
J. Parallel Distrib. Comput. 104 (2017) 19–35
Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

Parallel algorithms for switching edges in heterogeneous graphs✩

Hasanuzzaman Bhuiyan a,c,∗, Maleq Khan b,∗∗, Jiangzhuo Chen c, Madhav Marathe a,c

a Department of Computer Science, Virginia Tech, 2202 Kraft Drive, Blacksburg, VA 24061, USA
b Department of Electrical Engineering and Computer Science, Texas A&M University—Kingsville, Kingsville, TX 78363, USA
c Network Dynamics and Simulation Science Laboratory, Biocomplexity Institute of Virginia Tech, 1015 Life Science Circle, Blacksburg, VA 24061, USA

h i g h l i g h t s

• We present distributed memory parallel algorithms for switching edges in a network.
• The algorithms are carefully designed to work efficiently with massive networks.
• Our algorithms deal with complex synchronization and computation dependency issues.
• We study several partitioning schemes in conjunction with the parallel algorithms.
• We also present the first parallel algorithm for computing multinomial distribution.

a r t i c l e i n f o

Article history:
Received 8 September 2015
Received in revised form
2 October 2016
Accepted 1 December 2016
Available online 28 December 2016

Keywords:
Edge switch
Random network generation
Network dynamics
Multinomial distribution
Parallel algorithms

a b s t r a c t

An edge switch is an operation on a graph (or network) where two edges are selected randomly and one
of their end vertices is swapped with each other. Edge switch operations have important applications in
graph theory and network analysis, such as in generating randomnetworkswith a given degree sequence,
modeling and analyzing dynamic networks, and in studying various dynamic phenomena over a network.
The recent growth of real-world networksmotivates the need for efficient parallel algorithms. The depen-
dencies among successive edge switch operations and the requirement to keep the graph simple (i.e., no
self-loops or parallel edges) as the edges are switched lead to significant challenges in designing a parallel
algorithm. Addressing these challenges requires complex synchronization and communication among the
processors leading to difficulties in achieving a good speedup by parallelization. In this paper, we present
distributed memory parallel algorithms for switching edges in massive networks. These algorithms pro-
vide good speedup and scale well to a large number of processors. A harmonic mean speedup of 73.25
is achieved on eight different networks with 1024 processors. One of the steps in our edge switch algo-
rithms requires the computation ofmultinomial random variables in parallel. This paper presents the first
non-trivial parallel algorithm for the problem, achieving a speedup of 925 using 1024 processors.

Published by Elsevier Inc.
✩ A preliminary version of this paper entitled ‘‘Fast Parallel Algorithms for Edge-
Switching to Achieve a Target Visit Rate in Heterogeneous Graphs’’ (Bhuiyan
et al., 2014, [4]) appeared in the Proceedings of the 43rd International Conference
on Parallel Processing (ICPP), 2014. This work has been partially supported by
DTRA CNIMS Contract HDTRA1-11-D-0016-0001, DTRA Grant HDTRA1-11-1-0016,
NSF NetSE Grant CNS-1011769, NSF SDCI Grant OCI-1032677, NIH MIDAS Grant
5U01GM070694-11, NSF DIBBs Grant ACI-1443054 and NSF Big Data Grant IIS-
1633028.
∗ Corresponding author at: Department of Computer Science, Virginia Tech, 2202

Kraft Drive, Blacksburg, VA 24061, USA.
∗∗ Corresponding author.

E-mail addresses: mhb@vbi.vt.edu (H. Bhuiyan), maleq.khan@tamuk.edu
(M. Khan), chenj@vbi.vt.edu (J. Chen), mmarathe@vbi.vt.edu (M. Marathe).

http://dx.doi.org/10.1016/j.jpdc.2016.12.005
0743-7315/Published by Elsevier Inc.
1. Introduction

Edge switch, also known as edge swap, edge flip, edge shuffle,
edge rewiring, etc., is an operation that swaps the end vertices of
the edges in a network. Many variations of this problem have been
studied [4,7,11,12,16,18,25–27,29] with diverse real-world appli-
cations. In the most commonly used edge switch operation, two
randomly selected edges (a, b) and (c, d) are replaced with edges
(a, d) and (c, b) respectively, i.e., the end vertices of the selected
edges are swapped with each other. This operation is repeated ei-
ther a given number of times or until a specified criterion is satis-
fied. It is easy to see that an edge switch operation preserves the
degree of each vertex.

This problem has many important applications. It can be used
in generating random networks with a given degree sequence.

http://dx.doi.org/10.1016/j.jpdc.2016.12.005
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2016.12.005&domain=pdf
mailto:mhb@vbi.vt.edu
mailto:maleq.khan@tamuk.edu
mailto:chenj@vbi.vt.edu
mailto:mmarathe@vbi.vt.edu
http://dx.doi.org/10.1016/j.jpdc.2016.12.005

20 H. Bhuiyan et al. / J. Parallel Distrib. Comput. 104 (2017) 19–35
There has been significant work on random graph generation be-
cause of the popularity of network models in diverse applica-
tions. Most of the prior work involves sequential algorithms, and
much of it is restricted to regular graphs; we briefly summa-
rize the main approaches here. A popular method for random
graph generation is the configuration model (also referred to as
the ‘‘pairing’’ model) [22,5,31], which involves creating stubs for
vertices, choosing pairs of stubs at random, and then connecting
them by edges. Unfortunately, this leads to parallel edges unless
the degrees are very small. This basic approach has been modi-
fied in various ways to avoid parallel edges in the case of regular
graphs [31,28,20] (see [5] for a good discussion). Blitzstein et al. [5]
gives a simple algorithm for generating random graphs with a
given degree sequence using sequential importance sampling,
based on the Erdős–Gallai characterization.

By using the Havel–Hakimi method [15], a network can
be generated following a given degree sequence. Since it is
deterministic, this method generates the same network each time
it is runwith the samedegree sequencewhereas there can bemany
different networks with the same degree distribution. However,
edge switch can be combined with the Havel–Hakimi method to
generate a random network with a given degree sequence [12,7,
11]. Once a network is generated using the Havel–Hakimi method,
by randomly switching the edges we can generate a random
network with the same degree sequence. The mixing time was
shown to be bounded by a large polynomial by Cooper et al. [7], and
extended by Feder et al. [11] to variants of the edge switch process.

Edge switch is also used in modeling and studying various dy-
namic networks such as peer-to-peer networks [11]. Other appli-
cations of edge switch include the generation of randomly labeled
bipartite graphs with a given degree sequence [18], independent
realizations of graphs with a prescribed joint degree distribution
using a Markov chain Monte Carlo approach [25], and studying the
sensitivity of network topology on dynamics over a network such
as disease dynamics over a social contact network [10].

Edge switch can be paired with additional constraints such as
imposing a connectivity requirement, allowing or not allowing
parallel edges and loops, etc. NetworkX [14] has a sequential im-
plementation of edge switch that does not allow parallel edges but
does allow loops, and provides the option of imposing connectivity
constraints on the graph. A connectivity constraint requires a graph
to remain connected after an edge switch operation. Some theoret-
ical studies of edge switch for restricted graph classes can be found
in the literature, such as the study of mixing time of the Markov
chain introduced by this operation [7,12]. However, no effort was
given to design parallel algorithms for switching edges in a graph.
For smaller graphs, sequential implementation of edge switch suf-
fices, but thismay not work formassive networks for the following
reasons: (i) a massive network with billions of edges simply may
not fit in the memory of a single computing machine, and (ii) a se-
quential algorithm may take a prohibitively long time. These is-
sues can be addressed by a distributed memory parallel algorithm
where the network is partitioned and each processor contains one
partition.

Our contributions. In this paper, we present distributed
memory parallel algorithms for switching edges in massive
graphs with the constraint that the graph remains simple. The
dependencies among successive edge switch operations and the
requirement of keeping the graph simple lead to significant
challenges in designing a parallel algorithm. Dealing with these
requires complex synchronization and communication among the
processors, which in turnmakes it challenging to gain any speedup
by parallelization. The performance of the algorithms also depends
on the partitioning of the graph. We study several partitioning
schemes in conjunction with the algorithms and present their
respective trade-offs. A harmonic mean speedup (compared to
Fig. 1. An edge switch operation replaces two randomly selected edges e1 =
(u1, v1) and e2 = (u2, v2) by new edges e3 = (u1, v2) and e4 = (u2, v1).

the sequential algorithm’s runtime) of 73.25 is achieved on eight
different networks with 1024 processors. The algorithms require
generating multinomial random variables in parallel, which is also
a non-trivial problem. To the best of our knowledge, there is no
existing parallel algorithm for the problem, and we present here
a novel parallel algorithm for generating multinomial random
variables, which achieves a speedup of 925 using 1024 processors.

Organization. The rest of the paper is organized as follows.
Section 2 describes the preliminaries and notations used in the
paper. The edge switch problem and the sequential algorithm
are briefly explained in Section 3. We present our main parallel
algorithms for switching edges in Section 4. The parallel algorithm
for generating multinomial random variables is presented in
Section 5. Finally, we conclude in Section 6.

2. Preliminaries

Below are the notations, definitions and computation model
used in this paper.

Notations. We are given a simple graph G = (V , E), where V
is the set of vertices, and E is the set of edges. A simple graph is
an undirected graph with no self-loops or parallel edges. A self-
loop is an edge from a vertex to itself. Parallel edges are two or
more edges connecting the same pair of vertices. There are a total
of n = |V | vertices labeled as 0, 1, 2, . . . , n − 1, and m = |E|
edges in the graph G. If (u, v) ∈ E, we say u and v are neighbors
of each other. The neighbors of a vertex u ∈ V are stored in the
adjacency list of u, denoted asN(u), i.e.,N(u) = {v ∈ V |(u, v) ∈ E}.
The degree of u is du = |N(u)|. The terms node and vertex, graph
and network, neighbor list and adjacency list, loop and self-loop,
label and vertex-id are used interchangeably throughout the paper.
We use H, K, M and B to denote hundreds, thousands, millions
and billions, respectively; e.g., 1M stands for one million. For the
parallel algorithms, let p be the number of processors, and Pi the
processor with rank i. A summary of the frequently used notations
(some of them are introduced later for convenience) is provided in
Table 1.

Edge switch. An edge switch operation replaces two edges e1 =
(u1, v1) and e2 = (u2, v2), selected uniformly at random from E, by
new edges e3 = (u1, v2) and e4 = (u2, v1), as shown in Fig. 1. If
u1 = v2 or u2 = v1, then the above edge switch creates self-loops.
The edge switch creates parallel edges, if edge (u1, v2) or (u2, v1)
already exists in the graph.

Note that the set of edges E changes dynamically during the
course of an edge switch process and the edges are selected
from the current set of edges at a given time. During an edge
switch operation, a selected edge can be categorized as one of
the following two types. (i) Original edge: an edge that has not
participated in any of the previous edge switch operations and
is still unchanged. (ii) Modified edge: any edge participating in an
edge switch operation is replaced by a new edge, and such a new
edge (e.g., e3 and e4 in Fig. 1) is called a modified edge.

