
Graph Analytics: Complexity, Scalability, and Architectures

Peter M. Kogge

CSE Dept.
Univ. of Notre Dame
Notre Dame, IN USA

kogge@cse.nd.edu

Abstract—Big Data as expressed as “Big Graphs” are grow-
ing in importance. Looking forward, there is also increasing
interest in streaming versions of the associated analytics. This
paper develops an initial template for the relationship between
“traditional” batch graph problems, and streaming forms.
Variations of streaming problems are discussed, along with
their relationship to existing benchmarks. Also included is a
discussion of classes of parallel architectures (including newly
emerging ones) and how such kernels are liable to scale on
them. Preliminary projections for some of these systems is
presented.

Keywords-graph analytics; streaming analytics; scalability;
emerging architectures

I. INTRODUCTION

A graph consists of a set of objects (vertices) and links

(edges) between pairs of those objects that represent some

sort of relationships. Computing over such graphs is of

increasing importance to a wide spectrum of application ar-

eas ranging from “conventional” communication and power

networks, transport, and scheduling, to rapidly growing ap-

plications such as recommendation systems, social networks,

medical informatics, genomics, and cyber-security.

Outputs of such analysis may range from computing

properties of individual vertices (such as vertex out-degree:

the number of incoming or outgoing edges) to properties

of the graph as a whole (such as the diameter: maximum

distance between any two vertices, or a covering: minimum

set of edges that connects all vertices). It also includes

properties of pairs of vertices (such as the shortest path

between them) and the properties of subgraphs (such as

components that are connected or form a spanning tree).

More recently, similarities between vertices or sub-graphs

have become important in applications such as community

detection and link prediction.

Today most graph analytics are “batch,” that is execution

of a function that is applied to an entire graph or a major

subset of the graph as it exists at a particular point in time.

Further, in many cases these are analogs of analytics applied

to traditional big data that treat data as multiple large sets

of related tabular data.

A particularly important emerging class of graph analytics

are ones that are streaming, that where an incoming stream

of individually small-scale updates, such as additions or

deletions to vertices or edges, or modification of their

properties, is performed. Analytics in such cases may be

more localized, but include conditions that may trigger larger

analytics where the results are needed “in real time.”

Benchmarks that attempt to represent the computations

for such analytics are just emerging, especially for the

streaming cases. Initial indications are that such problems

are very irregular with little locality. This means that the

characteristics needed by high end graph computing systems

are liable to be significantly different from that of high end

dense scientific flop-intensive systems. Handling minimal

locality and high sparsity in particular are characteristics that

need to become first-order requirements for truly efficient

future systems.

In outline, this paper1 proceeds as follows. Section II

discusses graphs and existing graph benchmarks. Section III

overviews an initial description of a processing flow that

encompasses both batch and streaming graph analytics.

Section IV gives some data on execution on current architec-

tures. Section V does the same for emerging architectures.

Section VI concludes.

We note that the discussion of kernels and benchmarks

here does not include either general graph database systems

such as Neo4j[29] or RDF/SPARQL[7], [13], or the grow-

ing number of graph programming systems (PREGEL[25],

GraQL[14], or KEL[24], etc.).

II. GRAPH KERNELS AND BENCHMARKS

For this paper we define a kernel as a function that

is typical of the kinds of functions that are found in

real applications, but simplified in some way. Likewise a

benchmark is a collection of one or more kernels applied in

a relatively structured way to data sets with well-controlled

characteristics, with the goal of using the controlled envi-

ronment to gain insight into performance characteristics of

the underlying system.

In a typical kernel or benchmark today, graph objects

are largely defined by generic vertices and edges of single

classes, with at best a few vertex properties (values attached

to the vertex) such as in and out-degree, and a few overall

1This paper is based on a previous invited presentation [22].



��
��

��
��

��
�	

	


�
��


�
��

��
	�
	

��
��

��
���
�

��
�	

��
���

�

��
��

��
��


�	
��

��
��

�	
�

�
��

��

��
��

��
��
��

��
��

��
	�

��
��

��
��

��
��

��
 �

�

��
��

�

��

��
��
��

�

��
��

�

��

��
���

��



��
�!
��

�

"

�

��

��
�

��

��
�	

�	

#�
��

��

$


�
���

��
�

��
��
��

�

%�
�&

��
��

�

'

��
�!�
��

���
�

��
�
��

��

%
��

��
(


�

��
��

��

�
��

��
�
�

��
��

�
%
��
��

�
��

��
�
�

)*
+
,

-�
��

	

�
��

��
�
�

).
%.

