( )0

or r n=i
k( )0 . The second equality in Eq. (10) holds since n F x( + 1) ( )i i

k( )

gives the number of observations of Xi smaller that xi
k( ), which

coincides with the rank ri
k( ) of observation xi

k( ). The scaling n1/( + 1),
rather than n1/ , is used to avoid dealing with points on the boundary of
the unit cube [0, 1]d [6]. The copula-based estimate of the joint
distribution of X has the form:

F x x C F x F x θ( , …, ) = ( ( ), …, ( ); ),d d d1 1 1 0 (11)

where θ0 denotes the MLE of θ0.
The parametric models used for copulas are essential for the

construction of realistic representations of the distribution of X since
their functional form determines the dependence structure of this
vector. The empirical copula,

∑C u u
n

F x u F x u( , …, ) = 1 1( ( ) ≤ , …, ( ) ≤ ),d
k

n
k

d d
k

d1
=1

1 1
( )

1
( )

(12)

can be used to guide the selection of the family of copulas C θ(·; )0
required by the above methods for fitting copulas to observations.

We conclude with the comment that alternatives to the copula-
based representations of the multivariate distribution of X in Eqs. (9)
and (11) can be considered, e.g., families of parametric models
F x θ{ ( ; )} indexed by θ for the distribution F(x) of X or empirical
distributions F x( ). The accuracy of the distributions F x( ) depends on
the sample size and the dimension of X. Let X k( ), k n= 1, …, , be
independent copies of a random vector X with distribution F. The
estimator,

⎛
⎝⎜

⎞
⎠⎟∑F x

n
X x x x x( ) = 1 − 1 1 ∩ { ≤ } , = ( , …, ),

k

n

i

d
i

k
i d

=1 =1

( )
1

(13)

of F x F x( ) = 1 − ( ) is unbias, i.e., E F x F x[ ( )] = ( ), with variance
σ n F x F x n( ) = ( ) ( )/2 so that P F x F x ε σ n ε(| ( ) − ( )| > ) ≤ ( ) /2 2, ε > 0, by
the Chebyshev inequality, which means that F x F x( ) → ( ) in probability
as n → ∞ [9] (Sections 2.12 and 2.13). For large n, the estimator F x( )
is approximately Gaussian with mean F x( ) and variance
σ n F x F x n( ) = ( ) ( )/2 so that F x F x σ n( ( ) − ( ))/ ( ) takes values in

z z( − , )γ γ/2 /2 with probability γ1 − . Accordingly, F x( ) is in the range

F x σ n z F x σ n z( ( ) − ( ) , ( ) − ( ) )γ γ/2 /2 with probability γ1 − , where

z Φ γ= (1 − /2)γ /2
−1 . The absolute width w n σ n z( )≔2 ( ) γ /2 of this confi-

dence interval can be misleading when F x( ) is very small, e.g.,
w n n( ) ≃ 10 /−4 for F x( ) = 10−8 which may suggest that F x( ) is accu-
rate. The coefficient of variation σ n F x( )/ ( ) of the estimator in Eq. (13) is
approximately equal to F x n( ( ) )−1/2 for small probabilities F x( ). It is of
order 102 for F x( ) = 10−8 and n = 104.

The accuracy of F x( ) depends in a complex manner on the
functional form of the right tail of F, the threshold x, the sample size
n, and the dimension of X. We also note that the empirical distributions
may yield accurate information on the dependence between the
components of X in the mid range of F(x) for sufficiently large n but
provides no information beyond data, i.e., F cannot be used to
characterize the tails of F(x). Models of F(x) are needed to extrapolate
F x( ) beyond observations.

3.3. Extreme value theory

We have seen that independent observations of a random vector X
can be used to construct empirical distributions of this vector, i.e.,
samples of the estimator in Eq. (13), and that empirical distributions
can be used to characterize random vectors provided they are based on
sufficiently large sets of observations. Generally, the sample size is
insufficient to obtain accurate empirical distributions. It is common to
postulate parametric models for the copula or the joint distribution of
X and estimate their unspecified parameters from observations. The
main advantage of the parametric models is that they can be fitted to

relatively small sets of observations. The main limitations are that the
dependence between the components of X and the tails of the
distribution of this vector can be severely constrained by the functional
form of the postulated model. Whether parametric models for copulas
are superior to those for joint distributions is questionable [15].

Our discussion is limited to two-dimensional random vectors X
whose components can be an intensity measure X S T≔ ( )a1 and a
structural demand parameter X D≔2 . Our focus here is on the depen-
dence between simultaneously large values of X1 and X2, rather than
their overall dependence of these random variables. The analysis
provides additional insight on the usefulness of Sa(T) as a seismic
intensity measure since it quantifies the dependence between simulta-
neously large IMs and structural responses.

