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ABSTRACT
In order to notify users about potentially unsafe situations and to
track mistakes or e�ciency performing activities, it is important to
monitor the quality of performing an activity and identify the miss-
ing/wrong steps. However, the state-of-the-art activity recognition
frameworks ignore such details and impose constraints on sensor
values, the types of detected activities (no parallel/interleaved/joint
activities), or the number of users, which reduce the robustness
of the system in the real world se�ings. �erefore, we present
QuActive , a grammar based general purpose framework for mod-
eling activities and micro-activities that retains the details of the
activity steps, quanti�es activity quality, and noti�es users about
missing steps and unsafe situations. In order to show the versatility
of QuActive , we evaluate the framework on three di�erent public
datasets that have interleaved activities, parallel and co-operative
activities, and activities of cognitively declined patients with qual-
ity information labeled. In all cases, QuActive outperforms the
state-of-the-art techniques applied on these data sets. In addition,
we have deployed the system in a real home and collected data in a
semi-controlled se�ing to evaluate the performance of the system in
real se�ings. �e results show that QuActive recognizes more than
90% of the de�ned micro-activities and the grammar detects almost
all the de�ned activities from the recognized micro-activities.

CCS CONCEPTS
•Human-centered computing→Activity centered design ; •Applied
computing →Health care information systems ; •Computer
systems organization →Sensor networks ; •�eory of computa-
tion →Grammars and context-free languages;
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1 INTRODUCTION
In today’s smart world, wearable and in-situ sensors are being used
to monitor humans and recognize many types of activities. In most
cases, the resulting information is not acted upon in any direct
or real-time manner. However, by more intimately bringing the
human into a feedback loop, there is great potential to use interven-
tions and noti�cations to improve human activities. For example,
by focusing on the micro steps of an activity, it is possible to detect
the quality of an activity and dynamically react to improve that
activity, if necessary. �is human-in-the-loop real-time reaction
is important in home health care systems to keep patients safe, in
industry process monitoring systems of factory workers to ensure
the safety of workers and the quality of products, and so on. With-
out considering the micro steps of activities, controlling the quality
of activities is di�cult.

Most current activity recognition systems recognize whether an
activity has occurred or not, but do not identify partially completed
activities or the missing steps in the overall activity process. Hence,
they cannot easily o�er noti�cations and interventions in real-time
to improve performance. In addition, many current systems [12, 17]
make too many simplifying assumptions about the environment,
the number of users etc. that either limit the types of recognized
activities, or tailor the system to perform well in simple situations
such as single person homes and no concurrent activities [16, 25].
It is necessary to consider interleaved, parallel, and co-operative
activities for more robust and realistic activity recognition.

Our �rst hypothesis is that pushing the activity recognition
constraints to a lower (micro) level solves the limitations of many
existing systems. In this paper, we consider the fact that activities
are composed of micro-activities (µAcs) where a user can perform
only one micro-activity at a time, but can switch in between per-
forming micro-activities of a particular activity and do portions of
other activities. For example, someone can chop ingredients for
a meal, feed the dog, and then come back to use the ingredients
for cooking. �e µAcs provide important information about the
high-level activities, such as whether the activity is complete or par-
tially complete, the di�erent ways a certain activity is performed,
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whether the activity has missing steps, how a missing step a�ects
the overall activity quality, and how intermediate delays among
µAcs might in�uence the overall activity quality. �erefore, this
paper addresses the problem of detecting micro-activities (µAcs)
in realistic se�ings and how to incorporate the human-in-the-loop
by o�ering real-time noti�cations to improve performance. Since
a step of an activity involves using objects resulting from speci�c
gestures by a person,QuActive incorporates information from both
wearable and in-situ sensors.

One challenge is how to model the activity process in terms
of µAcs.�e µAcs within an activity can occur in parallel or se-
quentially. �e activity process also varies depending on person,
environment, or situation. Di�erent activities o�en have similar
µAcs, and µAcs performed in a di�erent order might result in the
same or a di�erent activity. �us, the process of mapping µAcs
to distinct activities capable of handling these variations is vital.
Another challenge is addressing the deviation from usual activity
processes. For example, if a certain step is missing or performed
out of order, then is the activity incomplete, wrongly performed,
or still a valid activity performed in a di�erent way? How to keep
a general structure of a particular activity which is performed in
di�erent ways? How to identify the prospective/incomplete activity
when one or more µAcs are missing? Finally, how and when to
bring the user more intimately into the loop via noti�cations and
interventions?

To address the mentioned challenges, the QuActive framework
is created based on a Temporal Probabilistic Context Free Grammar
(TPCFG) to de�ne the activity process (details in 4.2 and 4.3). �e
context free grammar (CFG) follows the basic de�nition from litera-
ture [8] that includes terminals, nonterminals, and rules. However,
the terms are tailored for de�ning particular activities and µAcs.
�e grammar outlines a general structure for each activity. Activ-
ities (nonterminals) and µAcs (nonterminals) are generated from
rules. Rules are applied iteratively until terminal symbols (sensor
values) are reached. Any future activity instance is recognized
from the de�ned grammar representation. Again, to capture the
variation of performing the same activity, multiple rules are added
to represent the same nonterminal term. If an activity is performed
in several ways, then a probability (P) is associated with each of
the rules de�ning the same nonterminal. �e timing parameter (T)
is used to capture the time information [21] of each µAc as well
as the time di�erence among two consecutive µAcs. Rules have
noti�cations a�ached to them.