H. Bhuiyan et al. / J. Parallel Distrib. Comput. 104 (2017) 19–35 21
Table 1
Notations used frequently in the paper.

Symbol Description Symbol Description

G Graph H Hundreds
V Set of vertices K Thousands
n Number of vertices M Millions
E Set of edges B Billions
m Number of edges p Number of processors
N(u) Adjacency list of vertex u Pi Processor with rank i
du Degree of vertex u Vi Subset of vertices in Pi
t No. of edge switch operations Ei Subset of edges in Pi
x Visit rate
Visit rate. We define the visit rate as the ratio of the number
of modified edges to the total number of edges in G. Let m be the
number of edges inG andm′ be thenumber ofmodified edges. Then
the visit rate is x = m′/m.

Binomial distribution. Suppose that N independent trials are
to be performed, where each trial results in a success with
probability q, and in a failure with probability (1 − q). If X
represents the number of successes that occur amongN trials, then
X is said to be a binomial random variable. The distribution of X is
a binomial distribution with parameters N and q, and denoted by
Eq. (1). The probability of getting exactly i successes in N trials is
given in Eq. (2).

X ∼ B(N, q) (1)

Pr{X = i} =

N
i


qi(1− q)N−i. (2)

Multinomial distribution. LetN be the number of independent
trials to be performed, where each trial has ℓ possible outcomes
0, 1, . . . , ℓ−1 with probability q0, q1, . . . , qℓ−1 respectively, such
that qi ≥ 0 for 0 ≤ i ≤ ℓ− 1 and


i qi = 1. Let Xi be the random

variable denoting the number of times the outcome i appears
among N independent trials. Then X = ⟨X0, X1, . . . , Xℓ−1⟩ has a
multinomial distribution with parameters N, q0, q1, . . . , qℓ−1, and
is denoted as follows.

⟨X0, X1, . . . , Xℓ−1⟩ ∼M(N, q0, q1, . . . , qℓ−1). (3)

Computation model. We develop algorithms for distributed
memory parallel systems. Each processor has its own local
memory. The processors do not have any shared memory and
can communicate with each other and exchange data by message
passing.

3. Edge switch

In this section, we first determine the expected number of edge
switch operations for a given visit rate, and then we present the
sequential algorithm for switching edges.

3.1. Determining the number of edges to switch for a given visit rate

Let t be the total number of edge switch operations and T = 2t
be the number of edges switched to achieve a visit rate x. Since edge
switch is a random process, performing the same number of edge
switch operations in different executions of the same edge switch
algorithm may exhibit different visit rates. Thus having an exact
value of T in advance is not possible. However, we can calculate the
expected value of T as described below. As we demonstrate later in
this section, using this expected value of T leads to a very close
approximation of the visit rate. Finding the expected value of T
is similar to the coupon collector problem [1]. Our goal is to have
m′ = mx modified edges in the graph by switching a sequence of
edge pairs. The remainder (m−m′) of the edges remain unchanged.
At some point there are already (i−1)modified edges in the graph.
Fig. 2. Observed visit rate is almost equal to the desired visit rate for the Miami
network. The error is so small that the error-bar is almost invisible.

From this point to have the ith modified edge we need Ti number
of edges switched. The probability of selecting the ith original edge
from the graph, given that there are (i − 1) modified edges, is
pi = m−(i−1)

m . Here, T and Ti are random variables, and Ti has a
geometric distribution with expectation 1/pi. Using the linearity
of expectation,

E[T] =
mx
i=1

E[Ti] =
mx
i=1

1
pi
=

mx
i=1

m
m− (i− 1)

= m


m
i=1

1
i
−

m(1−x)
i=1

1
i


= m


Hm − Hm(1−x)


(4)

whereHm is themth harmonic number. For largem,Hm ≈ lnm, and
consequently E[T] ≈ −m ln(1−x) for x < 1, and E[T] ≈ m lnm for
x = 1. Note that every edge switch operation involves two edges.
Now if we assign t to be E[T]/2, we obtain a visit rate extremely
close to x as demonstrated below.

We perform experiments on a contact network of the city of
Miami having m = 52.7M edges (see Section 4.7 for details) to
achieve a visit rate of x = 1, i.e., visit all of the 52.7M edges. The
expected value of T is calculated using E[T] ≈ m lnm, and the edge
switch algorithm performs t = 468.5M edge switch operations.
We repeat this experiment 10 times and observe a visit rate of x′ =
1 (visiting all edges) for 20% of the time, x′ = 0.99999998 (visiting
all but one edge) for 60% of the time and x′ = 0.99999994 (visiting
all but three edges) for 20% of the time. Thus the observed visit
rates are extremely close to x. We perform additional experiments
for desired visit rates x = 0.1, 0.2, . . . , 1 on the Miami network.
Each experiment is repeated 10 times. Fig. 2 demonstrates that
the observed visit rates are almost equal to the desired visit rates.
We plot the minimum and maximum of observed visit rates using
error-bars. These values are so close to the desired visit rates
that they almost overlap with each other and it is difficult to
distinguish them in the figure. To better understand the differences

22 H. Bhuiyan et al. / J. Parallel Distrib. Comput. 104 (2017) 19–35
Table 2
Average error rate and standard deviation of observed visit rates for the Miami
network are near 0. For each desired visit rate, 10 experiments are performed.

Desired visit rate Observed visit rate
Average error rate (%) Standard deviation

0.1 0.00745 8.13E−6
0.2 0.00858 1.41E−5
0.3 0.00907 1.76E−5
0.4 0.00802 3.52E−5
0.5 0.00687 2.34E−5
0.6 0.00650 3.38E−5
0.7 0.00701 4.37E−5
0.8 0.01030 5.55E−5
0.9 0.00824 4.46E−5
1.0 2.4E−6 2.06E−8

between the desired and observed visit rates, we further compute
the average error rate and standard deviation of the observed visit
rates, which are shown in Table 2. The average error rate (%) is
calculated as


i |xi−x

′
i |

exi
× 100%, where xi and x′i are the desired and

observed visit rates, respectively, in the ith experiment and e is
the total number of experiments. The maximum, minimum and
average error rates of the total 100 experiments are 0.027%, 0%
and 0.007%, respectively, which are almost negligible. Therefore,
for large m, we achieve a very close approximation of x, which is
sufficient for almost all practical purposes.

Note that we can mark the modified edges and always select
two original edges for the next edge switch operation. In such a
case for a visit rate x to havemxmodified edges, we simply need to
perform mx/2 edge switch operations. For a specific application,
one can do so. If we do not allow a modified edge to participate
in any later edge switch operation, the process may not produce
many networks with the same degree sequence. Unrestricted and
independent random choice of the edges helps us obtain a random
graph from the space of the graphswith the same degree sequence.

Furthermore, the visit rate can also be defined in other ways
and converted to t . Our parallel algorithms can be used to perform
t edge switch operations, irrespective of how t is obtained.

3.2. Keeping the graph simple

Because the edge switch problem deals with a simple graph, we
need to ensure that none of the edge switch operations create self-
loops or parallel edges. An edge switch between edges (u1, v1) and
(u2, v2) may create a

• Parallel edge: if u1 ∈ N(v2), v2 ∈ N(u1), u2 ∈ N(v1) or
v1 ∈ N(u2).
• Self-loop: if u1 = v2 or u2 = v1.

An edge switch operation does not make any change to the
graph if the pair of edges remain the same after switching, and
we say such an edge switch operation is useless. An edge switch
between (u1, v1) and (u2, v2) is useless if u1 = u2 or v1 = v2. For
an edge switch operation, two edges are selected and switched if
the switch is not useless and does not create parallel edges or loops.

3.3. Sequential edge switch

We are given a simple graph G = (V , E) and the number of
edge switch operations t to beperformed. The sequential algorithm
is quite simple. Select a pair of edges uniformly at random and
switch them if the resultant graph remains simple. This operation
is repeated until t pairs of edges are switched. The graph, specifi-
cally the edge set, dynamically changes with the course of the edge
switch process. LetG′ = (V , E ′) be such a graphwhere E ′ is the cur-
rent set of edges at a given time. Algorithm1 shows thepseudocode
of switching edges sequentially. The adjacency list of a vertex can
be stored using a balanced binary tree. Searching such an adjacency
list of a vertex u to determine the possibility of parallel edge cre-
ation takesO(log du) time. If (u1, v1) and (u2, v2) are the edges par-
ticipating in the ith edge switch operation, then the time to switch
t pairs of edges is O

t
i=1


j∈{u1,v1,u2,v2}
log dj


≤ O(t log dmax),

where dmax is the maximum degree of a vertex in the graph. Note
that if an edge switch operation attempts to create a parallel edge
or a loop, or is useless, the edge switch operation is restarted by
selecting a new pair of edges. For a large and relatively sparse net-
work, this probability is very small. As a result, the number of edge
switch operations restarted is significantly smaller than t . Thus we
have the runtime O(t log dmax).

Algorithm 1 Sequential Edge Switch (G, t)
1: for i = 1 to t do
2: (u1, v1), (u2, v2)← two uniform random edges in E ′
3: if u1 = u2, v1 = v2, u1 = v2, u2 = v1, u1 ∈ N(v2), or

u2 ∈ N(v1) then
4: go to line 2
5: Replace (u1, v1) and (u2, v2) by (u1, v2) and (u2, v1)

respectively

4. Parallel edge switch

Although the sequential algorithm is very simple, parallelizing
the simple edge switch operations turns out to be a non-trivial
problem for the following reasons:

• Multiple pairs of edges are selected and switched simultane-
ously by different processors in the parallel process, whereas
the sequential process selects and switches a sequence of pairs
of edges, one pair after another. Designing a parallel algorithm
bymaintaining a stochastic process equivalent to the sequential
one leads to significant challenges.
• The requirement of keeping the graph simple requires complex

synchronization and communication among the processors. To
achieve a good speedup by parallelization, we need to design
an efficient algorithm by minimizing such communication and
computation costs.

In this section, we present an efficient parallel algorithm for
switching edges in massive graphs, accompanied by a rigorous
comparative study of several partitioning schemes.

4.1. Overview of the algorithm

The input graph G is partitioned and distributed among the
p processors. Each partition contains a subset of the vertices
and their adjacent edges and is assigned to a processor. All the
processors then perform t edge switch operations in parallel. We
need to consider two cases for an edge switch operation:

• Local switch. Both edges may be selected from the same
partition (or processor), and this is referred to as a local switch.
• Global switch. The edges may be selected from different

partitions, which is referred to as a global switch. The processors
may need to communicatewith each other in order to complete
the edge switch operation.

4.2. Data structures

A graph can be stored as adjacency lists or as an adjacency
matrix. In an adjacency matrix, the existence of any edge can be

H. Bhuiyan et al. / J. Parallel Distrib. Comput. 104 (2017) 19–35 23
Fig. 3. Straight and cross edge switch.
determined in constant time, however it takes O(n2) space. Our
algorithms use adjacency lists, which require O(m + n) space.
Usually, N(u) contains all neighbors of u. The graph can also be
presented in many different representations such as Compressed
Sparse Row (CSR) [13], which also requires O(m+ n) space.

