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Abstract 
In this paper, we conduct a Markov analysis of learners’ 
professional skill development based on their conversations 
in virtual internships, an emerging category of learning sys-
tems characterized by the epistemic frame theory. This theo-
ry claims that professionals develop epistemic frames, or the 
network of skills, knowledge, identity, values, and episte-
mology (SKIVE) that are unique to that profession. Our 
goal here is to model individual students’ development of 
epistemic frames as Markov processes and infer the station-
ary distribution of this process, i.e. of the SKIVE elements. 
Our analysis of a dataset from the engineering virtual in-
ternship Nephrotex showed that domain specific SKIVE el-
ements have higher probability. Furthermore, while compar-
ing the SKIVE stationary distributions of pairs of individual 
students and display the results as heat maps, we can identi-
fy students that play leadership or coordinator roles. 

Introduction 
In virtual internships students play the role of interns in a 
virtual training environment meant to simulate real intern-
ship experiences. The learning that occurs in virtual intern-
ships can be characterized by epistemic frame theory. This 
theory claims that professionals develop epistemic frames, 
or the network of skills, knowledge, identity, values, and 
epistemology (SKIVE elements) that are unique to that 
profession (Chesler et al. 2010). For example, engineers 
share ways of understanding and doing (knowledge and 
skills); beliefs about which problems are worth investigat-
ing (values), characteristics that define them as members of 
the profession (identity), and ways of justifying decisions 
(epistemology). 
 In this study, we propose a new method to characterize 
learners’ professional skill development in virtual intern-
ships in terms of SKIVE elements distributions. The basic 
idea is to use a Markov process approach to infer the sta-
tionary distribution of SKIVE elements based on an analy-
sis of interns’/learners’ conversations with other players, 
e.g. a mentor or intern, in engineering virtual internships. 
Specifically, we analyze interns’ online conversations dur-

ing the design process, a key activity in the engineering 
virtual internships such as Nephrotex (NTX) in which stu-
dents research and create multiple engineering designs 
(Bagley and Shaffer 2009). 
 Following prior work, elements of the engineering epis-
temic frame are operational zed as discourse codes in order 
to detect when students activate such SKIVE elements dur-
ing conversations. An example of the identification of 
SKIVE elements as discourse codes in virtual internship 
conversations is shown in Table 1 where the student utter-
ance encodes a reference to design Skills. 

Table 1.An example of an utterance and SKIVE codes. 

Utterance S K I V E 
Let me know if you have any 
questions about their requirements 
for membrane design. 

1 0 0 0 0 

 
 While an empirical distribution could be derived by 
computing the relative proportion of each activated SKIVE 
elements during conversations, our goal is to infer the true 
or stationary distribution of SKIVE elements for each stu-
dent by modeling students’ epistemic frames as Markov 
processes. The stationary distribution is the true distribu-
tion of SKIVE elements that would be observed if the stu-
dent would talk forever (or an extremely long period of 
time). We designed Markov processes for SKIVE elements 
in virtual internships as briefly explained next. Markov 
processes are characterized by a set of states, which in our 
case are the SKIVE elements, and a set of transition proba-
bilities, which we derive from analyzing the activation of 
SKIVE elements during the virtual internship conversa-
tions. For instance, we consider transitions from SKIVE 
elements activated by a student in prior dialogue utterances 
to the SKIVE elements activated by the student in the cur-
rent utterance. More precisely, we will use a moving win-
dow to delimit the number of previous dialogue utterances 



to consider when deriving the transitions. The size of the 
prior context moving window (in terms of number of utter-
ances) can be set by the experimenter, as we will explain 
later. The larger the window the more likely we will identi-
fy transitions between various SKIVE elements, therefore, 
reducing data sparseness issues. On the other hand, a larger 
previous context window, i.e. one that includes many pre-
vious utterances, will account for long-distance transitions, 
i.e. between SKIVE elements activated in utterances that 
are far apart, which may be less relevant. 
 Given the above design, we experimented with several 
methods of deriving Markov processes to infer SKIVE 
elements’ stationary distributions. For instance, we differ-
entiated between methods that consider utterances from a 
single player versus all utterances (of all players). Also, we 
varied the way we derive the state-to-state transition 
counts, which are used to compute the transition probabili-
ties, from a source state to a destination state: transitions 
between SKIVE elements/states in any utterance in the 
moving window will make the same contributions to the 
final transition count versus a penalizing model in which 
transitions from SKIVE elements/states farther away in the 
prior dialogue context are contributing less, e.g. there is a 
discounting parameter. We also compared models with and 
without a dummy SKIVE element/state (noSKIVE state) 
used to characterize utterances in which no SKIVE element 
is present (i.e., the student is not mentioning any discourse 
code indicative of a SKIVE element). 