�e main contributions of this work are:

(1) �is paper presents QuActive , a novel mirco-activity modeling
framework that utilizes �ne grained information of the activity
process and uses that for noti�cations. QuActive is capable of
monitoring activity quality and reporting prospective activity
in case of missing steps and other realities in contrast to other
state-of-the-art detection systems [5, 18].

(2) We implemented a system that incorporates a QuActive frame-
work to recognize activity, monitor quality, and notify users.
�e noti�cation subsystem modi�es the latest voice based medi-
cation reminder system, Med-Rem [14], to an activity reminder
system that provides audio alerts about activities, informs user
about missing steps, and stores user feedback.

(3) �e QuActive framework is applied to three di�erent public
datasets of interleaved activities, parallel and co-operative ac-
tivities, and monitoring cognitive decline (missing steps and
activity quality). QuActive outperforms the state-of-the-art
techniques for all of these datasets.

(4) �e system has also been deployed in a real home in a semi-
controlled se�ing. �e results show that QuActive recognizes
more than 90% of the de�ned µAcs and the grammar detects
98.6% of the de�ned activities from the recognized µAcs.

2 USAGE SCENARIOS
QuActive provides information about activity quality, such as du-
ration or speed of activity, missing steps, and time taken between
steps. �erefore, humans can be more intimately incorporated into
real-time intervention loops. To illustrate the value of such a system
we describe some of the projected applications below:

• Dementia and Alzheimer patients: One of the most impor-
tant applications of monitoring activity quality is early detection
of dementia to prevent the rapid decline of functional and cog-
nitive ability. In the United States, the annual cost of caring for
individuals with dementia is $600 billion. Literature [6] shows
that one of the early symptoms (functional decline) of demen-
tia is evident in activities of daily living (ADL). For example,
functional decline a�ects the speed of performing an activity
or a particular step. Also, the patients o�en miss a step of an
overall activity or forget to �nish the work. Since the functional
decline of dementia patients o�en correlates to the cognitive
decline, monitoring one provides information about the other.
�us, QuActive can be used for the early detection of demen-
tia and for providing noti�cations to minimize unsafe actions,
thereby enabling patients to live alone longer.

• Worker Training: Training programs are common in factory,
culinary, nursing, laboratory, and many other se�ings. It is
natural for a trainee to miss steps or perform steps in the wrong
order. Hence,QuActive can help in such scenarios by monitoring
the progress of the trainees and providing real-time noti�cations
and immediate feedback that improves the training.

• Nursing Activity Monitoring: In smart hospitals, nursing ac-
tivities are monitored for tracking the quality of service and
the well-being of patients. Nurses/physicians perform opera-
tions based on the patient chart of previous activity steps and
sometimes within a speci�c time limit. �us, the grammar can
be modeled on the di�erent nursing steps to identify the steps
already performed on a patient, then notify the nurses who are
responsible for the next steps.

• Surgical ProcedureMonitoring: Surgical operations are o�en
done by a group of people where each person has a speci�c
role to play. Although the µAc performed by each person is
usually prede�ned, performing it depends on the condition of
the patient and the µAcs performed by other physicians and
nurses. During long surgical operations, doctors can change
shi�s or leave temporarily in the middle of the operation. �us,
a system monitoring all the steps and their quality during an
operation is extremely helpful for the surgeon group as well as
ensures be�er safety of the patient.
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3 RELATED WORK
Many of the existing methods for activity recognition with ubiqui-
tous sensors use di�erent statistical and probabilistic approaches
[24, 26]. �e common algorithms used are Hidden Markov Model
(HMM), semi HMM, Naive Bayes Classi�er (NBC), and Conditional
Random Field (CRF). However, the problem with techniques like
HMM is that when the sub-activities of a complex activity are also
complex (such as cooking), they do not work properly, since the
hidden layers are not directly observable in such case [2, 4]. Both
HMM and CRF are focused on the sensor sequence and are less
�exible in incorporating variability of activities. NBCs do not re-
tain any time information which makes them less e�ective in this
scenario. On the other hand, algorithms like item set mining [5] dis-
regard the sequence and repetition information of sensors which is
necessary for de�ning the detailed steps. Although the algorithms
are capable of detecting and reporting activities, no information is
provided about the activity process. Moreover, for certain closely
related activities (brushing teeth and shaving), the systems show
poor performance.

Methods that focus on garnering �ne-grained information about
the activity process are mostly done in the areas of vision and
image processing. In [20], the authors describe recognizing com-
posite human actions such as handshaking, pointing, punching,
pushing etc. from atomic gestures. Many of the existing works on
detecting human actions are focused on surveillance, and they are
not directly applicable to �ne-grained activity recognition. Fine
grained cooking activity recognition from videos are presented in
[10, 19], where the authors point out the importance and di�culty
of �ne grained activity detection. �ese works using cameras have
several challenges including privacy issues, requirements of high
processing and storage capacity, environmental constraints such
as lighting and angular e�ect, as well as view obstruction due to
other humans or large objects.