Reduced adjacency list. For an edge (u, v), if N(u) and N(v)

belong to different partitions, the edge can be selected from two
different partitions and participate in two different edge switch
operations at the same time, leading to an inconsistency. To ensure
that any edge (u, v) can be selected only from one partition, only
neighbors with higher labels are kept in the adjacency list of a
vertex u, i.e., N(u) = {v ∈ V |(u, v) ∈ E, u < v}, which is referred
to as the reduced adjacency list. Although it is possible to deal with
the above issue by storing all neighbors in the adjacency list, it will
incur higher communication costs. Every edge switch operation
involves updating four vertices’ adjacency lists: one update for
each end vertex of an edge. A reduced adjacency list minimizes
the number of updates to only two or three vertices’ adjacency
lists; the details are discussed later in Section 4.4. Thus a reduced
adjacency list reducesmemory footprint, communication cost, and
computation cost.

Straight and cross edge switch. A difficulty arises from using
the reduced adjacency list. If N(u) contains all the neighbors
of u, any edge (u1, v1) can be selected either as (u1, v1) from
N(u1) (considering ordered pair), or as (v1, u1) from N(v1). The
probability of being selected each way is 1/2m. Let (u1, v1) and
(u2, v2) (considering no ordering) be two edges selected for an
edge switch operation. Depending on whether the edge (u1, v1) is
selected from N(u1) or N(v1), and the other edge (u2, v2) is chosen
from N(u2) or N(v2), the edges are replaced by either (u1, v2) and
(u2, v1), or (u1, u2) and (v1, v2). Assuming u1 < v1 and u2 < v2,
there is no possibility of selecting edges as (v1, u1) and (v2, u2)

(considering ordered pair) due to the use of a reduced adjacency
list. Therefore, an edge switch between (u1, v1) and (u2, v2)

(considering unordered pair) misses the chance of generating the
edges (u1, u2) and (v1, v2). This problem is solved by replacing
the selected edges by either (u1, u2) and (v1, v2) with probability
1/2, referred to as straight switch, or (u1, v2) and (u2, v1) with
probability 1/2, referred to as cross switch, as shown in Fig. 3.

4.3. Partitioning the network

Partitioning schemes usually have a significant impact on the
performance of parallel graph algorithms in terms of both runtime
andmemory. A good partitioning scheme for the parallel algorithm
should have the following properties:

• It can efficiently (in terms of runtime) partition a given network.
• Given a vertex v, the partitionwhere v belongs can be efficiently

determined.
• Theworkload is uniformly distributed among the processors for

different types of networks. The workload at a processor Pi is
the number of edge switch operations Pi performs.
For a given simple graph G = (V , E), we partition V into p
disjoint subsets, V0, V1, . . . , Vp−1, such that


i Vi = V . Let Vi be

the subset of vertices and Ei be the subset of edges in the partition
Gi = (Vi, Ei) belonging to Pi such that Ei = {(u, v) ∈ E|u ∈ Vi, u <
v}. The reduced adjacency list of a vertex entirely belongs to one
partition. Note that the partitions are disjoint, i.e., Ei


Ej = ∅ for

i ≠ j, and


i Ei = E. The subset of edges Ei at Pi dynamically
changes with edge switch operations and the edges are selected
from the current subset of edges at a given time.

We study four different partitioning schemes in conjunction
with the algorithm and they are described below.

4.3.1. Consecutive partitioning
The graph is partitioned such that a subset of consecutive

(in terms of vertex labels) vertices is assigned to each partition
Gi = (Vi, Ei) and each partition contains roughly m/p edges. It
is easy to determine which vertex belongs to which partition. We
refer to this partitioning scheme as Consecutive Partitioning (CP).
Assigning a consecutive set of vertices to a partition is also known
as 1D or row-wise partitioning and is employed by the Parallel
Boost Graph Library [13].

4.3.2. Hash-based partitioning
Another approach can be to use aHash-based Partitioning (HP)

scheme. A hash function can be a simple algebraic expressionmap-
ping vertex labels to partitions. Hash functions are deterministic in
nature, and by using some simple hash functions it can be very easy
and efficient to determinewhich vertex belongs towhich partition,
thus obeying the first two criteria of a good partitioning scheme.
Hash functions may assign different number of vertices and edges
to partitions.

A good hash function for the partitioning schemes should have
the following properties.

• It is simple and efficient to determine which vertex belongs to
which partition.
• Vertices are dispersed and well-distributed among the proces-

sors, i.e., all of the partitions are almost equal in size.

Division hash function (HP-D), multiplication hash function
(HP-M), and universal hashing (HP-U) are a few such hash
functions and they are described below.

1. Division hash function. A simple hash function can be a
division function (HP-D) [8]. This scheme uses the following
function:

h(v) = v mod p (5)

where p is the number of processors.
2. Multiplication hash function. Another simple hash function is

a multiplication function (HP-M) [8]. The hash function is:

h(v) = ⌊p(va− ⌊va⌋)⌋ (6)

where a ∈ (0, 1) is a constant. The fractional part of va is
extracted by va − ⌊va⌋ and is then multiplied by the number
of processors p to determine the partition where v belongs.

24 H. Bhuiyan et al. / J. Parallel Distrib. Comput. 104 (2017) 19–35
Although this scheme works with any value of a ∈ (0, 1), we
use a = (

√
5 − 1)/2 as suggested in [8] to obtain reasonably

good performance.
3. Universal hashing. The division and multiplication hash func-

tions are quite simple. However, their workload distributions
among the processors are dependent on the vertex labels of the
input graph. If there is an adversary who knows the hash func-
tion being used in advance, the adversary can artificially ma-
nipulate the graph by assigning vertex labels in such a way that
the workload distribution becomes skewed. For example, many
high degree vertices can be assigned to a partition making the
workload at theprocessor containing that partition significantly
higher compared to the other processors. To deal with such ex-
ploitation of hash functions by an adversary, universal hash-
ing [8] can be a good choice. This scheme uses the following
hash function:

h(v) = (((av + b) mod c) mod p) (7)

where c is a large prime number such that all vertex labels are
in the range [0, c − 1], a ∈ [1, c − 1] is a random integer,
and b ∈ [0, c − 1] is another random integer. Since a and b
are selected randomly, this method arbitrarily selects a hash
function from a large set of hash functions. As a result, there
is no way for the adversary to know the exact hash function in
advance or to exploit it to create a worse case scenario.

4.3.3. ParMETIS partitioning
ParMETIS [19] is a well-known MPI-based parallel library for

partitioning various types of unstructured graphs. It can efficiently
compute high quality partitioning of large graphs. We use the
parallel multilevel k-way graph partitioning scheme and refer to
this scheme as ParMETIS Partitioning (PP). Since the partitions
may contain non-contiguous vertices, each processor requires
O(n) space to store the mapping of the vertices to partitions.
To get rid of the O(n) space requirement, the vertex labels
can be reordered after the partitioning such that the vertices
belonging to a processor are reassigned consecutive vertex labels,
the lower ranked processors contain the lower vertex labels and
each processor stores the starting vertex label in every processor.

4.3.4. Random partitioning
Among other options, one simple way to partition a given net-

work is assigning vertices to partitions uniformly at random. This
approach may assign almost an equal number of vertices to the
partitions although the number of edges may vary among them.
To determine which vertex belongs to which partition, each pro-
cessor requires O(n) space to store the mapping of the vertices to
partitions; and the vertex labels can be reordered to eliminate the
O(n) space requirement (as mentioned in the PP scheme in Sec-
tion 4.3.3). We refer to this scheme as Random Partitioning (RP).

4.4. Switching a pair of edges by a single processor

A simple approach to perform an edge switch operation is that
processor Pi can select one pair of edges uniformly at random from
the entire graph (i.e., selecting two processors from [0, p − 1]
and request them for edges) and switch them by exchanging
messages among the processors. However, this approach incurs
significant synchronization and communication costs. Instead, Pi
selects one edge (u1, v1), referred to as first edge, uniformly at
random from Ei, and another edge (u2, v2), referred to as second
edge, from the entire graph. To select a second edge, Pi selects a
processor Pj with probability |Ej|/|E| and requests Pj to select an
edge (u2, v2) from Ej uniformly at random. If Pi = Pj, then it is
a local switch, otherwise it is a global switch. Due to the use of
reduced adjacency lists, one of the replacing edges (e3, e4, e5 or
e6 in Fig. 3) may belong to a different processor Pk (Pi ≠ Pk ≠
Pj); in this case, processors Pi, Pj and Pk work together to update
the reduced adjacency lists of respective vertices by exchanging
messages and thus complete the edge switch operation. A high-
level overview of an edge switch operation is given in Algorithm
2. During the course of an edge switch operation, if any processor
detects a possibility of creating loops or parallel edges, it notifies
all other processors that are involved in the edge switch operation.
Then the initiating processor (Pi in the above example) restarts the
edge switch operation by selecting a new pair of edges.

Algorithm 2 Switching a Pair of Edges Initiated by Pi

1: e1 ← a uniform random edge in Ei
2: Pj ← a random processor in [0, p − 1], where probability of

choosing Px is
|Ex|
|E|

3: if Pi = Pj then
4: Choose an edge e2 from Ei to switch with edge e1
5: Switch the edges e1 and e2 (Pi may communicate with

a different processor Pk to complete the edge switch
operation)

6: else
7: Send message ⟨e1, request to select an edge from Ej⟩ to Pj

8: Upon receipt of the abovemessage, Pj executes the following:

9: Choose an edge e2 from Ej to switch with edge e1

10: Pi and Pj work together to switch e1 and e2 (Pj may
communicate with a different processor Pk to complete the
edge switch operation)

Local switch. Pi selects two edges (u1, v1) and (u2, v2) from Ei
uniformly at random such that the edge switch does not create
loops, and is not useless. Pi decides between a straight and a
cross switch with equal probability. If it is a cross switch, Pi checks
whether (u1, v2) and (u2, v1) create parallel edges. If no parallel
edge is created, Pi removes (u1, v1) and (u2, v2), adds (u1, v2) and
(u2, v1), thus completing the edge switch operation. If the edge
switch is a straight switch, Pi determines Pk such that min(v1, v2) ∈
Vk. If Pi = Pk, Pi determines whether (u1, u2) and (v1, v2) create
parallel edges. If they do not create any parallel edge, Pi removes
(u1, v1) and (u2, v2), adds (u1, u2) and (v1, v2) and completes the
edge switch operation. If Pi ≠ Pk, Pi checkswhether (u1, u2) creates
parallel edges. If the graph remains simple, Pi sends amessage to Pk
requesting to add (v1, v2). If (v1, v2) does not create parallel edges,
Pk adds (v1, v2) and sends a message back to Pi informing it of the
updates at Pk. Upon receiving this message, Pi removes (u1, v1),
(u2, v2) and adds (u1, u2).

Global switch. In a global switch, two edges are selected from
two different processors, say Pi and Pj, i < j. Assuming Pi initiates
the edge switch operation, Pi selects an edge e1 = (u1, v1) from
Ei uniformly at random. Pi sends a message containing the edge
e1 and a request to select an edge from Ej, to Pj. Upon receiving
this message from Pi, processor Pj selects e2 = (u2, v2) from Ej
uniformly at random, and decides between a straight and a cross
switchwith equal probability. At this point, Pj knows thenewedges
that will replace e1 and e2; we refer to these new edges as potential
edgesuntil the updates take place. Nextwedescribe the cross switch
in detail.