Since copulas are not ideal models for the dependence between
components of random vectors, and particularly for large values of
these components, we also explore the relationship between X S T≔ ( )a1
and X D≔2 by using concepts of the multivariate extreme value theory
(MEVT). If Sa(T) and D show significant dependence, then Sa(T) is a
satisfactory seismic intensity measure for ground motions with large
IMs. Otherwise, Sa(T) is an unsatisfactory IMs for large structural
demand parameters D. The relationship between large demand para-
meters D and Sa(T) is particularly important since large demand
parameters are likely to cause extensive damage or even structural
failure.

The following sections present a heuristic review of concepts of the
MEVT and computational tools relevant to our discussion. These
concepts and tools are used in a subsequent section to quantify the
dependence between simultaneously large samples of Sa(T) and D for
several structural systems and ground acceleration processes. For a
complete, rigorous discussion on the extreme value theory, see [18].

Let x{ }k( ) , k n= 1, …, , be n independent samples of a two-dimen-
sional random vector X X X= ( , )1 2 . Our objective is to quantify the
dependence between simultaneously large values of X1 and X2. We first
examine this dependence for the special case in which the components
of X are identically distributed. We then relax this constraint.

3.3.1. Identically distributed components
Suppose X X, > 01 2 almost surely (a.s.), i.e., P X( > 0) = 1i for i=1,2,

and the marginal distributions of X X X= ( , )1 2 coincide, i.e., F F=1 2, so
that the components of X have similar scales. The polar representation
of X has the form:

X X X V Θ V Θ= ( , ) = ( cos( ), sin( )),1 2 (14)

where V X= ∥ ∥ is a norm in 2 and Θ X X= tan ( / )−1
2 1 . The polar

representation of the samples x{ }k( ) of X is

x x x v θ v θ k n= ( , ) = ( cos( ), sin( )), = 1, …, ,k k k k k k k( )
1
( )

2
( ) ( ) ( ) ( ) ( ) (15)

with the notations in Eq. (14). Set v > 00 and relatively large. Samples
of X with distance to origin v v>k( )

0 are of interest. The selection of v0 is
critical to assure that the right tails of the components of X are
accurately represented [17].

Let y y{ , …, }k k( ) ( )m1 denote the subset of x x{ , …, }n(1) ( ) , m n≤ , such
that v v>k( )

0
j , j m= 1, …, . The histogram h θ( ) of θ θ{ , …, }k k( ) ( )m1 with

support π[0, /2] is used to characterize the dependence between
samples of X with norm exceeding v0. If most of the mass of h θ( ) is
concentrated at θ = 0 and π /2, extremes of X1 and X2 are nearly
independent. If most of the mass of h θ( ) is concentrated at θ π= /4,
extremes of X1 and X2 are strongly dependent. Histograms h θ( )
between these limit cases describe various degrees of dependence
between the components of large values of X∥ ∥.

Suppose X λ G λ G= + (1 − )i i0
2 2, i=1,2, where G0, G1, and G2 are

independent standard Gaussian variables. The components X1 and X2

of X follow the same distribution. They are perfectly dependent for
λ = 1 and independent for λ = 0. The left and right panels of Fig. 3
show scatter plots for samples of the random vector Y Y Y= ( , )1 2 , i.e.,
samples of X with distance to the origin of the coordinate system larger
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than v0, and histograms of the angular measure Θ Y Y= tan ( / )−1
2 1 . The

top, middle, and bottom panels correspond to λ = 0.9, 0.5, and 0.1 and
thresholds v = 160 , 10, and 12. The resulting sample sizes of the vectors
Y are 435, 448, and 585, respectively, and have been extracted from
n=100,000 independent samples of X. The components of Y are
strongly and weakly dependent for λ = 0.9 and 0.1. The angular
measures h θ( ) in the right panels quantifies the degree of dependence
between the components of Y. For λ = 0.9, the samples of Y are aligned
along the 45o line and the angular measure is concentrated about
π /4 ≃ 0.7854. The support of h θ( ) is approximately [0.74, 0.83]. This
shows that simultaneously large values of X1 and X2 are strongly
dependent. For λ = 0.5, the samples of Y are less concentrated along
the 45° line and h θ( ) takes non-zero values in π[0, /2]. For λ = 0.1, the

samples of Y cluster on the axis of the system of coordinates and most
of the mass of h θ( ) is concentrated is small vicinities of θ = 0 and π /2.
This means that large values of X1 are likely to be associated with small
values of X2 and viceversa.

If the vector X X( , )1 2 in Fig. 3 was S T D( ( ), )a , we would have
concluded that Sa(T) is a very good, acceptable, and unacceptable
measure of seismic intensity for λ = 0.9, 0.5, and 0.1, respectively, since
the uncertainty in the conditional random variable D S T| ( )a is very
small, moderate, and large for λ = 0.9, 0.5, and 0.1. This means that the
knowledge of Sa(T) provides almost no information on D for λ = 0.1.