Once we inferred the SKIVE epistemic frame in terms of 
a stationary distribution for each student/intern, we com-
pared students’ SKIVE epistemic frames against each other 
and also against an average epistemic frame distribution 
obtained by computing an average of the stationary distri-
butions of students’ epistemic frames. We compare the 
epistemic frame distributions using Kullback-Leibler (KL) 
divergence. 

Our work has a merit in the sense that it provides a more 
rigorous way of describing students’ emergence/mastery of 
SKIVE elements in terms of stationary/true distributions as 
opposed to empirically derived distributions. 

In the next sections, we discuss related work, Markov 
Chain theory and its use in virtual internship, the proposed 
conversation models, the engineering virtual internship 
Nephrotex datasets we used, and experiments and results. 
The paper ends with Conclusions and Future Work. 

Related Works 
The epistemic network analysis (ENA) framework was 
proposed as a way to characterize learning during intern-
ship when young apprentices are beginning their profes-
sional career by interacting with seasoned professionals 
(Bagley and Shaffer 2009; Shaffer et al. 2009). ENA is 

grounded in epistemic frame hypothesis (Shaffer 
2006)according to which professionals develop epistemic 
frames or the network of skills, knowledge, identity, values, 
and epistemology(SKIVE) that are unique to that profes-
sion. The network or interconnections between concepts 
enable the process of assessment of learning progression in 
context. The ENA framework offers evidence-centered 
design that provides evidence of learning by systematically 
linking models of understanding, observable actions, and 
evaluation rubrics. 

Rupp and colleagues (2009) described a method to rep-
resent students’ epistemic frames using ENA. In their 
method, the sequence of activities in the Urban Science, a 
virtual internship game, is divided into time slices and each 
slice is coded based on whether the slice activates one or 
more of the SKIVE codes. They then constructed an adja-
cency matrix of these codes for each slice based on wheth-
er any two of the codes co-occur in the slice. A cumulative 
adjacency matrix is also derived for a player/intern or the 
mentor from the whole sequence of activities (an accumu-
lation of all activated SKIVE codes over all time slices). 
They used different statistics such as overall weighted den-
sity, absolute and relative centrality and rescaled cumula-
tive association to build a network structure of SKIVE el-
ements based on the adjacency matrices. Students’ mastery 
of SKIVE elements was measured by distance metrics 
among different players under comparison. 

In another work, Bodin (2012) analyzed university phys-
ics students’ epistemic frames while working on a task in 
which they were supposed to simulate a particle-spring 
model system. Students’ epistemic frames were analyzed 
before and after the task using a network analysis approach 
derived from an analysis of interview transcripts. They 
found that students change their epistemic frames when 
switching from a modeling task to a physics task. 

Zhu and Zhang (2016) did a pilot investigation to under-
stand the patterns of the communication and connections of 
engineering professional skills (EPSs). For the pattern of 
communication, they identified who was talking to whom 
at different points of time and identified whether one or 
more EPSs co-occurred in an utterance. They applied so-
cial network analysis to the resulting co-occurrence net-
work and found that the high-performing group tend to 
show denser and more balanced network connections in 
both the communication and EPS networks. 

In our work, we used Markov process theory to charac-
terize students’ development of SKIVE epistemic frames 
in terms of stationary distributions, as described next. That 
is, we consider students’ development of SKIVE elements 
as a Markov process in which there is a state corresponding 
to each SKIVE element and the transitions among those 
SKIVE elements are observed during dialogues. Based on 
the transitions, we can derive the stationary distribution of 
an interns’ SKIVE elements, which can be regarded as a 



reflection of that students’ master of their target profes-
sion’s skills, knowledge, identity, values, and epistemology. 

Markov Process 
A Markov process is a random process characterized by a 
set of states and transition probabilities among these states. 
The probability of the Markov process being in a particular 
state only depends on the previous state. The dependency 
of the current state only on the previous state, or a limited 
history of previous states, is called the Markov property of 
a Markov process. The Markov property is expressed for-
mally using the following equation: 
 

𝑃(𝑋𝑛+1|𝑋1𝑋2, … , 𝑋𝑛) = 𝑃(𝑋𝑛+1|𝑋𝑛) 
 
WhereX1, X2,..., Xn is a sequence of random variables.  
 The transition probability matrix of a Markov process is 
of the form shown in equation 1, where rows indicates the 
source state and columns indicate target/destination states. 
A particular element, e.g. p13, indicates the probability of 
making a transition from source state, say 1, to a destina-
tion state, say, 3.  

 
 
 
 
                                                                
(1) 
 
 

The transition probabilities can be used to predict the prob-
ability of being in a particular state after a number of tran-
sitions when starting from a particular state. For instance, 
the probability of being in state j after 2transitions/steps 
when starting from state i is shown in equation 3 where 
superscript two (2) indicates the number of steps. 
 