Processor Pj checks whether u2 = v1 and v1 = v2 to detect a
loop and a useless edge switch respectively. If it does not create a
loop and is not useless, Pj determines Pk such thatmin(u2, v1) ∈ Vk.
We need to consider the following three cases.

H. Bhuiyan et al. / J. Parallel Distrib. Comput. 104 (2017) 19–35 25
i. Case Pk = Pj:
Pj checkswhether (u2, v1) creates parallel edges. If a parallel

edge is not created, then Pj sends v2 to Pi. Pi checks whether
(u1, v2) creates parallel edges. If the graph remains simple, Pi
removes edge (u1, v1), adds edge (u1, v2), and sends amessage
back to Pj informing the updates at Pi. Upon receiving this
message, Pj removes (u2, v2) and adds (u2, v1), thus completing
the edge switch operation.

ii. Case Pk = Pi:
Pj sends a message, containing e2 and a request to add both

the new edges to Pi. Processor Pi checks whether (u1, v2) and
(u2, v1) create parallel edges. If no parallel edge is created, Pi
removes (u1, v1), adds edges (u1, v2) and (u2, v1), and sends
a message back to Pj indicating the updates at Pi. Then Pj
completes the edge switch operation by removing (u2, v2).

iii. Case Pi ≠ Pk ≠ Pj:
Pj sends (u2, v1) and v2 to Pk. If (u2, v1) does not create

any parallel edge, Pk sends v2 to Pi. Pi checks whether (u1, v2)
creates any parallel edge. If the graph remains simple, Pi
removes (u1, v1), adds (u1, v2), and sends messages to Pj and
Pk notifying the updates taken place at Pi. Then Pj removes edge
(u2, v2), and Pk adds edge (u2, v1), thus completing the edge
switch operation.

A similar approach is followed for i > j and for a straight switch
as well. The use of reduced adjacency lists eliminates the following
two constraints: (i) u1 = u2, and (ii) u1 = v2 if i < j, or u2 = v1 if
i > j.

4.5. Simultaneous edge switches by all processors

In a sequential algorithm, pairs of edges are selected randomly,
one pair after another; as a result, the number of edges selected
from each partition Ei may not be equal. To have an equivalent
parallel algorithm, we need to select the same number of edges
from each partition Ei as the sequential algorithm would do. Let Xi
be the number of first edges selected from Ei by a sequential algo-
rithm. A sequential algorithm does not need to know Xi in advance.
However, for the parallel algorithm, for each i, Xi needs to be deter-
mined in advance so that processors can simultaneously perform
edge switches in parallel. For any edge switch operation, the prob-
ability that the first edge is selected from Ei is qi = |Ei|/|E| for
i = 0, 1, . . . , p − 1, and we have

p−1
i=0 qi = 1. Then it is easy to

see that the random variables Xi for i = 0, 1, . . . , p− 1 are multi-
nomially distributed with parameters (t, q0, q1, . . . , qp−1); i.e.,

⟨X0, X1, . . . , Xp−1⟩ ∼M(t, q0, q1, . . . , qp−1). (8)

The time complexity of the best known sequential algorithm,
known as the conditional distributed method [9], for generating
multinomial variables is Θ(t). Thus to have an efficient parallel
algorithm for our edge switch problem, we need to use an efficient
parallel algorithm for generatingmultinomial randomvariables. To
the best of our knowledge, there is no existing parallel algorithm
for this problem. In Section 5, we present an efficient parallel
algorithm for computing multinomial random variables that runs
in O


t
p + p log p


time.

Each processor Pi simultaneously performs Xi number of edge
switches and serves other processors’ requests as well. After
completing one edge switch, Pi proceeds to its next edge switch
operation. Below we discuss two issues that arise from performing
edge switch operations simultaneously.

1. Creating parallel edges in a new way. Even after maintaining
all the constraints to keep a graph simple, parallel edges can
be created in a different way. As multiple pairs of edges are
switched by multiple processors simultaneously, the same
new edge can be created by multiple processors at the same
time. For example, more than one instance of an edge (u, v)
is created simultaneously if more than one of the following
four edge switches are performed simultaneously by different
processors, where ‘−’ denotes an end vertex of an edge.
(i) Cross edge switch between (u,−) and (−, v). (ii) Cross edge
switch between (−, u) and (v,−). (iii) Straight edge switch
between (u,−) and (v,−). (iv) Straight edge switch between
(−, u) and (−, v). Keeping track of potential edges at each
processor ensures no parallel edges will be created in the above
mentioned way.

2. Changing probability values with the course of edge switch
process. As the edges are switched, the number of edges
changes (i.e., increases or decreases) among the partitions due
to the use of reduced adjacency lists. As a result, the probability
values (qi) of selecting edges from different partitions change,
which need to be updated dynamically. However, updating
the probability values after every edge switch operation
incurs large communication costs, which in turn slows down
the algorithm significantly. To deal with this difficulty, the
processors perform a fixed number of edge switch operations
(referred to as step-size and denoted by s) in a step, and then
update the probability values that are used in the next step.
Therefore, the algorithm performs edge switch operations in
a number of steps. At the beginning of each step, s edge
switch operations are distributed among p processors using
the multinomial distribution. The program terminates when all
of the t edge switch operations are performed in ⌈ ts ⌉ steps.
With a reasonable step-size, a very close approximation of the
sequential algorithm is achieved. The experimental results are
shown later in Section 4.7.

Summary of the parallel algorithm. Let s be the step-
size, and q be the probability vector ⟨q0, q1, . . . , qp−1⟩. All the
processors perform s edge switch operations in one step, thus
requiring a total of ⌈ ts ⌉ steps. If t%s ≠ 0, (t − s⌊ ts ⌋) number of
edge switch operations are performed in the last step. Below is
a summary of the parallel algorithm.
(1) Generating multinomial random variables. At the be-

ginning of each step, s edge switch operations are dis-
tributed among pprocessors using the parallel algorithm for
generating multinomial random variables with parameters
(s, q0, q1, . . . , qp−1). This takes O


s
p + p log p


time. Let us

denote Si to be the number of edge switch operations that a
processor Pi performs in the current step.

(2) Performing edge switch operations. To perform an edge
switch operation, a processor Pi selects one edge e1 from
Ei and the other edge e2 from the entire graph, and
completes the edge switch operation in conjunction with
other processors (details in Section 4.4). Each processor
Pi simultaneously performs Si number of edge switch
operations and serves other processors’ requests as well.
For an edge switch operation, a constant amount ofmessage
exchange is required; edges are updated in constant time
and checking for parallel edges takes O (log dmax) time.
Thus, performing Si edge switch operations at Pi takes
O (Si log dmax) time.

(3) Updating probability vector and termination. After
completing Si edge switch operations in the current step,
Pi sends end-of-step signals (or messages) to each processor
requiring O (log p) time. Pi continues to serve requests from
other processors until receiving end-of-step signals from
every processor, i.e., the end of the current step. At the end
of each step, Pi receives |Ej| from each Pj by exchanging
messages and it takes O (log p) time. Pi updates q with the
received |Ej| values in O(p) time. Then, in the next step,
s number of edge switch operations are again distributed

26 H. Bhuiyan et al. / J. Parallel Distrib. Comput. 104 (2017) 19–35
among p processors using multinomial distribution with
the updated q and edge switch operations are performed.
This process continues until t edge switch operations are
performed in ⌈ ts ⌉ steps.

4.6. Properties of parallel edge switch

In this section, we examine some stochastic properties of the
parallel edge switch process and study how stochastically similar
it is to the sequential edge switch process.

Recall that in the sequential edge switch process, one pair of
edges is selected uniformly at random, and the edges are switched
before selecting the next pair of edges. After completing the ith
edge switch operation, one or both of the two new edges generated
by the ith switch can be selected for the (i + 1)th edge switch
operation. In the parallel edge switch process, multiple pairs
of edges are selected and switched simultaneously by different
processors, and thus, the edges generated simultaneously by
multiple processors cannot be selected for a simultaneous edge
switch operation (restricting its choice). It raises the question of
whether these two processes are stochastically equivalent or how
close are they stochastically? We try to answer this question by
studying the similarity of their effect, i.e., the resultant graphs
generated by these two edge switch processes beginning with the
same initial graph.

The stochastic equivalence of the sequential and parallel edge
switch processes can be defined as follows. Let Gt

s and Gt
p be

the resultant graphs after performing t number of edge switch
operations by the sequential and parallel edge switch processes,
respectively, where both processes begin with the same initial
graph G. We say the two processes are stochastically equivalent if
Pr{Gt

s = G′} = Pr{Gt
p = G′} for all graphs G′ with the same degree

sequence as G.
Theoretical analysis of the above stochastic equivalence seems

to be difficult. Experimental analysis can also be prohibitively
time consuming. As the space of the graphs with a given degree
sequence can be very large, estimating probabilities of generating
G′ by a reasonable number repetitions of the edge switch processes
can be error prone.

Instead, we measure ‘‘similarity’’ of the two stochastic pro-
cesses. We say the sequential and parallel processes are similar if
they satisfy the following two conditions:

1. The distribution of the number of edges switched among
different partitions (i.e., subsets of edges) is the same in both
Gt
s and Gt

p, the resultant graphs of the sequential and parallel
processes, respectively. This goal is achieved by the use of
multinomial distribution as described in Section 4.5.

2. At the end of the edge switch processes, the distribution of the
number of edges across different sets of vertices is the same
for both sequential and parallel processes. Let ns(Vi, Vj) and
np(Vi, Vj) be the number of cross edges between the sets of
vertices Vi and Vj in the resultant graphs Gt

s and Gt
p, respectively.

For any positive integer t , after switching t pairs of edges, the
distributions of ns(Vi, Vj) and np(Vi, Vj), for all i, j, are the same.

The resultant graphs, Gt
s and Gt

p, are divided into r partitions
(i.e., 0 ≤ i, j ≤ r − 1), with each partition containing an equal
number of vertices having consecutive vertex labels. Note that the
ith partitions Vi of Gt

s and Gt
p have the same set of vertices with

vertex labels in

i|V |
r ,

(i+1)|V |
r − 1


(assuming n is a multiple of

r). The edge difference ED(Gt
s,G

t
p) across different sets of vertices

between Gt
s and Gt

p is computed using Eq. (9). We define the error
rate ER(Gt

s,G
t
p) between Gt

s and Gt
p as shown in Eq. (10), where the

maximumvalue of ED(Gt
s,G

t
p) can be 2m. Due to randomness, some
Table 3
Datasets used in the experiments.

Network Type of network Vertices Edges Avg. degree

New York Social contact 20.38M 587.3M 57.63
Los Angeles Social contact 16.33M 479.4M 58.66
Miami Social contact 2.1M 52.7M 50.4
Flickr Online community 2.3M 22.8M 19.83
LiveJournal Social 4.8M 42.8M 17.83
Small world Random 4.8M 48M 20
Erdős–Rényi Erdős–Rényi random 4.8M 48M 20
PA-100M Pref. attachment 100M 1B 20

error rate can be observed even between two resultant graphs, Gt
s1

and Gt
s2, generated by the sequential process in two different runs.

