Graph Analytics: Complexity, Scalability, and Architectures

Peter M. Kogge
CSE Dept.
Univ. of Notre Dame
Notre Dame, IN USA
kogge @cse.nd.edu

Abstract—Big Data as expressed as “Big Graphs” are grow-
ing in importance. Looking forward, there is also increasing
interest in streaming versions of the associated analytics. This
paper develops an initial template for the relationship between
“traditional” batch graph problems, and streaming forms.
Variations of streaming problems are discussed, along with
their relationship to existing benchmarks. Also included is a
discussion of classes of parallel architectures (including newly
emerging ones) and how such kernels are liable to scale on
them. Preliminary projections for some of these systems is
presented.

Keywords-graph analytics; streaming analytics; scalability;
emerging architectures

I. INTRODUCTION

A graph consists of a set of objects (vertices) and links
(edges) between pairs of those objects that represent some
sort of relationships. Computing over such graphs is of
increasing importance to a wide spectrum of application ar-
eas ranging from “conventional” communication and power
networks, transport, and scheduling, to rapidly growing ap-
plications such as recommendation systems, social networks,
medical informatics, genomics, and cyber-security.

Outputs of such analysis may range from computing
properties of individual vertices (such as vertex out-degree:
the number of incoming or outgoing edges) to properties
of the graph as a whole (such as the diameter: maximum
distance between any two vertices, or a covering: minimum
set of edges that connects all vertices). It also includes
properties of pairs of vertices (such as the shortest path
between them) and the properties of subgraphs (such as
components that are connected or form a spanning tree).
More recently, similarities between vertices or sub-graphs
have become important in applications such as community
detection and link prediction.

Today most graph analytics are “batch,” that is execution
of a function that is applied to an entire graph or a major
subset of the graph as it exists at a particular point in time.
Further, in many cases these are analogs of analytics applied
to traditional big data that treat data as multiple large sets
of related tabular data.

A particularly important emerging class of graph analytics
are ones that are streaming, that where an incoming stream
of individually small-scale updates, such as additions or

deletions to vertices or edges, or modification of their
properties, is performed. Analytics in such cases may be
more localized, but include conditions that may trigger larger
analytics where the results are needed “in real time.”

Benchmarks that attempt to represent the computations
for such analytics are just emerging, especially for the
streaming cases. Initial indications are that such problems
are very irregular with little locality. This means that the
characteristics needed by high end graph computing systems
are liable to be significantly different from that of high end
dense scientific flop-intensive systems. Handling minimal
locality and high sparsity in particular are characteristics that
need to become first-order requirements for truly efficient
future systems.

In outline, this paper! proceeds as follows. Section II
discusses graphs and existing graph benchmarks. Section III
overviews an initial description of a processing flow that
encompasses both batch and streaming graph analytics.
Section IV gives some data on execution on current architec-
tures. Section V does the same for emerging architectures.
Section VI concludes.

We note that the discussion of kernels and benchmarks
here does not include either general graph database systems
such as Neo4j[29] or RDF/SPARQL[7], [13], or the grow-
ing number of graph programming systems (PREGEL[25],
GraQL[14], or KEL[24], etc.).

II. GRAPH KERNELS AND BENCHMARKS

For this paper we define a kernel as a function that
is typical of the kinds of functions that are found in
real applications, but simplified in some way. Likewise a
benchmark is a collection of one or more kernels applied in
a relatively structured way to data sets with well-controlled
characteristics, with the goal of using the controlled envi-
ronment to gain insight into performance characteristics of
the underlying system.

In a typical kernel or benchmark today, graph objects
are largely defined by generic vertices and edges of single
classes, with at best a few vertex properties (values attached
to the vertex) such as in and out-degree, and a few overall

IThis paper is based on a previous invited presentation [22].