Blasco et al. [3] describe a smart kitchen where the appliances
communicate wirelessly with each other. �e smart kitchen par-
tially automates the later steps of an activity if the initial steps are
detected. However, the steps are static, and no framework is de�ned
that works in di�erent scenarios. Pa�erson et al. [17] describe ADL
detection from RFID tags and de�ne models to associate di�erent
objects with di�erent activities. However, the focus of the paper
is to relate objects with activities, whereas our work concentrates
on relating di�erent steps of an activity and extracting more in-
formation about each step. FABER [18] is a �ne-grained activity
recognition system for identifying abnormal behavior. �e sys-
tem uses �rst order logic and achieves high accuracy in separating
abnormal activities from the normal ones. However, it assumes
single person se�ings where only one sensor triggers and only one
activity occurs at the same time. Moreover, it does not identify
missing steps or the details about activity quality. Cace [1] is a sys-
tem for multi-inhabitant homes for improved activity recognition
with hierarchical dynamic Bayesian networks, but not for di�erent
activity types or activity quality.

Context Free Grammars (CFG) is widely used in de�ning and rec-
ognizing human activities. Li and Stankovic [11] present a grammar-
based fall detection framework that can recognize slow falls and
be�er di�erentiate falls from other fall like activities. Dimitrios

et al. [13] describes probabilistic CFG to track pathways of a user
from one camera to another. In [9], the authors use CFG to rec-
ognize human action from video footage by co-relating sequences
of human pose. In [12], the authors show how a spatio-temporal
pa�ern matching can be used to �nd the relationships among the
activities of daily livings from motion sensors in a single-person
home. Although they explore the probability of a speci�c activity
occurring at a particular time, the focus is not on detecting di�erent
activity steps and monitoring activity quality. Moore and Essa [15]
use a stochastic CFG in recognizing a multitask activity (playing
blackjack) from video. It tracks the hand movements to identify
the Player’s strategy and compares the behavior of novice and ex-
perienced players. However, none of these works addresses the
issues of recognizing a variety of activities and monitoring activity
process quality from a general framework.

4 QUACTIVE FRAMEWORK
�e core of the presented system is the �Active framework. As
mentioned before, the framework is based on Timed Probabilistic
Context Free Grammar (TPCFG). �e rules of the grammar de�ne
micro-activities (µAcs) in terms of processed sensor information
and activities in terms of the µAcs. Since grammar rules are applied
iteratively, intermediate stages of recognized activities are de�ned
as partial activities. �e QuActive framework has the following
advantages:
• Manage Variation: Multiple rules are added to represent the

same activity that is performed in di�erent ways. For example,
making co�ee ‘using a co�ee maker’ or ‘using hot water and
instant co�ee packs’ have di�erent grammar representations.

• Handles randomness: While making tea, the µAcs of ‘adding
sugar’,‘adding milk’,‘adding tea’, and ‘pouring hot water’ do not
require any speci�c order. However, ‘heating water’ must be
done before ‘pouring hot water’, and ‘stirring’ is always the
last µAc . �ese collections of ordered and unordered terms are
handled in the QuActive framework.

• Reusable: Some µAcs of an activity process are observed in
other activities. For example, ‘adding sugar’ occurs in ‘making
tea’ or ‘baking cake’. �us, µAc de�nitions are reused in de�ning
new activities.

• Extensible: People may perform activities di�erently due to
a change of habit. �e activity process may also change when
new technology or di�erent appliances/objects are used. �ese
changes can be handled just by adding new rules to QuActive ,
without requiring changes to the overall framework.
Section 4.3 presents the general structure of theQuActive frame-

work in terms of TPCFG symbols irrespective of any activity class
and section 4.4 describes an example grammar of particular activity
class (‘Making Co�ee’). But before that section 4.1 de�nes a micro-
activity and lists some of its properties, whereas section 4.2 gives a
mathematical de�nition of PCFG from the literature.

4.1 Properties of Micro-Activities
A micro-activity (µAc) is the smallest activity step that cannot be
decomposed any further. �erefore, a µAc is equivalent to an atomic
activity or a simple activity de�ned in the state-of the-art literature.
In this paper, the following statements hold true for a µAc:
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i An activity can be broken into one or more µAcs. So, a µAc
can be an activity itself. For example, ‘heating water’ can itself
be an activity or a µAc of ‘making tea’.

ii µAcs can not be done partially, i.e., once started a µAc has to
be �nished, or otherwise it is disregarded.

iii µAcs can occur in di�erent activities. For example, the µAc
‘using water’ can be a part of the activity ‘washing dishes’ or
the activity ‘mopping the �oor’.

iv Although every activity is associated with one or more users,
and every µAc is associated with some activit, the µAc itself
might be independent of a user. For example, a user triggers
the switch to boil water, but water boiling itself is independent
and the user may do something else during that time.

4.2 Probabilistic Context Free Grammar
A context free grammar (CFG) is a type of language generator. It is
expressed as < VN ;VT ; Start ;R >, where
• VN is a �nite set of nonterminal symbols. Nonterminals are

represented with words starting with a capital le�er.
• VT is a �nite set of terminal symbols. Terminals are represented

with words starting with lower-case le�ers.
• VN ∩VT = ∅. V =VN ∪VT is called the vocabulary andV ∗ is the

set of all strings of symbols in V including the string of length
zero.