3.3.2. General case
The special case just considered is rarely encountered in applica-

Fig. 3. Large samples (left panel) and angular measures (right panel) for λ = 0.9 and v = 160 (top panels), λ = 0.5 and v = 100 (middle panels), and λ = 0.1 and v = 120 (bottom panels).
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tions. Usually, the components of X have different scales and both the
marginal distributions F{ }i of the components X{ }i of X and the
distribution F of X are not known.

Suppose first that the marginal distributions F{ }i are known and
that, as previously, n independent samples x{ }k( ) , k n= 1, …, , of X are
available. Denote by Z a random vector obtained from X by scaling its
components such that they follow the same distribution, e.g., the unit
Pareto distribution. Note that the components of Z are identically
distributed but are not independent. The previous approach can be
used in the z-space to characterize the dependence between simulta-
neously large values of the components of X.

Generally, neither the distribution F of X nor the marginal

distributions F{ }i of this vector are known and the available samples
x{ }k( ) , k n= 1, …, , are insufficient to estimate these distributions
accurately. We use an alternative approach, referred to as the ranks
method, to estimate the dependence between large values of the
components of X. The implementation of this method does not require
knowledge of the distributions F and F{ }i [18]. The output of the ranks
method is an estimate of the angular or spectral measure s θ( ) which, for
d=2, is analogue of the histogram h θ( ) introduced earlier in this section.
We use the angular measure to assess the dependence between the
components of the two-dimensional random vector
X X S T X D= ( = ( ), = )a1 2 .

The implementation of the ranks method involves the following

Fig. 4. Large samples (left panel) and angular measures (right panel) for λ = 0.9 (top panels), λ = 0.5 (middle panels), and λ = 0.1 (bottom panels).
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three steps [18] (Section 9.2). First, map the observations x{ }k( ) into
ranks r{ }i

k( ) , i=1,2, defined by

∑r x x k n= 1( ≥ ), = 1, …, .i
k

l

n

i
l

i
k( )

=1

( ) ( )

(16)

Note that the ranks of the largest and smallest samples of Xi are 1
and n, i.e., the opposite of the rank in Eq. (10). Second, represent the
vectors n r n r{( / , / )}k k

0 1
( )

0 2
( ) in polar coordinates, i.e.,

n r n r ρ α ρ α k n( / , / ) = ( cos( ), sin( )), = 1, …, ,k k k k k k
0 1

( )
0 2

( ) ( ) ( ) ( ) ( ) (17)

where n n0 < ⪡0 is an integer and ρ α( , )k k( ) ( ) is defined as V Θ( , ) in Eq.
(14). Note that the length ρ x= ∥ ∥k k( ) ( ) of the position vector of x k( )

increases with its distance to the origin of the system of coordinates.
Third, construct the histogram of the directions α ρ{ , > 1}k k( ) ( ) whose
support is π[0, /2]. The normalized version of this histogram is an
estimate of the angular measure s θ( ) [18] (Chap. 9). The selection of n0
is very important. If n0 is too small, the statistical uncertainty in the
estimates of s θ( ) can be significant. If n0 is too large, tail properties can
be misrepresented since many of the retained data are in the body of
the distribution of X.

The n=100,000 samples of the random vector X X X= ( , )1 2 used to
construct the plots in Fig. 3 are also used for the plots in Fig. 4. The left
and right panels show the samples n r n r{( / , / )}k k

0 1
( )

0 2
( ) retained to

construct estimates of the angular measure s θ( ). The top, middle, and
bottom plots are for λ = 0.9, 0.5, and 0.1 and use the top n = 2000
samples of X. The histograms of the angular measures in Figs. 3 and 4
are similar for λ = 0.1 and 0.9. They capture accurately the strong and
the weak dependence between large values of X1 and X2, although their

construction uses rather different concepts. The angular measures in
Figs. 3 and 4 are less similar for λ = 0.5. The histogram h θ( ) in Fig. 3
based on heuristic considerations suggests a stronger dependence
between X1 and X2 than that quantified by the angular measure s θ( )
in Fig. 4. Nevertheless, the histograms h θ( ) and the angular measures
s θ( ) show consistently that the dependence between large values of X1

and X2 for λ = 0.5 is weaker and stronger than that for λ = 0.9 and
λ = 0.1.

4. Dependence of D and Sa(T)

The dependence between demand parameters D and intensity
measures Sa(T) is calculated for a Bouc–Wen SDOF system (the
following two subsections) and a linear multi-degree of freedom
(MDOF) system (the last subsection). The seismic acceleration A(t) is
a stationary Gaussian process with specified spectral density.

The metrics in the previous section are used to quantify the
dependence between D and Sa(T) and assess the potential of vector-
valued IMs consisting of multiple ordinates of Sa(T).