Kernel Class Benchmarking Efforts Outputs
€ = —_
f= = -
5 |2 AHEEIRE
° olel=]¢t =] x Sls|s]| =2
P g 2lelE| 3 A ERIHE =
|2 S sle|l<|= Els|S|=15]>
S|1¢ 2] wlz| o (C) s|S|ol=l=]=
Tl o] » c o | |5 o 2|55l s
Slelelc]|sS olaol]o S = A s| 2 o|jo|]o| o
o cCl=]c % © aln|a]lQ]< o [- ‘s =] e -
ol ClolBl=(cslel<s]l=s]lc]lclo]2] o clal3]13]|3]| 3
S I R R E E E EI R B E R R E E E
SleslSIalB2lsSslglelelelclelSlsl<|clsl5]5]5]5
Kernel olalololalolb]lz]lo]lo]lololzlx]|lblS|o]lo]lolo]lo]o
Anomaly - Fixed Key X S X
Anomaly - Unbounded Key X S X
Anomaly - Two-level Key X S X
BC: Betweeness Centrality X B B B|S X
BFS: Breadth First Search X B|B B|{B|B|B X X
Search for "Largest" X B X
CCW: Weakly Connected Components X B|BJ|S X X
CCS: Strongly Connected Components X B|B X
CCO: Clustering Coefficients X B|S X
CD: Community Detection XX S X X
GC: Graph Contraction X B| B X
GP: Graph Partitioning X B/S B X
GTC: Global Triangle Counting X B X
Insert/Delete X S X
Jaccard X B/S X
MIS: Maximally Independent Set B B
PR: PageRank X B X
SSSP: Single Source Shortest Path X B B/S| B X X
APSP: All pairs Shortest Path X B X
Sl: General Subgraph Isomorphism X B/S
TL: Triangle Listing X B/S X
Geo & Temporal Correlation X B/S X

Figure 1. The Spectrum of Existing kernels.

graph metrics such as diameter considered. In real appli-
cations, there are often many different classes of vertices
and/or edges, vertices may have 1000s of properties, and
edges may have time-stamps in addition to properties.
Likewise, academic operations as found in graph kernels
are relatively straightforward, with common ones as follows:

1) Compute vertex properties

2) Search vertex properties

3) Follow an edge to a neighbor

4) Determine a neighborhood

5) Find a path

6) Look at all paths

7) Compute global properties of graph

8) Identify subgraphs in a larger graph

Algorithms for benchmarking graph analytics are more
complex:

1) Search for a/all vertices with a particular property or

neighborhood
2) Explore the region around some number of vertices

3) Compute a new property for each vertex

4) Compute/output a list of vertices and/or edges

5) Compute/output a list of all subgraphs with certain
properties

Streaming graph algorithms come in two forms: perform
incremental targeted graph updates or answer a stream
of independent local queries. The former typically refer
to an incoming stream of edges and/or vertices that are
incrementally added to or deleted from a large graph. In
the latter, many streaming applications have for each stream
input a specification of some vertex to search for, and an
operation to perform to some property(ies) of that vertex,
once found.

Either form may actually have several stages. First is the
basic operation; next is a test of some sort that, if passed,
may trigger larger computations.

Fig. 1 attempts to provide some comparison between
existing kernels (the rows) and current benchmark suites
that contain them. The rows in the table specify a variety of

kernel operations.

The table has three sets of columns. First is a set of
columns that indicate in what general category of graph
operations the kernel is part of. Connectedness kernels
(CCW, CCS, BFS) look for subsets of the graph whose
edges satisfy some property. Path kernels (SSSP, APSP) are
a variant of this, and look at aggregations of the properties
of the edges that connect certain vertices. Centrality metrics
(BC, CD, PR) look for the “most important” vertices in a
graph, based on some combination of the vertex degrees,
length of paths to other vertices, how often vertices are
on paths between other vertices, or a derived “influence”
of each vertex. Clustering kernels (CCO, Jaccard) look for
the degree to which groups of vertices “cluster” together.
Jaccard coefficients [10], [12], [21] are a growing subset
of this where for pairs of vertices what is computed is the
fraction of all neighboring vertices that the two vertices have
in common. Graph contraction and partitioning kernels (CD,
GC, GP) attempt to find higher level views of graphs where
vertices are in fact subgraphs of the original graph. Subgraph
isomorphism looks for subgraphs of certain shapes, of which
triangle counting (GTC, TL) are the most well-known.

It should be clear that in terms of the above kernel clas-
sification, many of these kernels “overlap” in functionality.

Next is a series of columns that identify benchmark suites,
taken from [12], [1], [2], [6], [5], [3], [4], [19], [8]. An “S”
in an intersection indicates that the specified kernel is used
in the associated benchmark in a “Streaming” mode; a “B”
indicates a “Batch” mode.