If ER(Gt
s,G

t
p) is roughly equal to ER(Gt

s1,G
t
s2), then the sequential

and parallel processes are said to be similar. For a same pair of
resultant graphs Gt

s and Gt
p, the value of ER(Gt

s,G
t
p) is different for

different values of r . As a result, for a particular value of r , we
are interested in how close ER(Gt

s,G
t
p) and ER(Gt

s1,G
t
s2) are to each

other rather than the value of the error rate. The experimental
results are explained in next section.

ED(Gt
s,G

t
p) =


i,j≥i

ns(Vi, Vj)− np(Vi, Vj)
 (9)

ER(Gt
s,G

t
p) =

ED(Gt
s,G

t
p)

2m
× 100%. (10)

4.7. Experimental results

In this section, we present strong and weak scaling of our
parallel algorithm, demonstrate the similarity of the sequential and
parallel edge switch processes, and analyze the trade-offs among
step-size, error rate, and speedup. We also present a comparative
study of the performance exhibited by the partitioning schemes
along with the algorithms.

Experimental setup. We use a high performance computing
cluster of 64 Intel Sandy Bridge compute nodes (Dell C6220). Each
computing node consists of a dual-socket Intel Sandy Bridge E5-
2670 2.60 GHz 8-core processor (16 processors per node) and
64 GB of 1600 MHz DDR3 RAM. The computing nodes are inter-
connected by Qlogic QDR Infiniband interconnects. To implement
our algorithm, we use C++ and MPICH2 implementation (version
1.9) of MPI. The CP, HP and RP schemes are implemented as part of
the algorithms and we use ParMETIS [19] for the PP scheme.

Datasets.We use both real-world and artificial networks for the
experiments. A summary of the networks is provided in Table 3.
New York, Los Angeles, and Miami are synthetic, yet realistic,
social contact networks [3]. Each vertex represents a person in
the corresponding city, and each edge represents any ‘physical’
contact between two persons within a 24 h time period. Flickr
is an image-based online community network [21]. LiveJournal
is a social network blogging site [21]. The small world graph is
generated using theWatts–Strogatz small world graphmodel [30],
Erdős–Rényi is generated using the Erdős–Rényi graph model [6],
and PA is generated using the Preferential Attachment graph
model [2].

Strong scaling. Figs. 4, 5, 6, and 7 show the strong scaling of the
parallel algorithm for edge switch using the CP, PP, HP-U, and RP
schemes, respectively. The algorithm performs t edge switch oper-
ations for a visit rate of x = 1 using a step-size of t/100. We have
experimented with eight different graphs, and achieved a maxi-
mum speedup of 115 with 800 processors using the RP scheme
on the Miami graph. Using the RP scheme, the harmonic mean
speedup is 73.25 with 1024 processors. The absolute runtime of
the parallel algorithm using the HP-U scheme is shown in Fig. 8.

H. Bhuiyan et al. / J. Parallel Distrib. Comput. 104 (2017) 19–35 27
Fig. 4. Strong scaling of our algorithm on eight different graphs using the CP
scheme.

Fig. 5. Strong scaling of our algorithm on eight different graphs using the RP
scheme.

Fig. 6. Strong scaling of our algorithm on eight different graphs using the HP-U
scheme.

The maximum, minimum, average and standard deviation of the
speedup from 25 experiments of the parallel algorithm using the
HP-U scheme for the Miami graph is shown in Table 5. All the
speedups are measured against the runtime of the sequential al-
gorithm given in Table 4. Speedup varies for different graphs be-
cause of the types of graphs and difference in workload distribu-
tion among the processors. Speedup starts decreasing after some
point with the increase of the number of processors indicating the
domination of communication costs over computation costs.

A comparison of strong scaling performance of the parallel
algorithms using different schemes on the Miami and PA-100M
graphs is demonstrated in Fig. 9. The RP scheme shows better
strong scaling for the Miami graph whereas CP outperforms the
other schemes for the PA-100Mgraph. To understandwhy speedup
Fig. 7. Strong scaling of our algorithm on eight different graphs using the RP
scheme.

Fig. 8. Runtime of the parallel algorithm using the HP-U scheme for visit rate= 1.

Table 4
Runtime of the sequential algorithm for visit rate= 1.

Network Time (s)

New York 4634.6
Los Angeles 3386.5
Miami 316.3
Flickr 374.6
LiveJournal 320.0
Small world 260.1
Erdős–Rényi 258.9
PA-100M 23849.3

varies for different schemes and how well the schemes perform
for different types of graphs, we further investigate workload
distributions of different schemes for the Miami and PA-100M
graphs. We use p = 1024 processors for the remainder of the
experiments in this section.

Load balancing. Figs. 10 and 11 show the distributions of
vertices and edges (at the beginning of execution), respectively,
among the processors in different schemes on the Miami graph.
The HP, RP, and PP schemes assign roughly an equal number
of vertices whereas the CP scheme initially assigns almost an
equal number of edges among the processors. Due to the use of
reduced adjacency lists, the number of vertices assigned to the
processors by the CP scheme gradually increases with the increase
of processor ranks despite having an equal number of edges among
the processors. The numbers of edges initially assigned to all the
processors by the HP and RP schemes are very close and the
distributions can be considered as roughly load balanced although
are not as perfect as that of the CP scheme. On the other hand, the
PP scheme considers two copies of each edge (as (u, v) and (v, u))
during the partitioning process, whereas our algorithm stores only

28 H. Bhuiyan et al. / J. Parallel Distrib. Comput. 104 (2017) 19–35
Table 5
Maximum, minimum, average and standard deviation of the speedup provided by the parallel algorithm using the HP-U scheme for the Miami graph. We use values of 25
experiments.

Speedup Number of processors
80 160 320 480 640 800 960 1024

Maximum 17.93 34.53 65.89 90.4 109.24 103.3 94.2 88.32
Minimum 17.61 33.34 62.88 85.56 102.63 94.4 82.96 77.49
Average 17.8 34.1 64.8 88.6 105.8 98.9 88.9 83.4
Standard deviation 0.08 0.41 0.81 1.43 2.13 2.89 3.56 3.67
(a) Miami graph. (b) PA-100M graph.

Fig. 9. A comparison of strong scaling of the parallel algorithms using different partitioning schemes for the Miami and PA-100M graphs.
Fig. 10. Distribution of vertices among the processors in different partitioning
schemes for the Miami graph.

one copy of edge ((u, v) such that u < v) to minimize the
computation and communication costs and the memory footprint.
Note that although the PP scheme may not assign contiguous
vertices to partitions, in many cases, a partition produced by the
PP scheme contains a large portion of vertices (compared to all
the vertices assigned to that partition) having consecutive vertex
labels. As a result, the partitioning by the PP scheme incurs poor
distribution of edges among the processors for our edge switch
algorithm.

Unlike the PP scheme, the parallel algorithms using the CP, RP,
andHP schemes start the edge switch processwith almost an equal
number of edges at each processor as shown in Fig. 11. Recall
that the number of edges gradually change among the processors
with the progress of the edge switch process. As a result, at the
completion of the edge switch process, the processors may end up
with numbers of edges different than the numbers at the beginning
of the process. Fig. 12 shows the distribution of edges at the
completion of an edge switch process using different schemes on
the Miami graph. The CP and PP schemes show highly skewed
distributions of edges compared to that of the HP and RP schemes.
Fig. 11. Distribution of edges (at the beginning of execution) among the processors
in different partitioning schemes for the Miami graph.

Fig. 12. Distribution of edges (after completing execution) among the processors
in different partitioning schemes for the Miami graph.

H. Bhuiyan et al. / J. Parallel Distrib. Comput. 104 (2017) 19–35 29
Fig. 13. Distribution of workload (number of edge switch operations) among the
processors in different partitioning schemes for the Miami graph.

The skewness exhibited in the CP and PP schemes is a combined
effect of the following reasons:

• A reduced adjacency list uses the ordering of vertex labels (from
0 to n − 1) to store an edge (u, v): N(u) stores v if and only if
u < v.
• The same ordering of vertex labels is used to assign a

consecutive subset of vertices to a partition.

For example, let (u1, v1) be an edge belonging to the partition in
the highest ranked processor Pp−1, participating in an edge switch
operation with another edge (u2, v2) belonging to the partition
in Pi (i < p − 1). There is a probability that both replacing
edges (edge e3 and e4, or e5 and e6 in Fig. 3) can belong to N(u2)
and N(v2), which reside in some processors other than Pp−1, thus
decreasing one edge from the partition in Pp−1 and increasing
one edge in the partition in Pj (j ≠ p − 1). The occurrence
of such a scenario increases for graphs having a high clustering
coefficient. Note that Miami is a synthetic yet realistic contact
network with maximum, minimum, and average degrees of 425,
1, and 50.4, respectively. It has a good clustering among the
vertices that is gradually destroyed with the progression of the
edge switch process. For the Miami graph, most of the edges in the
partition belonging to the highest ranked processor are replaced by
edges with one end vertex belonging to some other partition, thus
destroying the clustering among the vertices in the highest ranked
processor aswell as decreasing thenumber of edges in thepartition
substantially. As a result, some processors contain a higher number
of edges compared to other processors at the endof the edge switch
process. Since the number of edge switch operations performed at
a processor Pi depends on the number of edges at Pi, the skewness
in the number of edges among the processors with the course
of the edge switch process results in an imbalanced workload
distribution as shown in Fig. 13 for the Miami graph.

In contrast, the HP and RP schemes do not assign consecutive
vertices to a partition. Thus a subset of vertices having dispersed
vertex labels along with their reduced adjacency lists belongs to a
partition. As a result, the change in the number of edges among the
partitions during the edge switch process is significantly less than
that of the CP and PP schemes for the Miami graph, leading to a
better workload distribution in the HP and RP schemes as shown
in Fig. 13. Hence, all of the HP and RP schemes outperform the CP
and PP schemes for the Miami graph, which is illustrated in Fig. 9.
Among the RP and HP schemes, RP outperforms the HP schemes
and HP-U outperforms the other HP schemes by a slight margin for
the Miami graph.

On the other hand, Fig. 14 illustrates that the CP schemeexhibits
better workload distribution for a Preferential Attachment graph
having 100M vertices and 1B edges. PA graph has a very highly
skewed degree distribution, i.e., it has a few very high degree and
many low degree vertices. The maximum, minimum, and average
degrees of the PA-100M graph are 55225, 10, and 20, respectively.
The CP scheme assigns a consecutive subset of vertices to partitions
and uses the degrees of vertices to ensure that all the partitions
have an equal number of edges; whereas the HP and RP schemes
assign vertices to partitions using only vertex labels; they neither
use the degree of vertices nor consider the number of edges
already assigned to a partition. As a result, the HP and RP schemes
assign several high degree vertices to some processors for the
PA graph, thus making the initial edge distribution slightly more
skewed compared to the CP scheme. Since PA is a random graph
having a very low clustering coefficient, the number of edges
initially assigned to a processor varies negligibly with the course
of the edge switch process in the CP scheme. As a result, the CP
scheme has an advantage of a better initial edge distribution, and
thus demonstrates a better workload distribution and speedup
compared to the other schemes as shown in Figs. 14 and 9
respectively.