4.1. Copula models

Suppose X(t) is the displacement of a Bouc–Wen SDOF system
defined by

X t ζν X t ν ρ X t ρ W t A t

W t γ X t α X t W t W t βX t W t

¨ ( ) + 2 ̇( ) + ( ( ) + (1 − ) ( )) = − ( ), where
̇ ( ) = ̇( ) − | ̇( )|| ( )| ( ) − ̇( )| ( )| ,χ χ

0 0
2

−1 (18)

Fig. 5. Spectral density of A(t) and n=500 independent samples of Sa(T) and D (left and right panels).

Fig. 6. Empirical distributions of X S T= ( )a1 and X D=2 (left and right panels) and empirical copula C u v( , ) (right panel).
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ν0 are ζ as in Eq. (1), α, β, γ, ρ, and χ are positive constants, and A(t)
denotes the seismic acceleration process. The parameters α, β, γ, ρ, and
χ control the model behavior, e.g., the system is linear for ρ = 1 and, for
ρ ≠ 1, its nonlinear/hysteretic behavior depends strongly on β and γ.

The numerical results in this and the subsequent section are for
ν π= 20 , ζ = 0.05, α = 0.5, β = 5, γ = 3, ρ = 0.1, and χ = 1. The ground
acceleration A(t) is given by the specific barrier model (SBM) for a
seismic event with magnitude m=5.0, source-to-site distance
r=185 km, and a rock site. It is a zero-mean stationary Gaussian
process with spectral density in the left panel of Fig. 5. The right panel
of the figure shows n=500 independent samples of X S T X D( ≔ ( ), = )a1 2
for τ=20 s. The visual inspection of this scatter plot suggests that Sa(T)
and D are weakly dependent so that Sa(T) is an unsatisfactory IM for
Bouk–Wen oscillators. This observation is at variance with our finding
for the Duffing oscillator in Fig. 1. It also suggests that Sa(T) provides
satisfactory IMs only for SDOF systems whose displacements are
perturbations of displacements of linear SDOF used to construct Sa(T).

Our objective is to quantify the relationship between the compo-
nents X S T= ( )a1 and X D=2 of X based on finer tools than correlation
coefficients. To achieve this objective, we employ the copula and
extreme value technologies in this and the subsequent section.

Let x{ }k( ) , k n= 1, …, , be n=500 independent samples of X. These
samples are shown in the right panel of Fig. 5. The left and right panels
in Fig. 6 show empirical marginal distributions of the components of X
corresponding to these samples of X. The empirical copula in the left
panel of Fig. 7 has been calculated from Eq. (12) by using observation
ranks. The right panel in this figure is the Clayton copula fitted to data,
an Archimedean copula defined by C u v φ φ u φ v( , ) = ( ( ) + ( ))−1 with
φ t t θ( ) = ( − 1)/θ− so that it has the expression

C u v u v( , ) = ( + − 1)θ θ θ− − −1/ , see Eq. (7). The MATLAB function copu-
lafit.m was employed to find the MLE θ = 1.4509 × 10−6 of θ.
Accordingly, the random variables X S T= ( )a1 and X D=2 are nearly
independent (see comments following Eq. (7)). The left and right
panels of Fig. 8 show differences between the empirical copula C u v( , )
and the fitted C u v( , )CL and contour lines of the empirical and fitted
Clayton copulas in solid and dash lines. The differences are minor and
the contour lines are similar.

Estimates F x x( , )1 2 of the joint distribution F x x( , )1 2 of X can be
obtained from copulas, e.g., the empirical or fitted Clayton copula in
Fig. 7, the empirical distributions in Fig. 6, and Eq. (11). For example,
the estimate of F x x( , )1 2 based on the Clayton copula has the form:

F x x F x F x( , ) = ( ( ) + ( ) − 1) .θ θ θ
Cl 1 2 1 1

−
2 2

− −1/
(19)

Alternatively, observations can be used directly to calculate the
estimate F x x( , )1 2 of F x x( , )1 2 in Eq. (13) with d=2.

The left and right panels of Fig. 9 show the empirical joint
distribution F x x( , )1 2 of X and the joint distribution F x x( , )Cl 1 2 of this
random vector given by Eq. (19). Differences between the distributions
F x x( , )1 2 and F x x( , )Cl 1 2 are shown in the left panel of Fig. 10. Contour
lines of F and FCl are in the right panel of this figure. The contour lines
of the distribution F x F x( ) ( )1 1 2 2 are indistinguishable at the figure scale
from those of the empirical joint distribution F x x( , )1 2 , where F x( )k k ,
k=1,2, are the empirical distributions in Fig. 6. This indicates, in
agrement with our previous comments, that X S T= ( )a1 and X D=2 are
nearly independent so that knowledge of X S T= ( )a1 does not reduce the
uncertainty in X D=2 . This means that Sa(T) is an unsatisfactory IM
for this structural system.