Streaming forms of centrality metrics address questions
such as “if edge e is added, how does it change its associated
vertex centrality metrics, and does that cause a change in the
“top n” vertices in terms of the metric.” Streaming forms of
triangle counting look to identify the change in either/both
the associated vertices triangle count or the overall number
of triangles in the graph.

Streaming Jaccard coefficient kernels may take both forms
of streaming. On addition of an edge, a Jaccard kernel
may ask what the graph modification does to the maximum
Jaccard coefficient the two vertices may have with any other,
or (less frequently) update all the coefficients with all other
vertices (infrequent because of the near quadratic storage
requirements to remember all coefficients). The second form
of streaming for Jaccard may be a sequence of vertices,
where for each provided vertex the kernel should return what
other vertices have a non-zero Jaccard coefficient (perhaps
greater than some threshold).

The third set of columns specify the type of graph
modification and/or output that a kernel may form. An “X”
indicates that a particular kernel may have the specified
effect. The “Output O(*) Events” columns are particularly
relevant to streaming where the local streaming process
passes some threshold which causes reporting of an event.
The O(1) column specify that some fixed amount of data

is generated from each event. The O(|V]) column specifies
that an output may grow in size proportional to the number
of vertices in the graph. The O(|V|*) may generate data
that grows far faster, but where typically only some “top k”
values are chosen.

There are other benchmarking efforts that define prob-
lems requiring the composition of many of these kernels.
VASTI[9] is one such example that changes the problem each
year, with recent years including both batch and streaming
benchmark descriptions.

The key take-away from this table is that no one kernel is
universal, and that there is a significant difference between
streaming and batch kernels. This lays the rationale for the
next section.

III. CANONICAL GRAPH PROCESSING

While useful in an academic setting, the kernels and
benchmarks discussed in the prior section are missing some
major attributes if they are to be used to help understand the
characteristics of systems that run real, more complex, graph
applications. This section discusses a canonical processing
flow that is perhaps closer to real practice, and demonstrates
the potential interaction of multiple kernels with more real-
istic data structures. The goal for the discussion is that there
is room for significant work in defining benchmarks that are
more complex than any of the existing benchmark suites.

Fig. 2 diagrams a processing flow that includes both batch
(middle and right side) and streaming graph processing (left
side) in a more realistic combination.

Unlike many of the kernels discussed in the prior section,
real applications start with large graphs built from not one
but many classes of vertices and edges, often of multi-
terabyte size, with thousands of properties per vertex, and
time-stamps on edges. These graphs are persistent; their
existence is independent of any single analytic or set of
analytics. Today, these graphs are initially created via some
large batch processing dedup processes [15], [17] that
“clean up” multiple data sets by checking spelling, removing
duplicates (post-process deduping), identifying faulty or
missing values, and combining to create properties to be
associated with vertices and edges. In a streaming form
called in-line deduping, once established, updates will be
from streams of incoming data. In Fig. 2 bulk undeduped
data enters from the bottom, with the deduping process
handled by a batch analytic before being used to build the
initial graph.

Once a graph is established, real application analytics
typically are not run over the entire graph. Instead, an
analytic may start with identification of some selection
criteria (on right) that are used to identify some initial seed
entries. This may be as simple as specifying some particular
vertex, or more involved such as scanning for the “top k”
vertices with the highest values of some properties.

Real-Time,

S Persistent Big Data/Graph Data Set
Local | Events Sllbgl‘aph Seeds Seed
Update Extractio Identification
Sub Graph Graph
Events Properties

Figure 2.

Once identified, these seeds may then be used to perform
some sort of subgraph extraction, whereby a subset of the
large graph is identified. A simple example of such a process
may be a breadth-first search from individual seed vertices
out to some depth, or perhaps out some distance from some
path between two or more seeds. Once identified, it may be
appropriate to physically copy such a subgraph out of the
memory holding the large persistent graph into a smaller,
but faster access rate, memory from which more complex
analytics can be run. This copy process may also include
some sort of projection to copy only a small subset of the
properties.

Potentially long-running batch analytics may then be run
on these subgraphs. Typical outputs may be metrics of the
overall graph and/or even smaller subgraphs or vertex/edge
sets (“neighborhoods”). Of growing importance, however,
is the use of the analytic to compute/update properties of
vertices or edges that are to be sent back to update the
original persistent graph. This is in fact how many real-world
applications end up with thousands of vertex properties, as
analysts often find that some new property of vertices is
useful, and it is easier to define a “one-time” analytic that
computes this property for all vertices at once, and then use
the property values in later repeated calls to application-
specific analytics.