A worse case scenario for the HP-D scheme. Unlike the CP,
RP, and PP schemes, one potential disadvantage of the HP schemes
is that if there is an adversary aware of the exact hash function
being used as the partitioning scheme, the adversarymay generate
a worse case scenario by artificially manipulating vertex labels of
a graph. We simulate such a scenario for the HP-D scheme using
1024 processors. We intentionally reassign vertex labels of the PA-
100Mgraph in such away that all of the n/phighest degree vertices
are assigned to a single processor, say Pk. Thus Pk has a very high
number of edges compared to the other processors despite having
an equal number of vertices among the processors. As a result, Pk
performs a substantially higher number of edge switch operations
(a) HP-M, HP-D and PP schemes. (b) HP-U, CP and RP schemes.

Fig. 14. Distribution of workload (number of edge switch operations) among the processors in different partitioning schemes for the PA-100M graph.

30 H. Bhuiyan et al. / J. Parallel Distrib. Comput. 104 (2017) 19–35
Fig. 15. A worse case scenario of distribution of workload (number of edge switch
operations) among the processors for the HP-D scheme on the PA-100M graph.

Fig. 16. A comparison of speedup of a worse case scenario for the HP-D scheme
with other schemes on a PA-100M graph with 1024 processors.

compared to that of the other processors as shown in Fig. 15 (in
this example, Pk is the processor with rank 256), whereas other
schemes show good performance by executing faster on the same
graph as shown in Fig. 16. An adversary can generate a similar
worse case scenario for the HP-M scheme as well.

Advantage of the HP-U and RP schemes. Universal hashing
randomly selects a hash function from a large set of hash functions.
As a consequence, there is no way for an adversary to know
in advance exactly which hash function will be used. Therefore,
the HP-U scheme overcomes the drawbacks of the HP-D and
HP-M schemes. The RP scheme also has the same advantage of
randomly assigning vertices to partitions. In addition, HP-U and RP
demonstrate good speedups for all types of graphs and outperform
the other schemes in many cases. The HP-U does not require
reordering the vertex labels after partitioning to eliminate theO(n)
space requirement for storing the mapping information of vertices
like the PP and RP schemes. Although the CP scheme exhibits the
best performance for the PA-100M graph, speedups achieved by
the HP-U and RP schemes are very close to that of CP, justifying
HP-U and RP as good choices in general. The PP scheme exhibits
the poorest performance among all the schemes, because of poor
load distribution among processors.

Similarity of the outcomes of the parallel and sequential
algorithms and determining suitable step-size. For convenience,
we first present the effect of step-size on the parallel algorithm
using the CP scheme and then we discuss the effect of step-size for
other schemes. We use visit rate x = 1, current calendar time as
random seed, r = 20 partitions, p = 1024 processors, and average
value of 10 experiments.

Effect of step-size on the CP scheme. Fig. 17 shows that better
strong scaling is achieved for a larger step-size on theMiami graph.
Fig. 17. A comparison of strong scaling performance on the Miami graph for
different step-sizes: 9.4M, 4.7M, 2.3M, 1.6M, 0.75M, and 50K.

Fig. 18. Error rate with increasing number of processors on the Miami graph using
different step-sizes: 9.4M, 4.7M, 2.3M, 1.6M, 0.75M, and 50K.

Fig. 19. Speedupwith increasing step-size on theMiami graph using 160, 640, and
1024 processors.

For a particular step-size, error rate remains roughly constant with
the increase of processors on the Miami graph, as shown in Fig. 18.
The effects of step-size on speedup and error rate for the Miami
graph are shown in Figs. 19 and 20, respectively. Both the speedup
and error rate increase with the increase of step-size.

While keeping the error rate to aminimum, wewant to achieve
as much speedup as possible. From Fig. 20, we observe that with
up to a step-size of 2M, the error rate between the resultant graphs
generated by the sequential and parallel algorithms is roughly the
same as the error rate between the resultant graphs generated by
two different executions of the sequential algorithm. Hence, 2M
can be a suitable step-size for the Miami graph, since the error rate

H. Bhuiyan et al. / J. Parallel Distrib. Comput. 104 (2017) 19–35 31
Table 6
Error rate comparison of the outcomes of the parallel algorithms using different partitioning schemes with that of the sequential algorithm for different graphs. We use the
average of 10 experiments.

Networks Error rates (%) for different schemes
Sequential Parallel

Using 1 step Using 100 steps
HP-D HP-M HP-U RP HP-D HP-M HP-U RP CP PP

Miami 0.117 0.118 0.123 0.117 0.117 0.111 0.127 0.123 0.120 0.164 0.175
Small World 0.112 0.100 0.112 0.119 0.116 0.106 0.118 0.109 0.115 0.115 0.121
LiveJournal 0.116 0.117 0.118 0.117 0.117 0.116 0.116 0.116 0.1177 0.115 0.126
Fig. 20. Error rate with increasing step-size on the Miami graph using 1, 160, 640,
and 1024 processors.

Fig. 21. Speedup with increasing step-size for different graphs using 1024
processors.

Fig. 22. Error rate with increasing step-size for different graphs using 1024
processors.
is minimal, and a good speedup factor of 50 using 1024 processors
is achieved at the same time. If we further increase the step-size,
both the speedup and error rate increase. For example, using a
step-size of 9.4M, the error rate is a negligible 0.4%, however a
higher speedup factor of 62 is achieved using 1024 processors.
Figs. 21 and 22 illustrate the effect of step-size on speedup and
error rate, respectively, for different graphs. Suitable step-size
may vary from graph to graph, depending on the graph size and
type of the graph. For example, the error rate is roughly constant
for different step-sizes on Erdős–Rényi and LiveJournal graphs,
though it varies for the Flickr and Miami graphs as shown in
Fig. 22. A suitable step-size for the Flickr, Miami, LiveJournal and
Erdős–Rényi graphs can be 1.5M, 2M, 4M and 8M respectively. In
general, if we use a lower step-size, say 2M, for any medium-sized
graph (having more than 20M edges), we expect to have a very
small error rate alongwith a good speedup. The above experiments
show that the sequential and the parallel edge switch processes are
similar with a suitable step-size.

Effect of step-size on other schemes. Table 6 shows the error
rate comparison of the outcomes of the parallel algorithms using
different schemes, with that of the sequential one suggesting
that even for performing edge switch operations in one step, the
outcomes of the parallel algorithms using the HP and RP schemes
are similar to that of the sequential algorithm with a negligible
error rate deviation. Since the HP and RP schemes assign vertices
dispersedly among the partitions, the number of edges initially
belonging to a partition changes negligibly with edge switch
operations compared to that of the CP and PP schemes. Hence the
HP and RP schemes can perform edge switch operations in only
one step with reasonable accuracy, which consequently makes
computation faster. As a result, the parallel algorithms using the
HP and RP schemes no longer need a suitable step-size. In contrast,
finding a suitable step-size is important for the CP and PP schemes
to obtain a close approximation of the outcome of the sequential
algorithm.

Weak scaling. Fig. 23 shows weak scaling comparison of
different schemes on the PA graphs. In one experiment, we
increase the graph size with the increase of processors, and use
the Preferential Attachment graphs with (p × 0.1M) vertices and
an average degree of 20. In another experiment, we use a fixed
Preferential Attachment graph with 102.4M vertices and 1.024B
edges. In both the experiments we use t = p × 10M and
step size = t/1000. Ideally, the parallel runtime should remain
constant. However, in practice the communication increases with
the increase in the number of processors, leading to a higher
runtime. Our algorithm shows good weak scaling as the runtime
increases linearly in both the cases.

How do network properties change with switching edges?
We also analyze how some network properties change with edge
switch operations by the sequential and parallel algorithms. We
use the Miami, LiveJournal, and Flickr graphs, and vary the visit
rate from 0.1 to 1. Figs. 24 and 25 show that the average clustering
coefficient and average shortest path distance of a graph change in
exactly the same way with edge switches by the sequential and
parallel algorithms. Average clustering coefficient measures the

32 H. Bhuiyan et al. / J. Parallel Distrib. Comput. 104 (2017) 19–35
(a) HP-D, PP and HP-M schemes. (b) HP-U, RP and CP schemes.

Fig. 23. Weak scaling comparison of the parallel algorithms using various partitioning schemes with fixed and varying size PA graphs. In one experiment, we use a fixed
graph having 102.4M vertices and 1.024B edges while in the other experiment, we increase (or vary) graph size with the increase of processors. The varying graphs have
(p× 0.1M) vertices and an average degree of 20, where p is the number of processors. For both experiments, we use t = p× 10M and step-size= t/1000.
Fig. 24. Average clustering coefficient changes similarly with edge switch
operations by the sequential and parallel algorithms.

tendency of the vertices to cluster together or create tightly knit
groups, which is a pervasive phenomena in many social networks
where people with common friends tend to be friends themselves.
With the progress of an edge switch process, the edges are replaced
by random edges. Therefore, the clustering among the vertices gets
destroyed rapidly, which eventually reaches very close to 0 for a
visit rate of 1.0. As the edges are switched, the vertices further
get connected by shorter paths, thus reducing the average shortest
path distance as well. For both properties, the changes by the
sequential and parallel algorithms are very similar; in fact, they
overlap with each other and it is difficult to distinguish them in
the figures.

Generating assortative networks by switching edges. We
demonstrate how edge switch can be used to generate assortative
networks. In a labeled network, each vertex u has an associated
attribute L(u). Such attributes canbe, for example, the age of people
in a contact network or the degree of the vertices. Adding vertex
attribute constraints with edge switch leads to many interesting
problems. Xulvi-Brunet et al. [32] proposed one such algorithm
to produce assortative mixing to a desired degree by imposing
constraints on vertex attributes during an edge switch process.
Assortative mixing is an important network feature measuring the
tendency of vertices to associate with similar or dissimilar vertices
and is quantified by a metric named the assortative coefficient (r)
[23,24]. In other words, assortativity measures the correlation
of vertices based on vertex attributes. A network is called an
assortative network if r > 0.

In this demonstration, we use the degree of a vertex as its
attribute, i.e., L(u) = du. The level or extent of assortative mixing
Fig. 25. Average shortest path distance changes similarly with edge switch
operations by the sequential and parallel algorithms.

is controlled by a parameter p (0 ≤ p ≤ 1). Then an edge
switch operation selects two edges randomly with the four end
vertices having different degrees in general. The four vertices are
ordered based on their degrees. Then with probability p, an edge
switch operation connects the two higher degree vertices with
an edge and the two lower degree vertices with another edge.
With probability (1 − p), the edges are switched randomly. This
algorithm generates a random network with parameter p = 0.
With the increase of p, the assortativity increases and it reaches
a maximum value for p = 1 (see [32] for a good discussion). We
apply the principle of [32]with our parallel algorithm for switching
edges to generate assortative networks and present the results
below.