Fig. 7. Empirical and fitted Clayton copulas (left and right panels).

Fig. 8. Difference C u v C u v( , ) − ( , )CL between empirical and fitted Clayton copulas (left panel) and contours of C u v( , ) and C u v( , )CL (right panels).
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4.2. Extreme value models

Let X X S T X D= ( = ( ), = )a1 2 be the two-dimensional random vector
in the previous subsection with samples x{ }k( ) , k n= 1, …, . It was found
that the components of X are nearly independent. We further examine
the dependence between the components of X by focusing on simulta-
neously large values of Sa(T) and D. Estimates of the angular measure
s θ( ) defined in Section 3.3.2 are used to quantify this dependence.

The samples in the left panel in Fig. 11 are those in the left panel of
Fig. 5. The samples marked with circles denote the top n = 200 samples
of S T D( ( ), )a used to estimate the angular measure s θ( ) shown in the
right panel of the figure. Since most of the mass of the estimate of s θ( )
is concentrated in small vicinities of θ = 0 and θ π= /2, simultaneously
large values of Sa(T) and D are unlikely. Hence, large values of D are
associated with small, moderate, and large values of Sa(T), which
implies that Sa(T) is an unsatisfactory IM.

In summary, Section 4.1 shows that the overall dependence
between Sa(T) and D is weak. This section shows that the dependence
between simultaneously large values of Sa(T) and D is also weak. This
means that the conditional random variable D S T| ( )a and the random
variable D have similar distributions so that P D I S T P D I( ∈ | ( )) ≃ ( ∈ )a ,
i.e., the fragility of the Bouc–Wen system under consideration is nearly
independent of Sa(T). We conclude that Sa(T) provides limited
information on D for Bouc–Wen SDOF systems so that fragilities for
these systems defined as functions of Sa(T) are unsatisfactory. This
observation is of significant concern since the Bouc–Wen SDOF system
is a simplistic model for realistic structures, large values of the demand
parameter D and the intensity measure Sa(T) are nearly independent,

and large values of D are associated with excessive damage or even
structural collapse.

4.3. Vector-valued intensity measures

To improve the explanatory power of scalar intensity measures, it is
has been proposed to characterize seismic ground acceleration by
vector-valued IMs, e.g., values of Sa(T) at two or more selected periods
[2]. While vector-valued IMs constitute an improvement over their
scalar-valued versions, they do not address the fundamental weakness
of this class of IMs, i.e., the fact that responses of complex, nonlinear
structures and responses of selected SDOF linear oscillators to seismic
ground accelerations can differ significantly and, generally, are weakly
dependent. This suggests that the uncertainty in the responses of
realistic structures cannot be reduced to an acceptable level by
conditioning on multiple ordinates of Sa(T).

The following examples examines the dependence between distinct
ordinates of Sa(T) and between demand parameters for two-degree of
freedom linear systems and ordinates of Sa(T) at the system modal
periods and the dependence between simultaneously large values of
ordinates of Sa(T) and D.

4.3.1. Ordinates of Sa(T)
Consider two SDOFs with parameters ζ T( , )1 and ζ T( , )2 subjected to

a band limited Gaussian white noise process with mean zero, one-sided
spectral density g ν ν ν ν( ) = 1(0 ≤ ≤ )/ , and cutoff frequency
ν ν ν⪢max{ , }1 2 , where ν π T= 2 /k k, k=1,2. In the stationary regime the
displacements Xk(t), k=1,2, of the oscillators are stationary Gaussian

Fig. 9. Empirical F x x( , )1 2 and fitted Clayton F x x( , )Cl 1 2 distributions (left and right panels).

Fig. 10. Difference F x x F x x( , ) − ( , )1 2 Cl 1 2 between empirical and fitted Clayton distributions (left panel) and contours of F and FCl.
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processes with mean zero and spectral densities
g ν ν ν h ν ν( ) = 1(0 ≤ ≤ )| ( )| /k k

2 , where h ν( )k denotes the frequency re-
sponse function for the ζ T( , )k -oscillator [19] (Section 5.2.2).