Stream processing (left-hand side) takes a different path.
A real-time stream of data arrives incrementally. Processing
may take a variety of forms. First, the inputs may specify

Initial Uncleaned Data

A Canonical Graph Processing Flow.

specific vertices and some update to one or more of the
vertex’s properties. This is the case for the Firehose bench-
mark [1]. Alternatively, inputs may specify new edges (less
frequently new vertices). Processing either one may involve
checking if it is already in the graph and then either adding
the edge or updating some properties associated with an
existing edge. Less often are deletions. A good example of
this is the in-line deduping process discussed earlier.

In both cases, the initial operations against the graph are
relatively simple and rather local. However, it is not uncom-
mon for the stream processing to look for changes in local
or global graph parameters, and only if those parameters
exceed some threshold, to use the modified vertices/edges
as seeds into a subgraph extraction process similar to that
described for the batch process. The extracted subgraph may
then be the target of a specific batch analytic to more fully
analyze the effects of the change. As before, the execution of
this analytic may result in either alerts back to some external
system and/or updates to properties in the larger graph.

An example of a matching real-world application can be
found in [23]. A 2012 batch-only implementation of an
insurance application problem periodically combined and
cleaned 40+ TB of public data into a persistent database
of 4-7+ TB (bigger now). Once a week this data set is
“boiled” (over the weekend) to pre-compute answers to a
set of queries, in two forms and for each of all multi-
million people in the set. The first form is a simple indexed
database where simple SQL-like selects can quickly retrieve

data relevant to a particular insurance applicant, such as
credit score. The more valuable answers are, however, the
result of searches for “relationships” between people, such
as “who has shared an address with what other individuals 2
or more times, especially if they have shared a common last
name.” These latter computations represent the bulk of the
weekly computations, and are close to the Jaccard coefficient
kernel mentioned earlier, and have been called Non-Obvious
Relationship Analysis (NORA).

Such a resulting data set is then used, for example, to
provide real-time data back to an insurance company when
a potential client has entered data for a quote. This data
includes both the specific client data and the results of
NORA relationships involving the client, and is used as input
to the company’s quoting process.

A streaming real-time version of such applications would
have both types of streaming as discussed above. One stream
would be updates to the persistent graph, and determine for
each updated vertex if the update is likely to change any
of the key relationships. Simply adding more validity to
a pre-identified relationship needs no more processing, but
when there is the potential for crossing some threshold, a
more complete computation of the particular metric may be
warranted. Such a process makes the data set less stale.

The second type of streaming would take a sequence of
applicants and compute in real-time whatever relationships
are relevant for the type of application they are applying
for. This has the significant advantage of removing much of
the need for the pre-computation that takes so much time.
It also increases the fidelity of the responses, as the results
include updates since the last pre-computation.

IV. USING TODAY’S ARCHITECTURES

There are published results for several of the kernels
discussed earlier, with perhaps the most exhaustive the
twice-yearly reports on several hundred implementations on
many different systems of the Breadth First Kernel used
in the GRAPH500 benchmark?. Other than for BFS [20],
however, very few of these results have been analyzed for
how different architectural and system characteristics affect
performance, especially for large systems with multi-kernel
applications.

The NORA application mentioned earlier is a partial
exception. In [23], a model of the multi-step algorithm
was built to estimate four different system parameters as
a function of problem size: required compute cycles, disk
bandwidth, network bandwidth, and memory access rate.
Several different system configurations were studied:

o The 2012 baseline consisted of 10 racks totalling 400
2012 dual-socket 6-core 2.4GHz Intel Xeon® server
blades, each with the equivalent of local disks with
about 0.16GB/s bandwidth, 96 GB of DRAM, and a

2www.graph500.org

network port with an injection bandwidth of about 0.1
GB/s.

o An upgrade to the servers to reflect a more modern
design, with options of more cores (24) at a higher
clock rate (3GHz), 3X more memory bandwidth, SSDs
or RAMdisks, and Infiniband links with up to 24 GB/s
injection bandwidth.

o A system based on “lightweight” processors such as
ARMs rather than high end server processors, similar
to systems such as HPE’s Moonshot line [18].

o A system based on an architecture initially postulated
by Sandia National Labs [26] called “X-caliber” that
resembled the current generation of Intel Knight’s
Landing chips where a two-level memory systems has
close-in memory provided by 3D memory stacks with
very significant increases in memory bandwidth. Such
two-level memories may very naturally support the two
levels of graphs pictured in Fig. 1.

o A system like X-Caliber where all the processing is
moved to the bottom of the memory stacks, and both
DRAM and non-volatile memory are included in each
stack, again supporting the two levels of graphs pictured
in Fig. 1. Both separate central processing chips and
network interface chips are deleted. Such resulting
systems would be “seas” of just memory stacks.