𝑝𝑖𝑗
(2) = 𝑝𝑖1𝑝1𝑗 + 𝑝𝑖2𝑝2𝑗 +⋯+ 𝑝𝑖𝑛𝑝𝑛𝑗      (2) 

 
Furthermore, equation 2 is simply the dot product of the ith 

row and jth column vectors of the transition matrix. There-
fore, we can predict the future state of the Markov process 
by obtaining the power of the transition matrix. The proba-
bility that a Markov process reaching state j from state i 
after transiting to k-1states in between is given by (i,j)th 
element of the matrix  Pk=P*P*…*P (P multiplied k 
times). 
 Importantly for our work, the convergence theorem of 
Markov processes indicates that when k tends to infinity 
the matrix Pk attains a stationary state in which all rows are 
equal (Tierney 1994).After reaching convergence, the 
probability of reaching a state is constant irrespective of 

the state from which the system had started. In our case, 
we rely on this convergence theorem to derive the station-
ary distribution of students’ SKIVE elements based on 
transition probabilities derived from conversations during 
virtual internships, as explained next. 

Markov Processes for Epistemic Frames 
Besides content knowledge, students need to master their 
target profession's skills, knowledge, identity, values, and 
epistemology (SKIVE or epistemic frame elements).We 
propose here a novel way to monitor and assess students’ 
mastery of the SKIVE elements in terms of stationary dis-
tributions of the states of a SKIVE Markov process in 
which there is a state for each of the SKIVE elements. We 
rely on students’ activation of SKIVE elements during 
their conversations with other players in the virtual intern-
ship to characterize the underlying Markov process and 
infer the stationary SKIVE distribution for each intern. 
 For this purpose, every utterance of a conversation is 
being annotated with binary codes indicating whether a 
particular SKIVE element is present or absent in the utter-
ance. That is, whether the student activated the correspond-
ing SKIVE elements during his conversational moves. 
 We model each SKIVE element as a state of an underly-
ing Markov process. Because a student can activate multi-
ple SKIVE elements in the same utterance, another option 
is to consider as a state a combination of SKIVE elements 
that students may articulate in any given utterance. We 
opted for the one-SKIVE-element per Markov process 
state option because we are interested in characterizing 
students in terms of SKIVE elements distributions as op-
posed to combinations of such elements. Secondly, consid-
ering all possible combinations SKIVE elements increases 
the complexity of the Markov process by increasing expo-
nentially the number of states to all possible subsets of 
SKIVE elements, i.e. to 2n states where n is the number of 
SKIVE elements. This will lead to two problems: (i) a data 
sparseness problem when deriving the transition probabili-
ties and (ii) difficulty with interpreting the outcome. 
 We derive transition probabilities for each student’s 
Markov process from the sequence of SKIVE elements 
identified in student’s utterances during virtual internship 
conversations. That is, SKIVE elements activated in previ-
ous utterances are considered source states and SKIVE 
elements activated in the current utterance are considered 
target states of a state transition. We count each such tran-
sition from a source SKIVE state to a target SKIVE state 
and then normalize the values across all transitions with 
the same source state to infer the transition probabilities. 
 There are three important aspects of the way in which 
we derive the transition probabilities. First, instead of using 
the full previous dialogue context to detect source states 
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for the transitions, we use a limited dialogue history in the 
form of a moving window of k previous utterances relative 
to the current utterance inspired from previous work (Rupp 
et al. 2009; Rus et al 2014). The larger the window the 
more likely it is that we will identify transitions between 
various SKIVE elements, therefore, reducing data sparse-
ness issues. On the other hand, a larger previous context 
window, i.e. one that includes many previous utterances, 
will account for long-distance transitions, i.e. between 
SKIVE elements activated in utterances that are far apart, 
which may be less relevant. 
 Second, when analyzing conversations to count the 
number of transitions from one SKIVE element to another, 
one can treat transitions from utterances close to each other 
the same way as transitions from utterances far apart in 
which case both such types of transitions will contribute an 
equal count of 1 to the final count. An alternative is to give 
less weight to transitions derived from utterances far apart. 
We present results with both these weighting methods.   

A third key aspect with respect to deriving the transition 
probabilities is what utterances in a conversation to consid-
er: the utterances of the student being analyzed or all utter-
ances of all the players. We present results with both mod-
els: student-utterances vs. all-utterances. 
 A formal description of our conversation models and the 
transition probabilities are derived is presented next. 