The correlation coefficient between the random variables X t( )1 and
X t( )2 at an arbitrary time t has the expression

ρ λ λ ζ ζ λ λ λ= 8 (1 + ) /[4 (1 + ) − (1 − ) ],X t X t( ), ( )
3/2 2 2 2 2 2

1 2 (20)

where λ ν ν= / < 11 2 [7]. Fig. 12 shows the correlation coefficients
ρX t X t( ), ( )1 2

for ζ in the range [0.001, 0.5] and λ ν ν= / = 0.991 2 , 0.9, 0.8,
and 0.5. Unless the frequencies ν{ }k are closely-spaced and/or damping
ratios are large, the random variables X t( )1 and X t( )2 are weakly
correlated and so are maxima of the processes X t| ( )|1 and X t| ( )|2 , i.e.,
scaled versions of the ordinates of Sa(T) for T T= k, k=1,2. This suggests
that vector-valued IMs S T{ ( )}a k , k = 1, 2, …, may be useful and may not
justified for correlations ρ ≃ 0X t X t( ), ( )1 2

and ρ ≃ 1X t X t( ), ( )1 2
since the random

variables S T{ ( )}a k carry different and similar information, respectively.
It is shown later in this section that vector-valued IMs only provide an
incremental improvement over scalar-valued IMs since both types of
IMs are based on the assumption that responses of complex nonlinear
structural systems can be predicted from those of linear SDOFs with
satisfactory accuracy.

The weak correlation between the processes X t{ ( )}k relates to the
fact that most of their energy is concentrated in non-overlapping
frequency bands centered on ν{ }k with widths depending on ζ. Consider
the special case of two weakly stationary processes Xk(t), k=1,2, whose

spectral densities g ν( )k share no frequencies, i.e., I I∩ = ∅k l , k l≠ , with
the notation I ν g ν= { ≥ 0: ( ) > 0}k k . Their spectral representations have

the forms ∫X t e dZ ν( ) = ( )k I
iνt

k
k

, where Z ν( )k are uncorrelated processes

with orthogonal increments such that E dZ ν dZ η g ν δ ν η dν[ ( ) ( )] = ( ) ( − )k k k
and E dZ ν dZ η[ ( ) ( )] = 01 2 . We have

⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥∫ ∫

∫

E X t X s E e dZ ν e dZ η

e E dZ ν dZ η

[ ( ) ( )] = ( ) ( )
*

= [ ( ) ( )],

I

iνt

I

iηt

I I

i νt ηs

1 2 1 2

×

( − )
1 2

1 2

1 2

which is zero since E dZ ν dZ η[ ( ) ( )] = 01 2 .

4.3.2. MDOF linear system
Consider a linear structural system with d > 1 degrees of freedom,

modal frequencies ν{ }k , modal damping ratios ζ{ }k , modal shapes ϕk,
and participation factors Γ{ }k , k d= 1, …, . The system is subjected to a
ground acceleration process A(t) so that its displacement vector X(t)
has the form X t Γ ϕ Y t( ) = ∑ ( ) ∈k

d
k k k

d
=1 , where the stochastic pro-

cesses Yk(t) satisfy the equations

Y t ζ ν Y t ν Y t A t k d¨ ( ) + 2 ˙ ( ) + ( ) = − ( ), = 1, …, .k k k k k k
2 (21)

Let

∑ ∑Y t cX t Γ cΦ Y t α Y t( ) = ( ) = ( ) = ( )
k

d

k k k
k

d

k k
=1 =1 (22)

be a scalar response of interest, where c is an d(1, )-matrix and
α Γ c ϕ= ∈k k k . For example, Y(t) with c(1) = − 1, c(2) = 1, and

c i( ) = 0, i ≥ 2, is the inter-story displacement between the second
and the first floors.

Let R Y t= max | ( )|k t τ k0≤ ≤ , k d= 1, …, , and R Y t= max | ( )|t τ0≤ ≤ denote
the maxima of modal and system responses, where τ > 0 denotes the
duration of the seismic input. We note that (1) the response R is a
possible structural demand parameter D, (2) the stochastic processes
Y t{ ( )}k and Y(t) are dependent as functionals of the seismic acceleration
process A(t), so that the response maxima R{ }k and R are dependent
random variables, (3) the system response R cannot be obtained from
R{ }k since the maxima of Y t{| ( )|}k occur at different times; it can
bounded by

∑ ∑R α Y t α R= max ( ) ≤ | | ,
t τ k

d

k k
k

d

k k
0≤ ≤ =1 =1 (23)

and (4) S T ν R{ ( ) = }a k k k
2 are IMs corresponding to the periods

T π ν{ = 2 / }k k .
Suppose A(t) is a stationary Gaussian band limited white noise

(BLWN) process with mean 0, variance 1, and one-sided spectral

Fig. 11. Samples of X S T X D( ≔ ( ), = )a1 2 and estimates of the angular measure s θ( ) (left and right panels).

Fig. 12. Correlation coefficients between X t( )1 and X t( )2 for several modal frequency

ratios λ ν ν= /1 2 and damping ratios ζ.
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density g ν ν ν ν( ) = (1/ )1(0 ≤ ≤ ), ν ν> max { }k k . The stationary modal
responses Y t{ ( )}k are Gaussian processes with mean 0 and spectral
densities g ν h ν ν ν ν{ ( ) = (| ( )| / )1(0 ≤ ≤ )}k k

2 , where h ν( )k denotes the
frequency response function of a linear oscillator with damping ratio
ζk and natural frequency νk [19] (Section 5.2.2). Our objective is to
assess the relationships between R and single and multiple ordinates of
Sa(T), i.e., single and multiple modal response maxima R{ }k .