Fig. 26 shows how the assortative coefficient changes with the
edge switch process for different values of p on the Miami graph.
For p = 1, we obtain a maximum assortative coefficient value of
0.999992, beyond which the assortativity does not increase due to
the restriction imposed by the degree distribution. Fig. 27 shows
the speedup obtained by the parallel algorithm using the HP-U
scheme for performing 300M edge switch operations on theMiami
graph.

Synopsis of the experimental results. All of the partitioning
schemes demonstrate reasonably good performance. Below is a
summary of the results.

• The hash-based and random partitioning schemes exhibit
better performance formany graphs because of awell-balanced
workload distribution.
• The HP and RP schemes can perform edge switch operations in

only one step with reasonable accuracy, thus eliminating the

H. Bhuiyan et al. / J. Parallel Distrib. Comput. 104 (2017) 19–35 33
Fig. 26. Change of assortative coefficient (considering the degree of a vertex as its
attribute) with the edge switch process on the Miami graph. The parameter p is
varied from 0 to 1.

need for performing edge switch operations in a number of
steps.
• There is a possibility of a worse case scenario arising for the

HP-D and HP-M schemes that may slow down the algorithms
significantly. The HP-U scheme overcomes this drawback by
randomly choosing a hash function from a large set of hash
functions. Like the HP-U scheme, the CP, PP, and RP schemes
are also not vulnerable to adversaries for generating worse case
scenarios.
• The CP scheme shows good performance with some compu-

tation overhead by performing edge switch operations with a
suitable step-size for all types of graphs, and in some cases
(e.g., PA-100M) outperforms the other schemes.
• The PP scheme exhibits the poorest performance among all the

schemes due to poor workload distribution. It also requires to
perform edge switch operations with a suitable step-size.
• Unlike the HP and CP schemes, the PP and RP schemes need to

reassign the vertex labels after partitioning to get rid of theO(n)
space requirement at each processor to store the mapping of
vertices to partitions.

5. Parallel algorithm for computing binomial andmultinomial
distribution

In this section we present a parallel algorithm for computing
multinomial distribution of very large numbers. First we briefly
review the current state-of-the-art sequential algorithm.

5.1. Sequential algorithm for computing multinomial distribution

One simple approach for computing multinomial random
variables is to performN independent trials, where the outcome of
each trial can be 0, 1, . . . , ℓ − 1 with probability q0, q1, . . . , qℓ−1,
respectively. This algorithm takes at least Ω(N log ℓ) time. An
efficient state-of-the-art algorithm is the conditional distributed
method [9], which runs in O(N) time. This method generates
multinomial random variables ⟨X0, X1, . . . , Xℓ−1⟩ by iteratively
generating ℓ binomial random variables:

Xi ∼ B

N −
i−1
j=0

Xj,
qi

1−
i−1
j=0

qj

 . (11)

The inverse transformation method (BINV) [17] is the best
known algorithm for computing binomial random variables. To
Fig. 27. Speedup gained by the parallel algorithm of edge switch for different
values of p. The algorithm performs 300M edge switch operations on the Miami
graph.

generate a binomial random variable X with parameters N and q,
it takes O(X) time. Note that the expected value of X is Nq.

The algorithms for the inverse transformation method
(BINV) [17] to generate binomial randomvariables and for the con-
ditional distributed method [9] to generate multinomial random
variables are shown in Algorithms 3 and 4, respectively. For addi-
tional details, see [17,9].

Algorithm 3 Binomial(N, q)
1: if q = 1 then return N
2: i← 0 {i is the binomial random variable}
3: Generate u ∼ U(0, 1) uniformly at random
4: Q ← (1− q)N , S ← Q
5: while S < u do
6: i← i+ 1
7: Q ← Q

N−i+1
i

  q
1−q


8: S ← S + Q
9: return i

Algorithm 4Multinomial(N, q0, q1, . . . , qℓ−1)
1: Xs ← 0,Qs ← 0
2: for i = 0 to ℓ− 1 do
3: if Qs < 1 then
4: Xi ← Binomial


N − Xs,

qi
1−Qs


5: Xs ← Xs + Xi
6: Qs ← Qs + qi
7: else Xi ← 0
8: return ⟨X0, X1, . . . , Xℓ−1⟩

The conditional distributed method shown in Algorithm 4 runs
in
ℓ−1

i=0 O(Xi) = O(N) time. In the next section, we present an
efficient parallelization of Algorithm 4.

5.2. Parallel algorithm for computing multinomial distribution

Based on the conditional distributed method shown in Algo-
rithm 4, we propose a parallel algorithm for computing multino-
mial distribution X ∼M(N, q), where q denotes probability vector
⟨q0, q1, . . . , qℓ−1⟩. One tempting approach to parallelize the con-
ditional distributed method is to distribute the generation of Xi,
0 ≤ i < ℓ (Line 4 of Algorithm 4) among the processors. However,
a difficulty arises from the sequential nature of computing Xi due

34 H. Bhuiyan et al. / J. Parallel Distrib. Comput. 104 (2017) 19–35
to the dependency of Xi on Xi−1 for all i > 0. We overcome this dif-
ficulty by exploiting some properties of binomial and multinomial
random variables, as described below.

Let Ni, for 0 ≤ i < k, be some integers such that N =
k−1

i=0 Ni.
If Xi ∼ B(Ni, q), then

X =
k−1
i=0

Xi ∼ B


k−1
i=0

Ni, q


= B(N, q). (12)

The above property of the binomial random variables leads to
the following property of the multinomial random variables. If
⟨X0,i, X1,i, . . . , Xℓ−1,i⟩ ∼M(Ni, q0, q1, . . . , qℓ−1)

for 0 ≤ i < k, then
⟨X0, X1, . . . , Xℓ−1⟩ ∼M(N, q0, q1, . . . , qℓ−1) (13)

where Xj =
k−1

i=0 Xj,i for 0 ≤ j < ℓ and N =
k−1

i=0 Ni.
Nowwe describe the parallel algorithm for computingmultino-

mial distribution, which uses the above property. First, we explain
the case of p = ℓ. Our algorithm divides the number of trialsN into
p almost equal small number of trials Ni, and assigns Ni to Pi. Then
each processor Pi computes the multinomial distribution of Ni us-
ing the same probability vector q. At the end, the results of all the
processors are aggregated. The pseudocode is given in Algorithm
5, where processor Pi holds the multinomial random variable Xi at
the end of computation.

Algorithm 5 Parallel Multinomial(N, q0, . . . , qℓ−1)
1: Each processor Pi executes the following in parallel:

2: if i < N%p then Ni ← ⌊
N
p ⌋ + 1

3: else Ni ← ⌊
N
p ⌋

4: ⟨X0,i, X1,i, . . . , Xℓ−1,i⟩ ∼M(Ni, q0, q1, . . . , qℓ−1)
5: Send Xj,i to processor Pj

6: Upon receiving Xi,k from every processor Pk:

7: Xi ←

p−1
k=0

Xi,k

For p ≠ ℓ, the algorithm is the same up to the multinomial
distribution computation of Ni at Pi, i.e., Lines 1–4 of Algorithm 5.
The only difference is how the generated multinomial random
variables will be stored among the processors. The variables can
be stored in many ways, e.g., all the Xis can be gathered to the root
processor P0, or they (Xis) can be distributed among the processors
in a round robin fashion, i.e., assigning Xi to processor P(i%p), etc. Xi
is always computed by summing up all the Xi,ks (0 ≤ k < p), after
receiving them from all processors.

The parallel computation is almost perfectly load balanced
among the processors since each processor computes multinomial
distribution of N/p independently, taking O


N
p


time. The

communication cost at the end takes O(ℓ log p) time. Hence, the
time complexity of this algorithm isO


N
p + ℓ log p


. The algorithm

is almost perfectly parallelized because the number of processors,
p (which is in the range of hundreds or at most thousands), and the
number of outcomes ℓ, are significantly smaller than the number
of trials N (which is in the range of billions), in a general case.
Algorithm 5 computes binomial distribution for ℓ = 2.

During binomial random variable generation, the computation
of (1− q)N (Line 4 of Algorithm 3) results in numerical underflow
for large values of N , e.g., billions. Using the long double data
type cannot solve this underflow problem for large N . In addition,
some round off errors may appear. We deal with these difficulties
by using the property of the binomial distribution again, i.e., we
divide N into small Nis such that


i Ni = N , compute X using

Eq. (12). The upper threshold value of Ni is set such that no
Fig. 28. Strong scaling of the parallel algorithm of multinomial distribution using
N = 10 000B, ℓ = 20 and qi = 1/ℓ.

Fig. 29. Weak scaling of the parallel algorithm of multinomial distribution using
N = p× 20B, ℓ = p and qi = 1/ℓ.

underflow occurs, that is,

(1− q)Ni ≥ z (14)

Ni ≤
− log z

log(1− q)
≤
− log z

2q
(15)

where z is the smallest positive real number that can be
represented by the data type (e.g., float, double) used and q < 1.

5.3. Performance analysis of the parallel algorithm

In this section, the performance of the parallel algorithm for
multinomial distribution is demonstrated by strong scaling and
weak scaling.

Strong scaling. The strong scaling of the parallel algorithm
is illustrated in Fig. 28. We keep the problem size fixed (N =
10 000B, ℓ = 20 and qi = 1/ℓ), and achieve a speedup of 925
using 1024 processors. The speedup increases almost linearly with
the increase of processors. The parallel algorithm can compute a
multinomial distribution of 10000B in 71 s using 1024 processors.

Weak scaling. Fig. 29 shows the weak scaling of our parallel
algorithm. We use ℓ = p (i.e., total number of processors), N =
p × 20B (i.e., 20B per processor), and equal probability values,
qi = 1/ℓ. The parallel runtime is almost constant indicating a very
good weak scaling.

6. Conclusion

We presented parallel algorithms for switching edges in
massive networks. They can be used in studying various properties

H. Bhuiyan et al. / J. Parallel Distrib. Comput. 104 (2017) 19–35 35
of large dynamic networks as well as in generating massive scale
random graphs. The algorithms scale well to a large number
of processors and exhibit good speedup. We also presented the
trade-offs of several partitioning schemes. We demonstrated an
application of our parallel algorithms to generate assortative
networks. In addition, we developed a parallel algorithm for
generating multinomial random variables that is almost perfectly
parallelized. This algorithm can be of independent interest and
prove useful in parallelizing many other stochastic processes. We
believe that the parallel algorithms will contribute significantly
when dealing with big data, one of the most challenging problems
in today’s research world.

Acknowledgments

We thank our external collaborators, members of the Net-
work Dynamics and Simulation Science Laboratory (NDSSL), and
anonymous reviewers for their suggestions and comments.We are
grateful to Anil Vullikanti for interesting discussions and help-
ful comments on a draft of this paper. We also sincerely thank
Maureen Lawrence-Kuether, Lenwood S. Heath, and JimWalke for
proof-reading this paper.

References

[1] I. Adler, S. Oren, S. Ross, The coupon-collector’s problem revisited, J. Appl.
Probab. 40 (2) (2003) 513–518.