+
 
�	
�

�
��

��
�
�

).
%.

/ +

 �
	�

)/

0*
+

�������
1
��(��
#�� 2 � 2
�������
1
3��������
#�� 2 � 2
�������
1
&4�1��-��
#�� 2 � 2
��5
���4����		
���������� 2 � � � � 2
���5
�������
���	�
������ 2 � � � � � � 2 2

������
!��
6 ����	�6 2 � 2
��75
7��/��
���������
���������	 2 � � � 2 2
���5

��������
���������
���������	 2 � � 2

���5
���	������
���!!������	 2 � � 2
�85
���������
8�������� 2 2 � 2 2
��5
�����
����������� 2 � � 2
�
5
�����

����������� 2 �9� � 2

�&�5
������
&�������
�������� 2 � 2
��	���98����� 2 � 2

:������ 2 �9� 2
'��5
'�(������
�����������
��� � �


;5

���;��/ 2 � 2
���
5
������
������
������	�

��� 2 � �9� � 2 2

�
�
5
���
����	
������	�

��� 2 � 2
��5
�������
��������
�	�������	� 2 �9�

& 5
&�������
 �	���� 2 �9� 2
���
$
&�������
����������� 2 �9� 2

��������/���
,!!���	 ������	

#�����

#�����
���		

Figure 1. The Spectrum of Existing kernels.

graph metrics such as diameter considered. In real appli-

cations, there are often many different classes of vertices

and/or edges, vertices may have 1000s of properties, and

edges may have time-stamps in addition to properties.

Likewise, academic operations as found in graph kernels

are relatively straightforward, with common ones as follows:

1) Compute vertex properties

2) Search vertex properties

3) Follow an edge to a neighbor

4) Determine a neighborhood

5) Find a path

6) Look at all paths

7) Compute global properties of graph

8) Identify subgraphs in a larger graph

Algorithms for benchmarking graph analytics are more

complex:

1) Search for a/all vertices with a particular property or

neighborhood

2) Explore the region around some number of vertices

3) Compute a new property for each vertex

4) Compute/output a list of vertices and/or edges

5) Compute/output a list of all subgraphs with certain

properties

Streaming graph algorithms come in two forms: perform

incremental targeted graph updates or answer a stream

of independent local queries. The former typically refer

to an incoming stream of edges and/or vertices that are

incrementally added to or deleted from a large graph. In

the latter, many streaming applications have for each stream

input a specification of some vertex to search for, and an

operation to perform to some property(ies) of that vertex,

once found.

Either form may actually have several stages. First is the

basic operation; next is a test of some sort that, if passed,

may trigger larger computations.

Fig. 1 attempts to provide some comparison between

existing kernels (the rows) and current benchmark suites

that contain them. The rows in the table specify a variety of



kernel operations.

The table has three sets of columns. First is a set of

columns that indicate in what general category of graph

operations the kernel is part of. Connectedness kernels

(CCW, CCS, BFS) look for subsets of the graph whose

edges satisfy some property. Path kernels (SSSP, APSP) are

a variant of this, and look at aggregations of the properties

of the edges that connect certain vertices. Centrality metrics

(BC, CD, PR) look for the “most important” vertices in a

graph, based on some combination of the vertex degrees,

length of paths to other vertices, how often vertices are

on paths between other vertices, or a derived “influence”

of each vertex. Clustering kernels (CCO, Jaccard) look for

the degree to which groups of vertices “cluster” together.

Jaccard coefficients [10], [12], [21] are a growing subset

of this where for pairs of vertices what is computed is the

fraction of all neighboring vertices that the two vertices have

in common. Graph contraction and partitioning kernels (CD,

GC, GP) attempt to find higher level views of graphs where

vertices are in fact subgraphs of the original graph. Subgraph

isomorphism looks for subgraphs of certain shapes, of which

triangle counting (GTC, TL) are the most well-known.

It should be clear that in terms of the above kernel clas-

sification, many of these kernels “overlap” in functionality.