• Start ∈ VN is the start symbol.
• R is a �nite nonempty subset of VN ×V ∗ called the production

rules.
A CFG where multiple rules de�ne the same non-terminal can

be extended to a probabilistic CFG [8] as an ordered �ve-tuple
< VN ;VT ; Start ;R; P >, where
• �e production rules are paired with a set of probabilities {pi j }

that satisfy the following rules.
– For each production rule Ri j ∈ R, there is one and only one

probability pi j ∈ P .
– 0 < pi j ≤ 1 ∀i, j
– For every i with 1 < i ≤ |Vn |, Σ1≤j≤ni pi j = 1, where ni is

the number of productions with the i-th nonterminal on the
le�-hand side.

Timed PCFG is an extension of PCFG where timing information
is incorporated into the grammar rules [21].

4.3 TPCFG for Detecting Activity
In this section, a general de�nition of TPCFG is provided. Each
activity class has a separate set of rules that follow this general
structure. �e terminals of the grammar are sensor values and
rules are iteratively applied until the terminals are reached. �e
activities and µAcs are nonterminals. �e following rules show how
an activity can be composed of a sequence of µAcs.

Activity → MicroActivity TmDi� PartialActivity
Activity → MicroActivity

PartialActivity → MicroActivity TmDi� PartialActivity
PartialActivity → Activity

Here, the rules for ‘PartialActivity’ are necessary for generating
an unambiguous grammar. A�er iteratively applying the rules, all
‘PartialActivity’s are decomposed till only the µAcs are le�. �e

nonterminal ‘TmDi�’ indicates the time di�erence between two
consecutive µAcs. A negative duration value of ‘TmDi�’ indicates
overlap between the two µAcs. For example, heating water while
adding co�ee can occur in parallel.

�e µAc is the smallest activity step that cannot be decomposed
any further. However, a µAc can be associated with more than
one sensor, since several sensor events can occur at the same time.
For example, several motion sensors can be triggered when a user
enters a particular location.

MicroActivity → Event
Event → (Event, Event)
Event → (Sensor,Time,Value)

�e above rules show how each µAc is associated with one or
more sensor events. �e comma separated tuple indicates that the
sensor events are independent of each other. Each sensor event
indicates the change of a particular sensor value at some speci�c
time or during a speci�c duration.

Sensor → InsituSensor | Wearable
InsituSensor → motionSensorID | contactSensorID

| tempSensorID | pressurePadID
Wearable → smartWatchID

Now, a sensor is either a wearable device or an in-situ sensor. �e
above rules show a sensor se�ing where a smart watch is used as a
wearable device, and motion sensors, contact sensors, temperature
sensors, and pressure pads are used as in-situ sensors. �e value of

Value → num | feature

the sensor is either a numeric value (0 or 1 of a binary pressure pad
sensor) or values of list of features extracted from the continous
sensor signal (e.g., features calculated from the accelerometer or
the gyroscope data of a smart watch).

Although ‘Time’ and ‘Tmdi�’ both provide timing information,
one is associated to a sensor event and the other indicates the time
di�erence between two µAcs as mentioned earlier. �e nonterminal
‘Time’ is associated with each sensor event. �e star�ime indicates
the time when the sensor value changes, and duration indicates
how long the sensor value remained constant (or was above/below
threshold in case of continuous data).

Time → (star�ime, duration)
TmDi� → (star�ime, duration)

Grammars de�ned for all the activity classes maintain this de-
scribed structure. �e grammar described here does not show the
probability (P) for simplicity. �e probability is associated with
each rule when multiple rules de�ne the same nonterminal.

4.4 Example Grammar and Parse Tree
Table 1 shows one example of possible di�erent rules for making
co�ee with start symbol as ‘MakingCo�ee’. To make the steps in
the rules clear, the timing information has not been shown. How-
ever, each event is associated with the Time(starttime,duration)
information and each rule contains the TmDi f f information be-
tween two consecutive terms on the right side of the rule. As we
can see, multiple rules cover di�erent situations such as when the
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items or utensils are retrieved from the refrigerator, cupboards, or
drawers, as opposed to already being placed on the counter top. �e
associated probability represents the probability of that situation
occurring. If a high probability rule does not match, other relevant
rules are applied. One limitation of the system is that it cannot
identify the exact added item. For example, if somebody adds only
sugar instead of co�ee, �Active still recognizes the Activity ‘Mak-
ing Co�ee’. However, the limitation is associated with the sensing
system and not directly related to the �Active framework. In the
future, if the sensing capability enables distinguishing each item,
then corresponding rules can be added to make the grammar richer.

MakingCo�ee(p11) → (UsingDrinkware) (UsingUtensil)
(UsingHotWater) (AddingItems)
(Stirring)

MakingCo�ee(p12) → (UsingDrinkware) (UsingUtensil)
(AddingItems) (UsingHotWater)
(Stirring)

UsingDrinkware(p21) → (MovingObjectGestureEvent)
UsingDrinkware(p22) → (OpenCupboardEvent)

(MovingObjectGestureEvent)
UsingUtensil(p31) → (MovingObjectGestureEvent)
UsingUtensil(p32) → (OpenUtensilDrawerEvent)

(MovingObjectGestureEvent)
UsingHotWater(p41) → PouringWaterGesture
UsingHotWater(p42) → HeatingWater

PouringWaterGesture
AddingItems(p51) → AddingItems∗
AddingItems(p52) → AddingItem
AddingItem(p61) → AddingItemGesture
AddingItem(p62) → OpenCupboardEvent

RetrievingItemGesture AddingItem
AddingItem(p63) → PouringLiquidGesture

Adding Item(p64) → OpenRefrigeratorEvent
RetrievingItemGesture AddingItem

Table 1: TPCFG for activity ‘Making Co�ee’.