[2] A. Barabási, R. Albert, Emergence of scaling in random networks, Science 286
(5439) (1999) 509–512.

[3] C. Barrett, R. Beckman, M. Khan, V. Kumar, M. Marathe, P. Stretz, T. Dutta,
B. Lewis, Generation and analysis of large synthetic social contact networks,
in: Proceedings of the 2009 Winter Simulation Conference, WSC, 2009,
pp. 1003–1014.

[4] H. Bhuiyan, J. Chen, M. Khan, M. Marathe, Fast parallel algorithms for
edge-switching to achieve a target visit rate in heterogeneous graphs,
in: Proceedings of the 43rd International Conference on Parallel Processing,
ICPP, IEEE, 2014, pp. 60–69.

[5] J. Blitzstein, P. Diaconis, A sequential importance sampling algorithm for
generating random graphs with prescribed degrees, Internet Math. 6 (4)
(2011) 489–522.

[6] B. Bollobás, Random Graphs, Springer, 1998.
[7] C. Cooper, M. Dyer, C. Greenhill, Sampling regular graphs and a peer-to-peer

network, Combin. Probab. Comput. 16 (4) (2007) 557–593.
[8] T. Cormen, Introduction to Algorithms, MIT press, 2009.
[9] C. Davis, The computer generation of multinomial random variates, Comput.

Stat. Data Anal. 16 (2) (1993) 205–217.
[10] S. Eubank, A. Vullikanti, M. Khan, M. Marathe, C. Barrett, Beyond degree

distributions: Local to global structure of social contact graphs, in: Proceedings
of the Third International Conference on Social Computing, Behavioral
Modeling, and Prediction, SBP, 2010, p. 1.

[11] T. Feder, A. Guetz, M. Mihail, A. Saberi, A local switch markov chain on given
degree graphs with application in connectivity of peer-to-peer networks, in:
Proceedings of the 47th Annual IEEE Symposium on Foundations of Computer
Science, FOCS, 2006, pp. 69–76.

[12] C. Gkantsidis, M. Mihail, E. Zegura, The markov chain simulation method
for generating connected power law random graphs, in: Proceedings of the
FifthWorkshop on AlgorithmEngineering and Experiments, ALENEX, Vol. 111,
SIAM, 2003, pp. 16–25.

[13] D. Gregor, A. Lumsdaine, The parallel BGL: A generic library for distributed
graph computations, Parallel Object-Oriented Sci. Comput., POOSC 2 (2005)
1–18.

[14] A. Hagberg, P. Swart, D. Schult, Exploring network structure, dynamics, and
function using NetworkX, in: Proceedings of the 7th Python in Science
Conference, SciPy, 2008, pp. 11–15.

[15] S. Hakimi, On realizability of a set of integers as degrees of the vertices of a
linear graph, J. Soc. Ind. Appl. Math. 10 (3) (1962) 496–506.

[16] M. Jerrum, A. Sinclair, Fast uniform generation of regular graphs, Theoret.
Comput. Sci. 73 (1) (1990) 91–100.

[17] V. Kachitvichyanukul, B. Schmeiser, Binomial random variate generation,
Commun. ACM 31 (2) (1988) 216–222.

[18] R. Kannan, P. Tetali, S. Vempala, Simple markov-chain algorithms for
generating bipartite graphs and tournaments, Random Struct. Algorithms 14
(4) (1999) 293–308.

[19] G. Karypis, K. Schloegel, V. Kumar, ParMETIS: Parallel graph partitioning
and sparse matrix ordering library, Version 1.0, Dept. of Computer Science,
University of Minnesota, 1997.

[20] J. Kim, V. Vu, Sandwiching random graphs: universality between random
graph models, Adv. Math. 188 (2) (2004) 444–469.

[21] J. Leskovec, A. Krevl, SNAP Datasets: Stanford large network dataset collection,
(Jun. 2014). http://snap.stanford.edu/data.
[22] M. Newman, The structure and function of complex networks, SIAM Rev. 45
(2) (2003) 167–256.

[23] M. Newman, Assortative mixing in networks, Phys. Rev. Lett. 89 (20) (2002)
208701.

[24] M. Newman, Mixing patterns in networks, Phys. Rev. E 67 (2) (2003) 026126.
[25] J. Ray, A. Pinar, C. Seshadhri, Are we there yet? When to stop a markov

chain while generating random graphs, in: Proceedings of the 9th Workshop
on Algorithms and Models for the Web Graph, WAW, Springer, 2012,
pp. 153–164.

[26] I. Stanton, A. Pinar, Constructing and sampling graphs with a prescribed joint
degree distribution, J. Exp. Algorithmics, JEA 17 (3) (2012) 3–5.

[27] A. Stauffer, V. Barbosa, A study of the edge-switching markov-chain method
for the generation of random graphs, Tech. Rep. cs.DM/0512.105, 2005.

[28] A. Steger, N. Wormald, Generating random regular graphs quickly, Combin.
Probab. Comput. 8 (04) (1999) 377–396.

[29] L. Tabourier, C. Roth, J. Cointet, Generating constrained random graphs using
multiple edge switches, J. Exp. Algorithmics, JEA 16 (1) (2011) 1–7.

[30] D. Watts, S. Strogatz, Collective dynamics of ‘small-world’ networks, Nature
393 (6684) (1998) 440–442.

[31] N. Wormald, Models of random regular graphs, in: London Mathematical
Society Lecture Note Series, 1999, pp. 239–298.

[32] R. Xulvi-Brunet, I. Sokolov, Reshuffling scale-free networks: From random to
assortative, Phys. Rev. E 70 (6) (2004) 066102.

Hasanuzzaman Bhuiyan is a Ph.D. student in the Depart-
ment of Computer Science, Virginia Tech and a Graduate
Research Assistant in the Network Dynamics and Simu-
lation Science Laboratory at the Biocomplexity Institute
of Virginia Tech. He received his B.S. in Computer Sci-
ence and Engineering from Bangladesh University of Engi-
neering and Technology and his M.S. in Computer Science
from Virginia Tech. His research interests include high-
performance computing, parallel and distributed comput-
ing, graph algorithms and data mining with real-world
applications in network science. His current research in-

cludes designing and developing efficient and scalable parallel algorithms for big
data analytics.

Maleq Khan is currently an Assistant Professor in the
Department of Electrical Engineering and Computer
Science at Texas A&M University—Kingsville. He received
his Ph.D. in Computer Science from Purdue University. His
research interests are parallel and distributed computing,
big data analytics, high performance computing, data
mining, and in the design and analysis of algorithms,
specifically distributed algorithms, parallel algorithms,
randomized algorithms, and graph algorithms. He has
published a large number of papers in these areas. One of
his papers received a best paper award at the Symposium

on Distributed Computing (DISC), a flagship conference on distributed computing,
and another of his papers was a best paper award finalist at the International
Conference for High Performance Computing, Networking, Storage and Analysis
(SC16).

Jiangzhuo Chen is a Research Associate Professor in the
Network Dynamics and Simulation Science Laboratory
at the Biocomplexity Institute of Virginia Tech. He
received his B.A. in Economics from Nanjing University,
his M.A. in Economics from Boston College, and his
Ph.D. in Computer Science from Northeastern University.
His research interests include big data analytics; model
based forecasting; modeling, simulation, and analysis of
large scale social networks; computational epidemiology;
computational economics; and approximation algorithms
for network optimization problems. His current research

includes high performance simulation of social network dynamics; modeling of
synthetic population and social network; and forecasting of epidemics.

Madhav Marathe is the Director of the Network Dynam-
ics and Simulation Science Laboratory at the Biocomplex-
ity Institute of Virginia Tech and Professor of Computer
Science at Virginia Tech. He has over ten years of experi-
ence in project leadership and technology development,
specializing in high performance computing algorithms
and software environments for simulating and analyzing
socio-technical network science. He is the recipient of the
Distinguished Copyright award for TRANSIMS software,
Los Alamos National Laboratory’s achievement award, a
recipient of the University at Albany Distinguished Alumni

Award and 2010 Award for Research Excellence, Virginia Bioinformatics Institute.
He is the 2011 Inaugural GeorgeMichael Distinguished Scholar at the Lawrence Liv-
ermore National Laboratory. In 2013 he became an ACM Fellow and IEEE Fellow. In
2014, he was named an AAAS Fellow.

http://refhub.elsevier.com/S0743-7315(16)30180-0/sbref1
http://refhub.elsevier.com/S0743-7315(16)30180-0/sbref2
http://refhub.elsevier.com/S0743-7315(16)30180-0/sbref4
http://refhub.elsevier.com/S0743-7315(16)30180-0/sbref5
http://refhub.elsevier.com/S0743-7315(16)30180-0/sbref6
http://refhub.elsevier.com/S0743-7315(16)30180-0/sbref7
http://refhub.elsevier.com/S0743-7315(16)30180-0/sbref8
http://refhub.elsevier.com/S0743-7315(16)30180-0/sbref9
http://refhub.elsevier.com/S0743-7315(16)30180-0/sbref12
http://refhub.elsevier.com/S0743-7315(16)30180-0/sbref13
http://refhub.elsevier.com/S0743-7315(16)30180-0/sbref15
http://refhub.elsevier.com/S0743-7315(16)30180-0/sbref16
http://refhub.elsevier.com/S0743-7315(16)30180-0/sbref17
http://refhub.elsevier.com/S0743-7315(16)30180-0/sbref18
http://refhub.elsevier.com/S0743-7315(16)30180-0/sbref20
http://snap.stanford.edu/data
http://refhub.elsevier.com/S0743-7315(16)30180-0/sbref22
http://refhub.elsevier.com/S0743-7315(16)30180-0/sbref23
http://refhub.elsevier.com/S0743-7315(16)30180-0/sbref24
http://refhub.elsevier.com/S0743-7315(16)30180-0/sbref25
http://refhub.elsevier.com/S0743-7315(16)30180-0/sbref26
http://refhub.elsevier.com/S0743-7315(16)30180-0/sbref27
http://refhub.elsevier.com/S0743-7315(16)30180-0/sbref28
http://refhub.elsevier.com/S0743-7315(16)30180-0/sbref29
http://refhub.elsevier.com/S0743-7315(16)30180-0/sbref30
http://refhub.elsevier.com/S0743-7315(16)30180-0/sbref31
http://refhub.elsevier.com/S0743-7315(16)30180-0/sbref32

	Parallel algorithms for switching edges in heterogeneous graphs
	Introduction
	Preliminaries
	Edge switch
	Determining the number of edges to switch for a given visit rate
	Keeping the graph simple
	Sequential edge switch

	Parallel edge switch
	Overview of the algorithm
	Data structures
	Partitioning the network
	Consecutive partitioning
	Hash-based partitioning
	ParMETIS partitioning
	Random partitioning

	Switching a pair of edges by a single processor
	Simultaneous edge switches by all processors
	Properties of parallel edge switch
	Experimental results

	Parallel algorithm for computing binomial and multinomial distribution
	Sequential algorithm for computing multinomial distribution
	Parallel algorithm for computing multinomial distribution
	Performance analysis of the parallel algorithm

	Conclusion
	Acknowledgments
	References