The left and right panels in Fig. 13 show 10,000 independent
samples of R R( , )1 2 , R R( , )1 and R R( , )2 and estimates of the angular
measures of these pairs of random variables. The plots are for d=2,
ν π=1 , ν π= 22 , ζ ζ= = 0.051 2 , ν = 20, α α= = 0.31 , and α α= 1 −2 . The
estimates of the angular measures use the top n = 1000 samples of R.
The samples of R, R1, and R2 marked with circles indicate the subsets
of data used to estimate the angular measures shown in the right panels

of the figure. The visual inspection of the scatter plots in the left panels
of the figure suggests that R R( , )1 2 , R R( , )1 and R R( , )2 are weakly
correlated and that the correlation between R R( , )1 and R R( , )2 is
stronger that between R R( , )1 2 . The estimates of the correlation coeffi-
cients of R R( , )1 2 , R R( , )1 and R R( , )2 based on the available samples are
0.0537, 0.6356, and 0.4520. This show that S T( )a 1 and S T( )a 2 are weakly
correlated, in agreement results in Fig. 12. The dependence of R R( , )1
and R R( , )2 is stronger than that of R R( , )1 2 since Y(t) is a linear form of
Y t( )1 and Y t( )2 . If a mode k is dominant, then the dependence between R
and Rk is much stronger than that between R and Rl, l k≠ . If both
modes contribute to structural response, e.g., α = 0.3 as in Fig. 13, then
the correlations of R R( , )1 and R R( , )2 are similar and stronger than that
of R R( , )1 2 but remain relatively weak. This means that, although the
vector-valued IM R R( , )1 2 is superior to the single-valued IMs Rk, the

Fig. 13. Samples of R R( , )1 2 , R R( , )1 , and R R( , )2 (left panels) and angular measures s θ( )12 , s θ( )10 , and s θ( )20 of R R( , )1 2 , R R( , )1 , and R R( , )2 (right panels) for α = 0.3 and a BLWN A(t).
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conditional variable R R R( , )1 2 still has a rather large variance so that
fragilities plotted against R R( , )1 2 may not be satisfactory.

Following are three comments on the relationship between large
values of ordinates of Sa(T) and R. First, the setting in this example
cannot be more favorable for the vector-valued intensity measure
S T S T( ( ), ( ))a a1 2 . The structural system is linear with two degrees of
freedom, the periods T π ν= 2 /k k, k=1,2, are the modal periods, and
both modes contribute to the overall structural response. Second, the
scatter plots in the left middle and bottom panels of Fig. 13 illustrate
the variability of R with R1 and R2, which suggests that even in this
favorable situation the IM R R( , )1 2 is not be satisfactory. Third,
simultaneous large values of R1, R2, and R are unlikely since the mass
of the estimates of the angular measures s θ( )12 , s θ( )10 , and s θ( )20 in the
right panels of Fig. 13 is concentrated in small vicinities of θ = 0 and

θ π= /2. The dependence between simultaneously large values of R and
R1 is stronger that between R and R2 since mode 1 contributes more
than mode 2 to the response of interest. The near independence
between simultaneously large values of R1 and R2 suggests that the
angular measure of the random vector R R R( , , )1 2 is concentrated in the
planes R = 01 and R = 02 with properties similar to the angular
measures shown in the middle and bottom right panels of Fig. 13.
While the R R( , )1 2 -IM, or equivalently the S T S T( ( ), ( ))a a1 2 -IM, is superior
to the scalar-valued measures Rk, or equivalently S T( )a k , it is still an
unsatisfactory IM because of the weak dependence between R and
R R( , )1 2 .

To further explore the relationship between the random variables R,
R1, and R2, we estimate the correlation between large values of these
variables and calculate properties of the conditional variables R R R|( , )1 2

Fig. 14. Samples of R R( , )1 2 , R R( , )1 , and R R( , )2 (left panels) and angular measures s θ( )12 , s θ( )10 , and s θ( )20 of R R( , )1 2 , R R( , )1 , and R R( , )2 (right panels) for α = 0.4 and a SBM A(t).

M. Grigoriu Probabilistic Engineering Mechanics 46 (2016) 80–93

92



and R R| k under the assumption that R R R( , , )1 2 is a Gaussian vector.
Let r r( ≥ ≥ ⋯)(1) (2) denote the samples r{ }i of R for α = 0.3 set in

decreasing order from the largest to the smallest and let r{ }k
i( ) ,

i = 1, 2, …, be the samples of Rk, k=1,2, corresponding to the samples
r{ }i( ) , i.e., the pairs r r r r{( , ), ( , ), …}1

(1)
2
(1)

1
(2)

2
(2) correspond to r r{ , , …}(1) (2) .