Figure 1 shows two example parse trees depicting ‘Making Cof-
fee’ in two di�erent situations. In the �rst tree, only co�ee is added
whereas in the second tree milk and sugar are added to the co�ee.
However, in both situations, it is assumed that drinkware (mug) and
the utensil (spoon) are already placed on the counter top. A di�er-
ent and larger parse tree will be generated in situations where the
drinkware and the utensil need to be retrieved from their storage
places. �e intermediate levels of the tree shows nodes related to
partial/sub activities. However, some order is maintained in all the
di�erent situations. For example, heating water always precedes
pouring water (although other µAcs can take place in between) in
order to identify the higher level activity ‘Using Hot Water’. Again,
stirring is always performed last. Although timing information
has not been shown explicitly, each low level event retains time
information which propagates up to the root (highest level activity)
of the tree.

5 SYSTEM DESIGN
In this section, we describe the system architecture that uses the
�Active framework to recognize �ne grained activity steps, con-
struct high level activities, and extract activity quality parameters.

(a)�e parse tree shows a way of ‘Making Co�ee’ in which no sugar or
milk is added in the co�ee and the co�ee is added in between heating
and pouring water. It also assumes that the drinkwares, utensils, and
ingredients (mug, spoon, and co�ee) are already placed on the counter
top,i.e., no object is retrieved from the cabinet or the drawer.

(b)�eparse tree shows a situationwheremultiple items (milk, co�ee,
sugar) are added in the co�ee and only one item (sugar) is retrieved
from the cabinet.

Figure 1: Example parse trees showing di�erent ways of per-
forming the same activity (‘Making Co�ee’).

5.1 Sensing Layer
�e sensing layer consists of both in-situ sensors and wearable sen-
sors for collecting detailed activity information. Wearable sensors
are placed on a user’s body to collect gesture information related to
the activities. �e system assumes a smart watch as the wearable
device containing accelerometer, gyroscope, and magnetometer.
On the other hand, binary contact switches, binary pressure pads,
motion sensors, and temperature sensors work as in-situ sensor
nodes. �erefore, the sensing layer collects human motion that
causes an activity as well as events related to the e�ect of resulting
activities on the surrounding environment.

5.2 Event Layer
�is layer preprocesses the sensor data and lists all sensor events.
Whenever the status of a sensor is changed, an event is triggered.
For example, a pressure pad triggers the event ‘occupied’ if some-
body sits on it and triggers ‘empty’ whenever the person leaves.
�e environment sensors are assumed to generate discrete sensor
events. On the other hand, the sensors in the smart watch generate
continuous data streams at a particular sampling rate. A threshold
value is used to �lter the normalized time series data where no
signi�cant motion is detected by the accelerometer and gyroscope.
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�e �ltered segments denote possible gesture events. Time infor-
mation from environment sensors is provided to identify segments
where gestures are more likely related to some activity step as well
as to trim segments to �nd the approximate start and end time
of a gesture. For example, by aligning the contact sensor events
‘opening refrigerator’ and ‘closing refrigerator’ with wearable sen-
sor data, �Active �nds signals related to ‘storing groceries’ and
‘retrieving groceries’.

5.3 Micro-activity Layer

Figure 2: System Architecture for detecting and recognizing micro-activities and high
level activities based on�Active Framework.

�is layer constructs the micro-
activities (µAc) or possible µAc
from the information provided by
the event layer. Although a user
can leave in the middle of an activ-
ity, based on the properties of µAc
- a user cannot leave in the mid-
dle of a µAc . �erefore, a µAc is
either complete or not done at all.
Any partial information is ignored.
To detect activities from sensors
and gesture events, the QuActive
grammar is applied to event data.
Grammar rules associating data
with µAcs are created from train-
ing data and user labeling. Upon
detecting problems (such as taking
too long to perform a particular
µAc), information is passed to the
noti�cation layer.

5.4 Activity Layer
QuActive consists of grammar
rules for each activity mapping to
one or more µAcs. �e rules are
de�ned based on real world observations as well as state-of-the-
art de�nitions (particularly in ADL research in vision) relating
activities with micro-activities [10]. Each rule is assigned a de-
fault probability. Training is necessary in order to calculate the
probability values from a particular real world deployment.

�e Activity Layer applies QuActive grammar rules to �nd the
activities that occurred. Sometimes low level activities are combined
to a higher level activity.So, rules are applied iteratively until no new
activities are observed. If an activity rule matches up to a certain
level, where the µAcs are not part of any other activity, QuActive
assumes that a certain activity was started, but not �nished. Since
the grammar preserves time information and µAc ordering, the
activity quality parameters are extracted from these values. �e
activity complexity is determined based on how many iterations
were performed in order to construct the activity. �e activity
and µAc timing information are used to classify the activity type
whereas the quality parameters are used to create noti�cations. �e
priority of the noti�cation is relevant to the severity of the problem
in terms of safety (e.g., leaving the stove on), inconvenience (e.g.,
forge�ing to put co�ee in the co�ee machine), or other issues (e.g.,
taking too long). It should be noted that QuActive distinguishes

similar µAcs by correlating with di�erent in-situ sensors triggered
by the action or matching the µAcs with grammar rules relevant
to high level activities. However, if no speci�c in-situ sensor is
triggered and two parallel activities with similar µAcs occur, then
QuActive is unable to identify the exact µAc .