Next is a series of columns that identify benchmark suites,

taken from [12], [1], [2], [6], [5], [3], [4], [19], [8]. An “S”

in an intersection indicates that the specified kernel is used

in the associated benchmark in a “Streaming” mode; a “B”

indicates a “Batch” mode.

Streaming forms of centrality metrics address questions

such as “if edge e is added, how does it change its associated

vertex centrality metrics, and does that cause a change in the

“top n” vertices in terms of the metric.” Streaming forms of

triangle counting look to identify the change in either/both

the associated vertices triangle count or the overall number

of triangles in the graph.

Streaming Jaccard coefficient kernels may take both forms

of streaming. On addition of an edge, a Jaccard kernel

may ask what the graph modification does to the maximum

Jaccard coefficient the two vertices may have with any other,

or (less frequently) update all the coefficients with all other

vertices (infrequent because of the near quadratic storage

requirements to remember all coefficients). The second form

of streaming for Jaccard may be a sequence of vertices,

where for each provided vertex the kernel should return what

other vertices have a non-zero Jaccard coefficient (perhaps

greater than some threshold).

The third set of columns specify the type of graph

modification and/or output that a kernel may form. An “X”

indicates that a particular kernel may have the specified

effect. The “Output O(*) Events” columns are particularly

relevant to streaming where the local streaming process

passes some threshold which causes reporting of an event.

The O(1) column specify that some fixed amount of data

is generated from each event. The O(|V |) column specifies

that an output may grow in size proportional to the number

of vertices in the graph. The O(|V |∗) may generate data

that grows far faster, but where typically only some “top k”

values are chosen.

There are other benchmarking efforts that define prob-

lems requiring the composition of many of these kernels.

VAST[9] is one such example that changes the problem each

year, with recent years including both batch and streaming

benchmark descriptions.

The key take-away from this table is that no one kernel is

universal, and that there is a significant difference between

streaming and batch kernels. This lays the rationale for the

next section.

III. CANONICAL GRAPH PROCESSING

While useful in an academic setting, the kernels and

benchmarks discussed in the prior section are missing some

major attributes if they are to be used to help understand the

characteristics of systems that run real, more complex, graph

applications. This section discusses a canonical processing

flow that is perhaps closer to real practice, and demonstrates

the potential interaction of multiple kernels with more real-

istic data structures. The goal for the discussion is that there

is room for significant work in defining benchmarks that are

more complex than any of the existing benchmark suites.

Fig. 2 diagrams a processing flow that includes both batch

(middle and right side) and streaming graph processing (left

side) in a more realistic combination.

Unlike many of the kernels discussed in the prior section,

real applications start with large graphs built from not one

but many classes of vertices and edges, often of multi-

terabyte size, with thousands of properties per vertex, and

time-stamps on edges. These graphs are persistent; their

existence is independent of any single analytic or set of

analytics. Today, these graphs are initially created via some

large batch processing dedup processes [15], [17] that

“clean up” multiple data sets by checking spelling, removing

duplicates (post-process deduping), identifying faulty or

missing values, and combining to create properties to be

associated with vertices and edges. In a streaming form

called in-line deduping, once established, updates will be

from streams of incoming data. In Fig. 2 bulk undeduped

data enters from the bottom, with the deduping process

handled by a batch analytic before being used to build the

initial graph.

Once a graph is established, real application analytics

typically are not run over the entire graph. Instead, an

analytic may start with identification of some selection
criteria (on right) that are used to identify some initial seed
entries. This may be as simple as specifying some particular

vertex, or more involved such as scanning for the “top k”

vertices with the highest values of some properties.



Figure 2. A Canonical Graph Processing Flow.

Once identified, these seeds may then be used to perform

some sort of subgraph extraction, whereby a subset of the

large graph is identified. A simple example of such a process

may be a breadth-first search from individual seed vertices

out to some depth, or perhaps out some distance from some

path between two or more seeds. Once identified, it may be

appropriate to physically copy such a subgraph out of the

memory holding the large persistent graph into a smaller,

but faster access rate, memory from which more complex

analytics can be run. This copy process may also include

some sort of projection to copy only a small subset of the

properties.