The last architecture is definitely not one of “today’s”
architectures, but is included for reference as to what might
be possible.

Fig. 3 provides an update to the 2013 model results using
variations of the above configurations. In each graph, each
bar represents usage of one of the four key resources during
one of the steps in the application: network bandwidth, disk
bandwidth, memory bandwidth, and instruction processing
rate. At each step the highest bar represents the bounding
execution time for that step. The total time is computed from
these peaks.

As can be seen, although disk and network bandwidth
represent the tall poles for the baseline system. However, no
one type of resource is uniformly the bounding peak for all
steps. In fact, updating from the 2012 baseline one resource
at a time provides relatively small benefit. For example
upgrading the microprocessor alone provided only a 45%
increase in performance, with the other options individually
providing less. As shown, however, upgrading all but the
microprocessor provides over a 3X growth in performance
(far more than the product of the individual factors). Then,
in addition to all of the above, upgrading the microprocessor
did provide an 8X growth in performance for the same 10
racks.

The Lightweight projection, with its entirely different
mix of resources, has a strikingly different profile, as its
lower processing capability causes computational rate to
dominate for 4 of the 9 steps. Even so, it provides near
equal performance in 1/5’th of the hardware (2 racks rather

1.E+03

Baseline: 1026s

1.E+02 -

1.E+01

1.E+00

=
m
S
=2

1.E-02

Resources Used/node (sec)

2 3 4

1 5 6 7 8 9
Step #
W Disk WCPU mMemory M Network

1.E+03

Upgrade all inc. Processor

L8402 1265, 10Facks
’

1.E+01
1.E+00 |

. | []
1.E-02 ! .

1 2 3 4 5 6 7 8 9
Step #

W Disk WCPU mMemory M Network

[y
m
i
o
-

Resources Used/node (sec)

—~1.E+03

2-level memory

[y
m
+
o
N
I
I

1.E+01

1.E+00

1.E-01

Resources Used/node (sec

-
m
o
]

5 6
Step #
W Disk W CPU ® Memory M Network

Figure 3.

than 10).

The two-level memory system also has yet a different
profile, achieving equal performance in only 3 racks.

The 3D stack-only system doesn’t resemble any existing
architecture but provides possibly up to 200X performance
in 1/10th the hardware.

V. EMERGING ARCHITECTURES

There are at least two interesting emerging architectures
that are radically different from today, but both have unique
attributes suitable for performing the graph analytics such
as proposed in Fig. 2.

A. A Sparse Linear-Algebra-based Architecture

Fig. 4 depicts the microarchitecture of a single accelerator
node of a machine [27], [28] designed explicitly for per-
forming the kinds of linear algebra-based kernels compatible
with many basic graph algorithms[19], where graphs are

HE Upgrade all but Processor

1.E+02 -

1.E+01

1.E+00

=
m
S
=2

1.E-02

Resources Used/node (sec)

1 2 3 4 5 6 7 8 9
Step #

W Disk WCPU mMemory M Network

1.E+03

Lightweight

1.E+02 ~

1.E+01 ~

1.E+00 -

1.E-01 -

Resources Used/node (sec)

._\
m
o
o
.

1 2 3 4 5 6 7 8 9
Step #

B Disk MCPU M Memory M Network

3D Stack Only

g 1 -l
5, 4L ITdLRN

1.E-01 -

5
Step #
mDisk ®WCPU ™ Memory M Network

=
m
o
]

6 7 8 9

1 2 3 4

Performance Modeling of NORA Problem.

expressed as boolean adjacency matrices®. The architecture
particularly focuses on sparse to very sparse situations where
most of the matrix entries are 0. Multiple of these nodes are
combined in up to a 3D topology under the control of a
conventional host processor.