�Active Database: �e rules for mapping µAcs with each
activity class are applied separately for every activity class.

In this paper, this mapping has been done manually. However,
if the sensor se�ing and activity list are similar, existing rules
are applied for future activity instances. For example, during the
evaluation of dataset 6.1.3, the rules created for dataset 6.1.1 were
used. On the other hand, once a µAc is de�ned for a se�ing, it is
not rede�ned for every activity. For example, in our experiment the
‘Stirring’ µAc is found in the activities ‘Cooking’ and ‘Making Tea’.
�e ‘Stirring’ µAc is mapped to the stirring gesture event, whereas
the gesture event detection is done by labeling the smart watch
data and applying a decision tree with �ve-fold cross validation.

5.5 Feedback - A Noti�cation Layer
�e smart-watch based noti�cation subsystem is an extension of the
MedRem voice based medication reminder system [14]. However,
instead of only medication reminders, the system reminds users
about activity problems. Moreover, MedRem is a stand-alone system
whereas the QuActive noti�cation system receives information
about the activity parameters assuming that the watch has WiFi
capability. In addition to providing reminders about activities, the
sub-system generates noti�cations based on the noti�cation ID.
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For example, missing activities trigger question like “Have you
performed ‘Activity X’?” whereas missing µAcs trigger question like
“Have you missed ‘µAc y’ when doing ‘Activity X?’” where the ‘y’
and ‘X’ are replaced with the corresponding parameters received
from the Activity Layer.User’s answer is stored and then sent back
to the Activity Layer for further tracking. �erefore, the QuActive
system intervenes with the user through informed noti�cation.

6 EVALUATION
6.1 Datasets
We used the following datasets to evaluate the performance of
QuActive . All these datasets have motion sensors, contact sensors,
item sensors, temperature sensors, and water sensors installed in a
smart home apartment.

6.1.1 Interleaved ADL. Dataset [22] contains activity informa-
tion from 20 users. Each participant �rst performs the activities 1 to
8 de�ned in Table 2 independently, and then multiple activities con-
currently. �erefore, the steps of multiple activities are intertwined.
�e details of the steps are provided to the participants. Table 3
shows an example of given instructions for the activity ‘Preparing
soup’.

6.1.2 Multiresident ADL . Dataset [23] has information about
parallel and co-operative activities. Here, each individual performs
activities 1,2,5,9,10,11,12 (Table 2) independently, but two persons
act in parallel. �erefore, steps of activities from di�erent users
are observed at the same time. In addition, activities 13 to 16 are
performed jointly (co-operative activity), where the steps are either
done individually (playing checkers) or together (moving furniture).

6.1.3 Cognitive assessment activity data. In dataset [4], 65 healthy
and 14 cognitively impaired people are selected for the data collec-
tion process based on initial screening and questionnaires. �en,
each participant is asked to complete the activities 1 to 8 de�ned
in table 2 step by step. �e dataset annotates the ground truth
by labeling each sensor value with corresponding activities and
sub-activities. Each activity is scored by expert clinicians from 1
to 8 based on the level of completeness. Moreover, the users are
also diagnosed by the clinicians as healthy, as patients with mild
cognitive impairment (MCI), or as patients with dementia based
on the interviews, questionnaires, and performed tasks. All this
information is used as the ground truth for the analysis.

6.2 Data Collection
In order to evaluate the performance of QuActive in a real home
se�ing, we have deployed the system in a real home and collected
data from four users. All the users were healthy young adults
from both gender groups (males and females). We used z-wave
pressure pads, contact sensors, and motion sensors for collecting
environmental information. �e pressure pads were placed on the
living room sofa, dining room chairs, and study chairs. �e contact
sensors were a�ached to the cabinets, microwave, oven, refrigerator,
freezer, and closets. �e data was collected in a semi-controlled
se�ing and the users were instructed to perform the activities 17-24
(table 2). �e experiment was not fully controlled since we did not
specify the exact steps to perform the activities or constrain their

Interleaved Activity List (dataset 6.1.1 and 6.1.3)
1. Sweeping the kitchen and dusting the living room.
2. Obtaining medicine containers and a weekly

medicine dispenser, �lling the dispenser
according to the directions.

3. Writing a birthday card, enclosing a check
and writing the address on an envelope.

4. Finding the appropriate DVD and watching
the corresponding news clip.

5. Obtaining a watering can and watering
all plants in the living space.

6. Answering the phone and responding to questions.
7. Preparing a cup of soup using the microwave.
8. Picking a complete out�t for an interview from a

selection of clothing.
Multiresident Independent, Parallel, and
Co-operative ADLs (dataset 6.1.2)
1,2, and 5 (from the above list)

9. Reading magazine in living room sofa
10. Preparing dinner
11. Se�ing dining table
12. Hanging up clothes in closet
13. Moving furniture
14. Playing checkers
15. Paying bills
16 Gathering and packing picnic supplies

Activity List: Collected Data (dataset 6.2)
17. Study (si�ing on study chair, using typing motion)
19. Watching TV (si�ing on living room sofa,

occasional hand gesture for using remote)
20. Making tea (using cabinets and refrigerator,

heating water, gesture of stirring and pu�ing items)
21. Eating (si�ing on dining chair, hand gesture of eating)
22. Washing dishes (using tap, scrubbing dishes,

rinsing dishes)
23. Cooking (using cabinets, refrigerator, microwave,

oven, and hand gesture for cu�ing, stirring)
24. Dressing (choosing out�t from closet,

motion for changing clothes)
Table 2: Activity List used for evaluation in di�erent
datasets and the collected data.