Potentially long-running batch analytics may then be run

on these subgraphs. Typical outputs may be metrics of the

overall graph and/or even smaller subgraphs or vertex/edge

sets (“neighborhoods”). Of growing importance, however,

is the use of the analytic to compute/update properties of

vertices or edges that are to be sent back to update the

original persistent graph. This is in fact how many real-world

applications end up with thousands of vertex properties, as

analysts often find that some new property of vertices is

useful, and it is easier to define a “one-time” analytic that

computes this property for all vertices at once, and then use

the property values in later repeated calls to application-

specific analytics.

Stream processing (left-hand side) takes a different path.

A real-time stream of data arrives incrementally. Processing

may take a variety of forms. First, the inputs may specify

specific vertices and some update to one or more of the

vertex’s properties. This is the case for the Firehose bench-

mark [1]. Alternatively, inputs may specify new edges (less

frequently new vertices). Processing either one may involve

checking if it is already in the graph and then either adding

the edge or updating some properties associated with an

existing edge. Less often are deletions. A good example of

this is the in-line deduping process discussed earlier.

In both cases, the initial operations against the graph are

relatively simple and rather local. However, it is not uncom-

mon for the stream processing to look for changes in local

or global graph parameters, and only if those parameters

exceed some threshold, to use the modified vertices/edges

as seeds into a subgraph extraction process similar to that

described for the batch process. The extracted subgraph may

then be the target of a specific batch analytic to more fully

analyze the effects of the change. As before, the execution of

this analytic may result in either alerts back to some external

system and/or updates to properties in the larger graph.

An example of a matching real-world application can be

found in [23]. A 2012 batch-only implementation of an

insurance application problem periodically combined and

cleaned 40+ TB of public data into a persistent database

of 4-7+ TB (bigger now). Once a week this data set is

“boiled” (over the weekend) to pre-compute answers to a

set of queries, in two forms and for each of all multi-

million people in the set. The first form is a simple indexed

database where simple SQL-like selects can quickly retrieve



data relevant to a particular insurance applicant, such as

credit score. The more valuable answers are, however, the

result of searches for “relationships” between people, such

as “who has shared an address with what other individuals 2

or more times, especially if they have shared a common last

name.” These latter computations represent the bulk of the

weekly computations, and are close to the Jaccard coefficient

kernel mentioned earlier, and have been called Non-Obvious
Relationship Analysis (NORA).

Such a resulting data set is then used, for example, to

provide real-time data back to an insurance company when

a potential client has entered data for a quote. This data

includes both the specific client data and the results of

NORA relationships involving the client, and is used as input

to the company’s quoting process.

A streaming real-time version of such applications would

have both types of streaming as discussed above. One stream

would be updates to the persistent graph, and determine for

each updated vertex if the update is likely to change any

of the key relationships. Simply adding more validity to

a pre-identified relationship needs no more processing, but

when there is the potential for crossing some threshold, a

more complete computation of the particular metric may be

warranted. Such a process makes the data set less stale.

The second type of streaming would take a sequence of

applicants and compute in real-time whatever relationships

are relevant for the type of application they are applying

for. This has the significant advantage of removing much of

the need for the pre-computation that takes so much time.

It also increases the fidelity of the responses, as the results

include updates since the last pre-computation.

IV. USING TODAY’S ARCHITECTURES

There are published results for several of the kernels

discussed earlier, with perhaps the most exhaustive the

twice-yearly reports on several hundred implementations on

many different systems of the Breadth First Kernel used

in the GRAPH500 benchmark2. Other than for BFS [20],

however, very few of these results have been analyzed for

how different architectural and system characteristics affect

performance, especially for large systems with multi-kernel

applications.

The NORA application mentioned earlier is a partial

exception. In [23], a model of the multi-step algorithm

was built to estimate four different system parameters as

a function of problem size: required compute cycles, disk

bandwidth, network bandwidth, and memory access rate.

Several different system configurations were studied:

• The 2012 baseline consisted of 10 racks totalling 400

2012 dual-socket 6-core 2.4GHz Intel Xeon R© server

blades, each with the equivalent of local disks with

about 0.16GB/s bandwidth, 96 GB of DRAM, and a

2www.graph500.org

network port with an injection bandwidth of about 0.1

GB/s.