The dotted and dashed lines in Fig. 4 represent two
streams of matrix component references that start with ad-
dress generation of multiple sparse vectors, proceed through
a memory designed to support irregular accesses, then
through a sorter to align the individual components from
pairs of sparse vectors that are both non-zero, go through
an ALU to perform multiply-accumulates, and then go back
into memory (solid line - again in a sparse format). Con-
densed Sparse Row (CSR) and Compressed Sparse Column
(CSC) formats are “hardwired” into the architecture.

3In a typical adjacency matrix the (i,j)th element is 1 if there is an edge
from vertex j to vertex i.

| | u
[] — —] — []
v 1 VNI T T T
L] ™ : - L} - l
Matrix & brie I Jdrter:l 'va Matrix Control Network
Reader Memeny e Writer Interface

Figure 4. A novel Sparse Graph Processor.

Measured data on a prototype 8-node FPGA-based system
for sparse matrix-matrix multiplies indicate that there is
perhaps more than an order of magnitude performance
advantage over a node for a Cray XT4, and 4 racks of such
nodes would exceed 10X a rack of a Cray XK7 (the system
used in the Titan supercomputer*). Performance per watt,
even for the FPGA implementation is even more striking.
Projections to ASIC-based designs imply a possibility of
another order of magnitude advantage in both metrics.

This architecture seems excellent for accelerating batch
analytics where the kernel operations can be expressed in
linear algebra as discussed in Section II. No data is available
on combinations of kernels, or how streaming might be
supported.

B. A Migrating Thread-based Architecture

Fig. 5 diagrams a second architecture[16] that takes
perhaps the opposite direction by focusing on fast edge-
following. This scalable system implements a single very
large shared memory domain out of an interconnection of
multiple nodes, each of which contains a large number of
nodelets. Each nodelet is built around a separate memory
channel, and has a collection of heavily multi-threaded
Gossamer Cores (GC) that drive it. A mobile thread
executes within some GC until it makes a memory reference
to a location not in the current nodelet. In such cases, the
GC hardware suspends the thread, packages up its internal
state, and sends it over the system’s internal network to
the correct nodelet within the correct node that owns the
targeted memory location. Here the state is unpackaged and
given to any of the target nodelet’s GCs that have room.
When the thread is restarted, it has no knowledge that it had
moved, other than the memory access it was attempting is
now local. The thread then executes locally until it attempts
yet another non-local memory access, at which point it is
again suspended and shipped to the correct target.

The net result is that all memory references are local,
regardless of how big the system is. This locality also means
that very simple hardware within the memory controller of
each nodelet can execute a rich suite of atomic memory

“https://www.olcf.ornl.gov/titan/

operations (AMO) that occur very quickly, permitting simple
and efficient synchronization operations.

The current hardware has a conventional microprocessor
embedded in each 8-nodelet node. This processor executes
a conventional Linux and initiates the original parent thread
into the memory system. The programming tool chain is a
variation of Cilk[11].

With this type of functionality, operations such as
“pointer-chasing with atomic updates to list elements” be-
come trivial to write, and more importantly, consume half
or less the bandwidth and latency of a conventional thread
trying to do the same thing via remote memory operations
or, even worse, message passing.

In addition, where a programmer knows that the number
of operations to be applied to some address is limited,
instructions may be invoked that launch tiny single-function
threads to perform single operations at a target location. This
is useful for performing such things as random updates into
a very large table.

In addition to mobility, a thread may also spawn a child
thread with as little as a single instruction. The child thread
is then free to travel as its program sees fit, independent of
the parent.

The current production system supports 8 nodes, each
with 8 nodelets in a deskside box. Each nodelet has 4 GCs,
each capable of holding 64 concurrent threads. Expansions
to rack-scale systems are in design. Expected future imple-
mentations will implement each node as first an ASIC and
then a 3D memory stack having dozens of nodelets in the
same package. This latter configuration is similar to the 3D
stack configuration mentioned in the prior section.