Activity Steps: Preparing Soup
1. Retrieve materials from cupboard ”A”
2. Fill measuring cup with water
3. Boil water in microwave
4. Pour water into cup of noodles
5. Retrieve pitcher of water from refrigerator
6. Pour glass of water
7. Return pitcher of water
8. Wait for water to simmer in cup of noodles
9. Bring all items to dining room table

Table 3: Example of activity steps within ‘Preparing soup’
instructed to be performed by a user [22, 23].
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Figure 3: Recognizing interleaved (high level) activities us-
ing HMM, NBC [22],�Active with and without (�Active')
location information incorporated in the grammar. �e �g-
ure shows the percent of sensor data labeled correctly with
respect to ground truth labeling.

movement in any way. Users were free to perform the activities in
their own way and were not required to start/stop each µAc from
a resting position. Before each session the user wore an android
smart watch on his/her dominant hand. �e accelerometer and the
gyroscope sensors (sampling rate 50Hz) in the watch were used to
capture the hand gestures relevant to micro-activities (Appendix
A). Since each watch has a speci�c ID, it can be used to identify
users in multi-user scenarios. However, in this experiment multiple
users did not perform activities at the same time. �erefore, the
collected dataset has independent and interleaved activities from
a single user se�ing. Table 2 shows some example steps observed
during the activity process.

Another assumption made in this paper is that µAc itself cannot
be discontinuous, i.e., a µAc is either done or not. However, the
µAcs within an activity can be discontinuous. �e framework as-
sumes that each ‘TmDi�’ parameter has a de�ned limit. �Active
assumes that the activity is not completed if the time is exceeded.
�e parameter value needs to be de�ned from training data from
long term deployments. However, we did not have enough data
necessary to de�ne the parameter. We plan to accomplish this in
future. In order to collect the ground truth data, an observer video
recorded the session, and the time series sensor data was annotated
from the video using ‘Chronoviz’ so�ware [7].

6.3 Results
6.3.1 Evaluation on the Datasets. Figure 3 shows a comparison

of �Active with NB and HMM classi�ers [22] applied to the inter-
leaved ADL dataset. Here, every fourth bar shows the performance
of �Active when the location information (using location of the
sensors) is incorporated as part of the grammar and the third bars
in each activity bar set shows when the location information is
disregarded (�Active'). In paper [22], the authors show that Naive
Bayes and HMM classi�ers achieve average accuracy of 66.08% and
71.01% respectively in detecting activities performed in an inter-
leaved manner. �e grammar in �Active is constructed only with
the µAcs de�ned from instruction steps disregarding the user’s lo-
cation. Although location is not needed to detect most activities, it
clari�es when context is important. For example, ‘Watering Plants’

Figure 4: Average accuracy in recognizing instances of inde-
pendent, parallel, and joint activities using HMM [23] and
�Active on a multiresident dataset.

and ‘Sweeping Living Room’ use di�erent equipment, but the same
closet sensor is triggered while retrieving/storing the equipment.
�us, adding the location information (‘kitchen to living’ or ‘in
living’) in between the closet sensor trigger provides context about
the prospective use of the equipment. With location information
incorporated in the grammar, almost all the activities are detected
perfectly. However, the accuracy in the graph show less than 100%,
since the exact start time and end time of the steps are not always
aligned with the ground truth data. �erefore, there is less accuracy
in terms of the percentage of sensor values labeled correctly with
the corresponding activity.

Figure 4 shows the performance of �Active in multi-person
se�ing, where some activities are performed jointly and some are
done independently but in parallel. Here, the baseline is the aver-
age performance of the user-independent HMM classi�er. Authors
in the paper [23] show that a user speci�c classi�er increases the
accuracy of activity detection for that user by about 20% on aver-
age, but the performance of the system decreases in detecting the
activities of the other user. �us, the average performances of user-
independent and user-speci�c HMM models are almost the same.
On the other hand, �Active performs very well in this dataset,
because it �lters irrelevant µAcs that do not match the grammar
structure. In other words, unless the µAcs in other users’ activity
match the µAcs of a particular user, they do not a�ect the activity
detection process of that user and thus yields higher accuracy.

In paper [4], the researchers show the activities of daily living
(ADL) as a good predictor of early detection of cognitive impairment.
�ey extract 38 features from the sensor dataset and show that us-
ing leave-one-out cross validation accuracy of 86% is achieved in
predicting the cognitive state. However, their process requires a
lot of data from cognitive impaired and healthy persons for feature
generation and training. Although we do not apply �Active to de-
termine cognitive status of a person, Figure 5 shows how the value
of the quality parameters de�ned in �Active varies in healthy,
MCI, and dementia patients in this dataset.