• An upgrade to the servers to reflect a more modern

design, with options of more cores (24) at a higher

clock rate (3GHz), 3X more memory bandwidth, SSDs

or RAMdisks, and Infiniband links with up to 24 GB/s

injection bandwidth.

• A system based on “lightweight” processors such as

ARMs rather than high end server processors, similar

to systems such as HPE’s Moonshot line [18].

• A system based on an architecture initially postulated

by Sandia National Labs [26] called “X-caliber” that

resembled the current generation of Intel Knight’s

Landing chips where a two-level memory systems has

close-in memory provided by 3D memory stacks with

very significant increases in memory bandwidth. Such

two-level memories may very naturally support the two

levels of graphs pictured in Fig. 1.

• A system like X-Caliber where all the processing is

moved to the bottom of the memory stacks, and both

DRAM and non-volatile memory are included in each

stack, again supporting the two levels of graphs pictured

in Fig. 1. Both separate central processing chips and

network interface chips are deleted. Such resulting

systems would be “seas” of just memory stacks.

The last architecture is definitely not one of “today’s”

architectures, but is included for reference as to what might

be possible.
Fig. 3 provides an update to the 2013 model results using

variations of the above configurations. In each graph, each

bar represents usage of one of the four key resources during

one of the steps in the application: network bandwidth, disk

bandwidth, memory bandwidth, and instruction processing

rate. At each step the highest bar represents the bounding

execution time for that step. The total time is computed from

these peaks.
As can be seen, although disk and network bandwidth

represent the tall poles for the baseline system. However, no

one type of resource is uniformly the bounding peak for all

steps. In fact, updating from the 2012 baseline one resource

at a time provides relatively small benefit. For example

upgrading the microprocessor alone provided only a 45%

increase in performance, with the other options individually

providing less. As shown, however, upgrading all but the

microprocessor provides over a 3X growth in performance

(far more than the product of the individual factors). Then,

in addition to all of the above, upgrading the microprocessor

did provide an 8X growth in performance for the same 10

racks.
The Lightweight projection, with its entirely different

mix of resources, has a strikingly different profile, as its

lower processing capability causes computational rate to

dominate for 4 of the 9 steps. Even so, it provides near

equal performance in 1/5’th of the hardware (2 racks rather



������

������

������

������

������

�����	

� � 	 
 � � 
 � �

;�
	�

��
��

	
3
	�

�9
��

��

)	

��
+

����
<
���� ��� ������ �������

������

������

������

������

������

�����	

� � 	 
 � � 
 � �

;�
	�

��
��

	
3
	�

�9
��

��

)	

��
+

����
<
���� ��� ������ �������

��	�����5
*�=>	
*� ���/	

������

������

������

������

������

�����	

� � 	 
 � � 
 � �

;�
	�

��
��

	
3
	�

�9
��

��

)	

��
+

����
<
���� ��� ������ �������

3������
���
���

����		��
?��	@
*�
���/	

������

������

������

������

������

�����	

� � 	 
 � � 
 � �

;�
	�

��
��

	
3
	�

�9
��

��

)	

��
+

����
<
���� ��� ������ �������

3������
���
���A 
����		��
*=>	@
*�
���/	

������

������

������

������

������

�����	

� � 	 
 � � 
 � �
;�

	�
��

��
	
3

	�
�9

��
��


)	
��

+
����
<

���� ��� ������ �������

 ����4�����
**BC	@
=
���/	

������

������

������

������

������

�����	

� � 	 
 � � 
 � �

;�
	�

��
��

	
3
	�

�9
��

��

)	

��
+

����
<
���� ��� ������ �������

=1��-��
������
*�>B	@
?
���/	

?8 ����/ ����
�	@
*
���/

Figure 3. Performance Modeling of NORA Problem.

than 10).

The two-level memory system also has yet a different

profile, achieving equal performance in only 3 racks.

The 3D stack-only system doesn’t resemble any existing

architecture but provides possibly up to 200X performance

in 1/10th the hardware.

V. EMERGING ARCHITECTURES

There are at least two interesting emerging architectures

that are radically different from today, but both have unique

attributes suitable for performing the graph analytics such

as proposed in Fig. 2.