As with the sparse matrix machine, orders of magnitude
improvement over conventional systems appear reachable.
Measured results from real hardware should be available
shortly. However, an extension of the modeling exercise
discussed in the prior section on the NORA problem lead
to projections pictured in Fig. 6, where 3 generations of
this architecture® are compared to the conventional upgrades
from the prior section. In 1/10th the hardware, projected

SEmul is the current design extended to rack-size; Emu2 uses an ASIC
in place of the FGPA; Emu3 is a 3D stack utilizing the Emu architecture
for the base logic chip

— == 1 i g \’: |- = === =-==--=—=—= 1
T2] oo oo |o, ool JiEed o []
| @ S o |GCorg _;:;T;, f:"i:! !:"I:"“}'Lreiore G 5 s |,
| 3 = 23 GCore h'g-" L, /E’?GCore é'g Nad é |
< o < [N LT T o =
- N G = IO - ey -
= _ === 1 2f NPT aal i Bt L e)
Nodelets 3 = %’:{E;:_"@] ¢ Nodelets
I———er === -== j‘f‘q:"‘:“:‘ ~§ : .|.""'§°.. | === - e |
1 GCo®H % [k 8N\ < h{Geore]
| = €= = o MR Nl B —. 22 = i
| @ o S0 orefTl S | aNsa_ ...et .s © [T|GCore| © 5 - s |,
! _3 g_g‘ GCoref| Z ,..--'E“"h.‘~“:~~.~\§\ GCore §z 5 |
I < o < [IS]] N 4 = 8 =
1 GCorejH..... Yorrs TUPPPPPPRPN e R Friacore 1
e === = f_] RS 4 :___ —————————— == =1
Figure 5. Emu’s Migrating Thread Architecture.
1000 ‘
Emu3
Q
£ |
% 100 |
@
@ Emu2 6’@
= | e
b=y o
N 10 —% Emul
[
3 A
o)\ ¢ Upgrades
=]
E 1 |
g 1] % Baseline
()
0.1 T 1
0 1 2 3 4 5 6 7 8 9 10
Racks
B HeavyWeight @ Lightweight A Next-Gen Compute Emu

Figure 6.

performance for the Emu system are up to 60X that of the
best of the upgraded clusters.

Also very preliminary studies of streaming queries for
Jaccard-like problems indicate that individual response times
in the 10s’ of microseconds are possible, with throughputs
that are large multiples of what can be achieved with
conventional systems.

This architecture can support both batch and, in particular,
streaming applications with complex classes of vertices and
edges, and substantial sets of properties for each.

VI. CONCLUSIONS

This paper has overviewed a range of existing graph
kernels and benchmarks for batch mode applications, and
discussed their extension to streaming modes where data

Size-Performance Comparison for the NORA problem.

arrives incrementally. A general process flow was introduced
to begin a discussion of a more realistic integration of
multiple analytics of both batch and streaming form. Several
possible forms of streaming were identified. A variety of
system architectures were compared, and several identified
that offer the potential of significant gain over today’s
systems, especially as 3D memory stacks that provide huge
bandwidths. Two emerging architectures in particular have
the potential for very large gains, with the interesting
observation that they employ almost opposite execution
models. One performs graph operations after translation into
sparse matrix operations; another is based around ‘“pointer
chasing” where the computational state moves with a pointer
dereference.

An important next step would be to develop a multi-kernel

benchmark that mirrors Fig. 2, especially in the combined
batch and streaming mode. An early parameterized model,
similar to that used for the NORA problem, could identify
the most potentially valuable configurations. A potentially
interesting option might be to combine both the emerging
models into a single system.

In addition to this, a reference implementation, with
explicit instrumentation, of a combined benchmark would
allow calibration of the model. Kernels extracted from
this implementation can then be provided as extensions to
existing kernels.

ACKNOWLEDGMENT

This work was supported in part by the Univ. of Notre
Dame, and in part by NSF under grant CCF-1642280.

REFERENCES

[1] Firehose benchmarks. http://firehose.sandia.gov/.
[2] Graph 500. http://www.graph500.org/.
[3] Graph Algorithm Platform. http://gap.cs.berkeley.edu/.

[4] Graph analysis benchmark suite.

http://graphanalysis.org/benchmark/index.html.
[5] Graph challenge. http://graphchallenge.org/.
[6] GraphBLAS. http://www.graphblas.org/home/.

[7] Sparql query language for rdf. https://www.w3.org/TR/rdf-
sparql-query/.

[8] Stinger. https://trac.research.cc.gatech.edu/graphs/wiki/STINGER.

[9] VAST. http://vacommunity.org/HomePage.
[10] J. Bank and B. Cole. Calculating the Jaccard Similarity
Coefficient with Map Reduce for Entity Pairs in Wikipedia.
Wikipedia Similarity Team, Dec. 16 2008.