�e solid columns in Figure 5 show the average number of miss-
ing steps per activity from the performed activity instances. �e
striped column shows the average number of missing steps con-
sidering the total activities, i.e., the e�ect of a missing activity is
also considered. Similar di�erences are observed considering the



�Active: A�ality of Activities Monitoring and Notification System ICCPS, April 2017, Pi�sburgh, PA USA

Figure 5: �e average number of missing steps in perform-
ing activities by healthy, mildly cognitively impaired, and
dementia patients. �e stripped column values considers
the e�ect of missing activities in calculating missing steps
and the solid column values disregards missing activities.

activity duration and total duration between two consecutive activ-
ities. �e �gure shows the validity of considering missing steps and
missing activities in identifying stages of dementia with a general
purpose activity recognition framework. �us, a grammar de�ned
from the descriptions, that does not need huge training data and
complex algorithms, can also be a powerful tool in detecting how
activity quality degrades over time.

6.3.2 Evaluation on Experimental Data. We collected a total of
67 activity instances of activities 17 to 24 (Table 2) from four users
in our experiments. Although only one user performed activity at
a time, she/he occasionally performed more than one activity in
parallel. �e experiment se�ings have both z-wave sensors and
smart watch data for gesture recognition. �Active recognizes all
the µAcs that are de�ned only in terms of z-wave sensors, such as
‘Si�ing on the sofa’, ‘Opening the refrigerator’ etc. However, in
our experiment only the in situ sensors do not give all information
required for detecting all the µAcs.

For example, ‘Opening cabinet’ and ‘Closing cabinet’ are detected
from the contact sensors, but di�erentiating between ‘storing item
in the cabinet’ or ‘retrieving item from the cabinet’ requires addi-
tional information which can be extracted from the hand motion.
However, detecting µAcs from a continuous stream of sensor data
itself is a challenging problem and the accuracy depends on the
collected data and the threshold values for determining the cut-o�
point. In our experiments for detecting µAcs, we choose a lower
threshold value to get a high percentage of true positives despite
having a high false negative rate and therefore a lower recall. For
evaluation purposes, we use a state-of-the-art supervised algorithm
(Decision Tree C4.5) for gesture recognition and �ve fold cross
validation irrespective of the user. However, coupling the gesture
events with the in situ sensors �lters a lot of the falsely recognized
gestures. If the same gesture signal indicates more than one possi-
ble µAcs, the one matching with the de�ned grammar is recognized
and the rest are eliminated.

Figure 6 shows examples of a number of possible gesture events
recognized from raw signal and how the number of irrelevant
gestures are �ltered at di�erent stages, i.e., a�er associating with
in situ sensors and �nally mapping with grammar rules. Figure

Figure 6: Filtering the falsely recognized micro-activities in
subsequent layers of the system.

Activity Precision Recall
Making Tea 0.95 0.88
Washing Dishes 0.96 0.87
Cooking 0.91 0.84
Eating 0.93 0.95
Dressing 0.97 0.96
Study 0.98 0.99
Watching TV 0.98 0.98

Table 4: Average performance of �Active in recognizing
activity instances from all users

7 (Appendix A) shows time series data corresponding to some
example gesture events.

Table 4 shows the precision and recall of activity instances recog-
nized correctly despite each user performing the activities in their
own way. �e accuracies of detecting high level activities are 91%
to 98%, which shows the promise of the QuActive system.

6.3.3 Notification Subsystem. �e noti�cation subsystem has
been implemented and evaluated separately from the activity recog-
nition subsystem. In the implementation, once a noti�cation is
required, the noti�cation subsystem delivers it to a smart watch
100% of the time and properly records the user responses. �e
responses vary depending on the noti�cation type. For example, if
the noti�cation is a reminder to add co�ee to the co�ee maker the
user might respond, “OK done.” Or if the noti�cation suggests that
they forgot to take their noon medication, the user might respond
“I’ll do it later.” However, a user study that shows how e�ective the
noti�cations are in actually improving health or performance of
daily activities is beyond the scope of this paper.

7 CONCLUSIONS
�Active is a CPS monitoring and noti�cation system for activities
of daily living. It is based on a temporal, probabilistic, context free
grammar and a smart watch based noti�cation system. It addresses
the complexities of concurrent and parallel activities, and multiple
person situations. It identi�es missing steps, delayed steps, and out
of order steps in activities. Using several datasets, the performance
of �Active is shown to be (average accuracy of 95%) signi�cantly
above than the two baselines (accuracy of 66% and 71% respectively)
from the literature.
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A APPENDIX: VISUALIZATION OF TIME SERIES DATA OF MICRO-ACTIVITIES

(a) Hand at Resting Position (b) Reading paper (c) Scrolling Slightly with a Mouse

(d) Walking (e) Sitting on a Sofa (f) Standing from a Sofa

(g) Typing (h) Brushing Teeth (i) Rinsing a Mug

(j) Adding Sugar (k) Stirring (l) Turning Stove On

(m) Opening a Sliding Door (n) Closing a Sliding Door

Figure 7: �e above images show time series data of accelerometer x-axis and gyroscope x-axis corresponding to di�erent
gestures. �e snapshots are taken from the ‘Chonoviz’ visualization so�ware tool. �e x-axis labels in each image show time
in 1s intervals (except (l) which shows in 0.5s intervals). �e y-axis show the normalized value of the accelerometer and the
gyroscope in a �tted zoomed position.
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