A. A Sparse Linear-Algebra-based Architecture

Fig. 4 depicts the microarchitecture of a single accelerator

node of a machine [27], [28] designed explicitly for per-

forming the kinds of linear algebra-based kernels compatible

with many basic graph algorithms[19], where graphs are

expressed as boolean adjacency matrices3. The architecture

particularly focuses on sparse to very sparse situations where

most of the matrix entries are 0. Multiple of these nodes are

combined in up to a 3D topology under the control of a

conventional host processor.

The dotted and dashed lines in Fig. 4 represent two

streams of matrix component references that start with ad-

dress generation of multiple sparse vectors, proceed through

a memory designed to support irregular accesses, then

through a sorter to align the individual components from

pairs of sparse vectors that are both non-zero, go through

an ALU to perform multiply-accumulates, and then go back

into memory (solid line - again in a sparse format). Con-

densed Sparse Row (CSR) and Compressed Sparse Column

(CSC) formats are “hardwired” into the architecture.

3In a typical adjacency matrix the (i,j)th element is 1 if there is an edge
from vertex j to vertex i.



� ���!
"� #��

� ���!
������

$����� %&� � ���!
'�����

��(���) �������
*(���+ ,�

Figure 4. A novel Sparse Graph Processor.

Measured data on a prototype 8-node FPGA-based system

for sparse matrix-matrix multiplies indicate that there is

perhaps more than an order of magnitude performance

advantage over a node for a Cray XT4, and 4 racks of such

nodes would exceed 10X a rack of a Cray XK7 (the system

used in the Titan supercomputer4). Performance per watt,

even for the FPGA implementation is even more striking.

Projections to ASIC-based designs imply a possibility of

another order of magnitude advantage in both metrics.

This architecture seems excellent for accelerating batch

analytics where the kernel operations can be expressed in

linear algebra as discussed in Section II. No data is available

on combinations of kernels, or how streaming might be

supported.

B. A Migrating Thread-based Architecture

Fig. 5 diagrams a second architecture[16] that takes

perhaps the opposite direction by focusing on fast edge-

following. This scalable system implements a single very

large shared memory domain out of an interconnection of

multiple nodes, each of which contains a large number of

nodelets. Each nodelet is built around a separate memory

channel, and has a collection of heavily multi-threaded

Gossamer Cores (GC) that drive it. A mobile thread
executes within some GC until it makes a memory reference

to a location not in the current nodelet. In such cases, the

GC hardware suspends the thread, packages up its internal

state, and sends it over the system’s internal network to

the correct nodelet within the correct node that owns the

targeted memory location. Here the state is unpackaged and

given to any of the target nodelet’s GCs that have room.

When the thread is restarted, it has no knowledge that it had

moved, other than the memory access it was attempting is

now local. The thread then executes locally until it attempts

yet another non-local memory access, at which point it is

again suspended and shipped to the correct target.

The net result is that all memory references are local,

regardless of how big the system is. This locality also means

that very simple hardware within the memory controller of

each nodelet can execute a rich suite of atomic memory

4https://www.olcf.ornl.gov/titan/

operations (AMO) that occur very quickly, permitting simple

and efficient synchronization operations.

The current hardware has a conventional microprocessor

embedded in each 8-nodelet node. This processor executes

a conventional Linux and initiates the original parent thread

into the memory system. The programming tool chain is a

variation of Cilk[11].

With this type of functionality, operations such as

“pointer-chasing with atomic updates to list elements” be-

come trivial to write, and more importantly, consume half

or less the bandwidth and latency of a conventional thread

trying to do the same thing via remote memory operations

or, even worse, message passing.

In addition, where a programmer knows that the number

of operations to be applied to some address is limited,

instructions may be invoked that launch tiny single-function

threads to perform single operations at a target location. This

is useful for performing such things as random updates into

a very large table.

In addition to mobility, a thread may also spawn a child

thread with as little as a single instruction. The child thread

is then free to travel as its program sees fit, independent of

the parent.

The current production system supports 8 nodes, each

with 8 nodelets in a deskside box. Each nodelet has 4 GCs,

each capable of holding 64 concurrent threads. Expansions

to rack-scale systems are in design. Expected future imple-

mentations will implement each node as first an ASIC and

then a 3D memory stack having dozens of nodelets in the

same package. This latter configuration is similar to the 3D

stack configuration mentioned in the prior section.

As with the sparse matrix machine, orders of magnitude

improvement over conventional systems appear reachable.