Denote by ρm,10, ρm,20, and ρm,12 estimates of the correlation coefficients
of R R( , )1 , R R( , )2 , and R R( , )1 2 based on the top m samples of R and the
corresponding samples of R R( , )1 2 . These estimates are ρ = 0.6356m,10 ,
0.4065, 0.3892, and 0.3414, ρ = 0.4520m,20 , 0.1240, 0.1173, and
0.1628, and ρ = 0.0537m,12 , −0.4704, −0.5281, and −0.6054 for
m=10,000 (all samples), 1000, 500, and 100, respectively. They show
that large system responses are weakly correlated with large modal
responses, see correlation coefficients ρm k, 0, k=1,2, and that modal
responses corresponding to large system responses have either small
and large values or moderate values since ρm,12 is negative for m ≤ 1000.
The latter observation suggests that the relationship between R and
R R( , )1 2 has large uncertainty since large samples of R are likely to be
associated with large/small and small/large samples of R1 and R2.
Fragilities defined as functions of R R( , )1 2 will have large uncertainties.

Suppose now that R R R( , , )1 2 is a Gaussian vector with mean
μ μ μ( , , )0 1 2 and covariances γ E R μ= [( − ) ]00 0

2 , γ E R μ= [( − ) ]kk k 0
2 ,

γ E R μ R μ= [( − )( − )]k k k0 0 , and γ E R μ R μ= [( − )( − )] = 012 1 1 2 2 . This selec-
tion is consistent with the weak correlation between modal responses
R1 and R2. The conditional random variables R R R|( , )1 2 and R R| k are
Gaussian with the properties

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

∑ ∑R R R N μ
γ
γ

R μ γ
γ
γ

R R N μ
γ
γ

R μ γ
γ
γ

k

∣( , ) ∼ + ( − ), −

∣ ∼ + ( − ), − , = 1, 2.
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k k

k
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1 2 0
=1

2
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00
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2
0
2

0
0

00
0
2

(24)

Since R R R R RVar[ , ] ≤ Var[ ]k1 2 , k=1,2, the vector-valued intensity
measure R R( , )1 2 is superior to the scalar measures Rk, k=1,2. The
difference between R R RVar[ , ]1 2 and R RVar[ ]k is the largest if
γ γ γ γ/ ≃ /kk kk01

2
02
2 and is insignificant if one of modal responses is

dominant. We note that Eq. ((24) only provides qualitative information
since the vector R R R( , , )1 2 is not Gaussian.

The plots in Fig. 14 are similar to those in Fig. 13 except that they
are for a stationary Gaussian process A(t) with mean zero and spectral
density in the left panel of Fig. 5 given by the specific barrier model
(SBM) and a factor α = 0.4 defining modal contributions rather than
α = 0.3. As in Fig. 13, the 100 samples marked with circles have been
used to estimate the angular measures of R R( , )1 2 , R R( , )1 , and R R( , )2 .
These measures are shown in the right panels of Fig. 14. We note that
simultaneously large values of R1 and R2 are unlikely and the
dependence between large values of R and R1 is stronger than that
between large values of R and R2. As for the BLWN ground motion
A(t), large response samples are associated with samples of R1 and R2

or, equivalently, samples of S T( )a 1 and S T( )a 2 , which are negatively
correlated, e.g., ρ = − 0.6184m,12 and −0.4221 for the top 188 and
1736 samples of R.

5. Conclusions

Fragilities are frequently defined as functions of single/multiple
ordinates of the pseudo-acceleration response spectrum Sa(T) and
used extensively as intensity measures (IMs) in performance-based
earthquake engineering. A critical assumption of this approach is that
Sa(T) captures sufficient information on the seismic ground accelera-
tion process such that demand parameters D of nonlinear, complex,
multi-degree of freedom structures correlate satisfactory with single/
multiple ordinates of Sa(T). If this assumption is invalid, resulting

fragilities will provide limited if any information on structural perfor-
mance.

This study has examined the validity of the assumption that the
dependence between Sa(T) and D is adequate for fragility analysis. It
was shown that (1) demand parameters D for simple nonlinear
structures, e.g., a Bouc-Wen structure with a single degree of freedom,
and ordinates of Sa(T) are weakly dependent and (2) demand para-
meters D for linear multi-degree of freedom structures with propor-
tional damping and two or more contributing modes and multiple
ordinates of Sa(T) are weakly dependent. It was concluded that
fragilities defined as functions of single/multiple ordinates of Sa(T)
can have large uncertainties which limits their usefulness. Correlation
coefficients, copula models, and concepts of multivariate extreme value
theory have been used to quantify the dependence between Sa(T) and
D.
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