[11] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson,
K. H. Randall, and Y. Zhou. Cilk: an efficient multithreaded
runtime system. In Proceedings of the fifth ACM SIGPLAN
symposium on Principles and practice of parallel program-
ming, PPOPP 95, pages 207-216, New York, NY, USA,

1995. ACM.

[12] P. Burkhardt. Asking Hard Graph Questions: Beyond Watson:
Predictive Analytics and Big Data. Beyond Watson Work-
shop, Feb. 2014.

[13] K. S. Candan, H. Liu, and R. Suvarna. Resource description
framework: Metadata and its applications. SIGKDD Explor.
Newsl., 3(1):6-19, July 2001.

[14] D. Chavarria-Miranda, V. G. Castellana, A. Morari, D. Haglin,
and J. Feo. Gragl: A query language for high-performance
attributed graph databases. Workshop on Parallel and Dis-
tributed Computing for Large Scale Machine Learning and
Big Data Analytics (ParLearning’2016), May 27, 2016.

[15] P. Christen. A survey of indexing techniques for scalable
record linkage and deduplication. IEEE Transactions on
Knowledge and Data Engineering, 24(9):1537-1555, Sept

2012.

[16]

[17]

[18]

[19]

[20]

(21]

(22]

(23]

[24]

[25]

[26]

(27]

(28]

[29]

T. Dysart, P. Kogge, M. Deneroff, E. Bovell, P. Briggs,
J. Brockman, K. Jacobsen, Y. Juan, S. Kuntz, R. Lethin,
J. McMahon, C. Pawar, M. Perrigo, S. Rucker, J. Ruttenberg,
M. Ruttenberg, and S. Stein. Highly scalable near memory
processing with migrating threads on the emu system archi-
tecture. In Proceedings of the Sixth Workshop on Irregular
Applications: Architectures and Algorithms, 1A3 16, pages
2-9, Piscataway, NJ, USA, 2016. IEEE Press.

A. K. Elmagarmid, P. G. Ipeirotis, and V. S. Verykios.
Duplicate record detection: A survey. IEEE Transactions on
Knowledge and Data Engineering, 19(1):1-16, Jan 2007.

Hewlett Packard Enterprises. HPE Moonshot Sys-
tem. https://www.hpe.com/h20195/v2/getpdf.aspx/4AA4-
6076ENW.pdf.

J. Kepner and J. Gilbert. Graph Algorithms in the Language
of Linear Algebra. Society for Industrial and Applied Math-
ematics, 2011.

P. Kogge. Performance analysis of a large memory application
on multiple architectures. In 7th Int. Conference on PGAS
Programming Models, 2013.

P. Kogge. Jaccard coefficients as a potential graph benchmark.
2016 IEEE International Parallel and Distributed Processing
Symposium Workshops (IPDPSW), 00:921-928, 2016.

P. Kogge. Streaming graph analytics: Complexity, scalability,
and architectures. Keynote presentation: Chesapeake Large
Scale Analytics Conf., Oct. 2016.

P. Kogge and D. Bayliss. Comparative performance analysis
of a big data nora problem on a variety of architectures. In
Collaboration Technologies and Systems (CTS), 2013 Inter-
national Conference on, pages 22-34, 2013.

LexisNexis Risk Solutions. Kel language reference version
5.4.2, 2015.

G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn,
N. Leiser, and G. Czajkowski. Pregel: A system for large-
scale graph processing. In Proceedings of the 2010 ACM
SIGMOD International Conference on Management of Data,
SIGMOD ’10, pages 135-146, New York, NY, USA, 2010.
ACM.

Sandia National Labs. Darpa selects sandia national labora-
tories to design new supercomputer prototype. https://share-
ng.sandia.gov/news/resources/news_releases/supercomputer-
prototype/#.WMg9mmfaupo, August 2010.

W. S. Song, V. Gleyzer, A. Lomakin, and J. Kepner. Novel
graph processor architecture, prototype systems and results.
HPEC COnference, 2016.

W. S. Song, J. Kepner, V. Gleyzer, H. T. Nguyen, and J. L.
Kramer. Novel graph processor architecture. LINCOLN
LABORATORY JOURNAL, 20(1):92-104, 2013.

J. Webber. A programmatic introduction to neo4j. In Proceed-
ings of the 3rd Annual Conference on Systems, Programming,
and Applications: Software for Humanity, SPLASH 12,
pages 217-218, New York, NY, USA, 2012. ACM.