Measured results from real hardware should be available

shortly. However, an extension of the modeling exercise

discussed in the prior section on the NORA problem lead

to projections pictured in Fig. 6, where 3 generations of

this architecture5 are compared to the conventional upgrades

from the prior section. In 1/10th the hardware, projected

5Emu1 is the current design extended to rack-size; Emu2 uses an ASIC
in place of the FGPA; Emu3 is a 3D stack utilizing the Emu architecture
for the base logic chip



��#��

*(
��
�(
 )
-�
��
�
��
� �
��

��
�

��
(�
��
))�
�.����

.����

.����

.����

�
��

��
�

��#�)���D
�
��

��
�

��
(�
��
))�
�.����

.����

.����

.����

�
��

��
�

�
�/
� 
���

(-
�(

/�
(�

-0
-�
��
�
��
�-
*1
2�

��
���

��(���))��

.����

.����

.����

.����

�
��

���

��#�)���

D
�
��

���
��(���))��

.����

.����

.����

.����

�
��

���

�
�/� ���(-�(/�(�-0

-�
���

���-*12

Figure 5. Emu’s Migrating Thread Architecture.

���

�

��

���

����

� � � 	 
 � � 
 � � ��

��
��

��
�

�-

��

=
�*

=

��

	�
���

�

;��/	
3� 4�'��/5� &�/5����/5� ��!��.�(-���67�� ��7

����

����

����

�	
��
��

����	��


Figure 6. Size-Performance Comparison for the NORA problem.

performance for the Emu system are up to 60X that of the

best of the upgraded clusters.

Also very preliminary studies of streaming queries for

Jaccard-like problems indicate that individual response times

in the 10s’ of microseconds are possible, with throughputs

that are large multiples of what can be achieved with

conventional systems.

This architecture can support both batch and, in particular,

streaming applications with complex classes of vertices and

edges, and substantial sets of properties for each.

VI. CONCLUSIONS

This paper has overviewed a range of existing graph

kernels and benchmarks for batch mode applications, and

discussed their extension to streaming modes where data

arrives incrementally. A general process flow was introduced

to begin a discussion of a more realistic integration of

multiple analytics of both batch and streaming form. Several

possible forms of streaming were identified. A variety of

system architectures were compared, and several identified

that offer the potential of significant gain over today’s

systems, especially as 3D memory stacks that provide huge

bandwidths. Two emerging architectures in particular have

the potential for very large gains, with the interesting

observation that they employ almost opposite execution

models. One performs graph operations after translation into

sparse matrix operations; another is based around “pointer

chasing” where the computational state moves with a pointer

dereference.

An important next step would be to develop a multi-kernel



benchmark that mirrors Fig. 2, especially in the combined

batch and streaming mode. An early parameterized model,

similar to that used for the NORA problem, could identify

the most potentially valuable configurations. A potentially

interesting option might be to combine both the emerging

models into a single system.

In addition to this, a reference implementation, with

explicit instrumentation, of a combined benchmark would

allow calibration of the model. Kernels extracted from

this implementation can then be provided as extensions to

existing kernels.

ACKNOWLEDGMENT

This work was supported in part by the Univ. of Notre

Dame, and in part by NSF under grant CCF-1642280.

REFERENCES

[1] Firehose benchmarks. http://firehose.sandia.gov/.

[2] Graph 500. http://www.graph500.org/.

[3] Graph Algorithm Platform. http://gap.cs.berkeley.edu/.

[4] Graph analysis benchmark suite.
http://graphanalysis.org/benchmark/index.html.

[5] Graph challenge. http://graphchallenge.org/.

[6] GraphBLAS. http://www.graphblas.org/home/.

[7] Sparql query language for rdf. https://www.w3.org/TR/rdf-
sparql-query/.

[8] Stinger. https://trac.research.cc.gatech.edu/graphs/wiki/STINGER.

[9] VAST. http://vacommunity.org/HomePage.

[10] J. Bank and B. Cole. Calculating the Jaccard Similarity
Coefficient with Map Reduce for Entity Pairs in Wikipedia.
Wikipedia Similarity Team, Dec. 16 2008.

[11] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson,
K. H. Randall, and Y. Zhou. Cilk: an efficient multithreaded
runtime system. In Proceedings of the fifth ACM SIGPLAN
symposium on Principles and practice of parallel program-
ming, PPOPP ’95, pages 207–216, New York, NY, USA,
1995. ACM.

[12] P. Burkhardt. Asking Hard Graph Questions: Beyond Watson:
Predictive Analytics and Big Data. Beyond Watson Work-
shop, Feb. 2014.

[13] K. S. Candan, H. Liu, and R. Suvarna. Resource description
framework: Metadata and its applications. SIGKDD Explor.
Newsl., 3(1):6–19, July 2001.

[14] D. Chavarria-Miranda, V. G. Castellana, A. Morari, D. Haglin,
and J. Feo. Graql: A query language for high-performance
attributed graph databases. Workshop on Parallel and Dis-
tributed Computing for Large Scale Machine Learning and
Big Data Analytics (ParLearning’2016), May 27, 2016.

[15] P. Christen. A survey of indexing techniques for scalable
record linkage and deduplication. IEEE Transactions on
Knowledge and Data Engineering, 24(9):1537–1555, Sept
2012.

[16] T. Dysart, P. Kogge, M. Deneroff, E. Bovell, P. Briggs,
J. Brockman, K. Jacobsen, Y. Juan, S. Kuntz, R. Lethin,
J. McMahon, C. Pawar, M. Perrigo, S. Rucker, J. Ruttenberg,
M. Ruttenberg, and S. Stein. Highly scalable near memory
processing with migrating threads on the emu system archi-
tecture. In Proceedings of the Sixth Workshop on Irregular
Applications: Architectures and Algorithms, IA3 ’16, pages
2–9, Piscataway, NJ, USA, 2016. IEEE Press.

[17] A. K. Elmagarmid, P. G. Ipeirotis, and V. S. Verykios.
Duplicate record detection: A survey. IEEE Transactions on
Knowledge and Data Engineering, 19(1):1–16, Jan 2007.

[18] Hewlett Packard Enterprises. HPE Moonshot Sys-
tem. https://www.hpe.com/h20195/v2/getpdf.aspx/4AA4-
6076ENW.pdf.

[19] J. Kepner and J. Gilbert. Graph Algorithms in the Language
of Linear Algebra. Society for Industrial and Applied Math-
ematics, 2011.

[20] P. Kogge. Performance analysis of a large memory application
on multiple architectures. In 7th Int. Conference on PGAS
Programming Models, 2013.

[21] P. Kogge. Jaccard coefficients as a potential graph benchmark.
2016 IEEE International Parallel and Distributed Processing
Symposium Workshops (IPDPSW), 00:921–928, 2016.

[22] P. Kogge. Streaming graph analytics: Complexity, scalability,
and architectures. Keynote presentation: Chesapeake Large
Scale Analytics Conf., Oct. 2016.

[23] P. Kogge and D. Bayliss. Comparative performance analysis
of a big data nora problem on a variety of architectures. In
Collaboration Technologies and Systems (CTS), 2013 Inter-
national Conference on, pages 22–34, 2013.

[24] LexisNexis Risk Solutions. Kel language reference version
5.4.2, 2015.

[25] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn,
N. Leiser, and G. Czajkowski. Pregel: A system for large-
scale graph processing. In Proceedings of the 2010 ACM
SIGMOD International Conference on Management of Data,
SIGMOD ’10, pages 135–146, New York, NY, USA, 2010.
ACM.

[26] Sandia National Labs. Darpa selects sandia national labora-
tories to design new supercomputer prototype. https://share-
ng.sandia.gov/news/resources/news releases/supercomputer-
prototype/#.WMg9mmfaupo, August 2010.

[27] W. S. Song, V. Gleyzer, A. Lomakin, and J. Kepner. Novel
graph processor architecture, prototype systems and results.
HPEC COnference, 2016.

[28] W. S. Song, J. Kepner, V. Gleyzer, H. T. Nguyen, and J. I.
Kramer. Novel graph processor architecture. LINCOLN
LABORATORY JOURNAL, 20(1):92–104, 2013.

[29] J. Webber. A programmatic introduction to neo4j. In Proceed-
ings of the 3rd Annual Conference on Systems, Programming,
and Applications: Software for Humanity, SPLASH ’12,
pages 217–218, New York, NY, USA, 2012. ACM.