Conversation Model 
A conversation is a sequence of utterances u1...uT where an 
utterance uk is coded with a set of binary codes correspond-
ing to each of the SKIVE elements Ck1...CkN. We also de-
fine a set of weights w1...wN corresponding to an utterance 
uk such that a weight wj is given by: 
 

𝑤𝑗 =

{
 
 
 

 
 
 
∑ 𝛼𝑝−𝑘+1Cpj

𝑝=𝑘−1

𝑝=𝑘−𝑛

          𝑖𝑓 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑢𝑡𝑡𝑒𝑟𝑎𝑛𝑐𝑒 𝑤𝑖𝑛𝑑𝑜𝑤 𝑖𝑠 𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑

1        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 𝑖𝑓 𝐶𝑝𝑗 = 1 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑝 𝑎𝑛𝑑 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑢𝑡𝑡𝑒𝑟𝑎𝑛𝑐𝑒 

𝑤𝑖𝑛𝑑𝑜𝑤 𝑖𝑠 𝑢𝑛𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑
0           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 𝑖𝑓 𝐶𝑝𝑗 =  0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑝 𝑎𝑛𝑑 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑢𝑡𝑡𝑒𝑟𝑎𝑛𝑐𝑒

 𝑤𝑖𝑛𝑑𝑜𝑤 𝑖𝑠 𝑢𝑛𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑

 

 
where α is a decay factor (set to 2, as explained later)that 
penalizes the contribution of farther utterances in the win-
dow/slice corresponding to the current utterance. Cpj is the 
jth SKIVE element of previous utterance p within the mov-
ing window of size n. 
 The weighted count transition matrix M of dimension 
NxN is obtained by the algorithm listed in Table 2. The 
above conversation model allows us to derive the transition 
probabilities among SKIVE elements by constructing an 
adjacency, binary or weighted, matrix. 
 

Table 2.Algorithm to obtain weighted count matrix 

Initialize: M = a zero matrix 
do for each utterance ui: 
 U = a NxN zero matrix 
 do for each code Cj of ui: 
  uij =wj*Cj, where uij is an element of U 
 M =  M + U 

 The adjacency matrix for a given student is basically 
constructed by scanning her conversation utterances and 
counting the number of times the student activates SKIVE 
element B in the current utterance while activating SKIVE 
element A in one of the k previous utterances included in 
our moving window of size k. The adjacency matrix thus 
obtained cumulatively counts the number of transitions 
between any pair of SKIVE elements. The result is a state 
transition matrix whose entries are raw cumulative count of 
transitions from one SKIVE element to another. 

The final state transition probability matrix is obtained 
by dividing each entry in the adjacency matrix by the sum 
of the elements in the corresponding row. In order to deal 
with sparse matrices, which have many zero entries, we do 
Laplace’s add-one smoothing (Lidstone, 1920). 
Adjacency Matrix with single player window 
In this model, an adjacency matrix is created for each play-
er by considering only utterances of that player. For exam-
ple in Table 3, for any player pli, the utterance for the play-
er is the set of all utterances where pli is marked (x). 

Table 3.Table of utterance and players in a conversation. 

 pl1 pl2 ... pln 
utt1 x    
utt2  x   
...   ...  
uttk  x   

 
Adjacency Matrix with multi player window 
In this model, an adjacency matrix is created for each play-
er by taking into consideration utterances spoken by all the 
players in the conversation. In this case, in Table 3, for any 
player pli, the utterances for the player is the set of all the 
utterances utt1 through uttk 

The Nephrotex Dataset 
We experimented with data from the virtual internships 
Nephrotex in which groups of students work together on a 
design problem, e.g. designing filtration membranes for 
hemodialysis machines, with the help of a mentor. 
 In the Nephrotex dataset, there are 25 players divided 
into five groups. Each group is assigned a virtual room to 
work together on a task. 



Once the task is finished, the players are assigned to other 
groups and a group is again assigned a room to work on a 
task. In total, there were 10 unique groups and 19 unique 
rooms formed. The dataset consists of a total of 2,970 ut-
terances with an average of 37 utterances per room. 
 Table 4 is an excerpt of a conversation in Nephrotex. 
The utterances are coded with 20 SKIVE elements. While 
analyzing the dataset, we found that some of the utterances 
do not contain any SKIVE elements, hence a row attributed 
to that utterance has zero counts across all SKIVE ele-
ments, i.e. columns in Table 4. We handled such scenario 
following two different approaches. In a first approach, we 
discarded all the utterances with all-zero counts. In another 
approach, we introduced a dummy state, called no-SKIVE 
state, which indicates a state when no SKIVE element was 
activated by a student in an utterance. 

Experiments and Results 
We experimented with a combination of single-player vs 
multi-player models, weighted vs. non-weighted 
counts/binary counts, and Markov processes with or with-
out no-SKIVE state. For the weighted window models, we 
selected a decay factor of α=2thus penalizing by a factor of 
2 transition counts from previous utterances for each one 
unit increase in distance from the current utterance. 

For each model we ran the Markov process iteratively until 
it converged, i.e. reaching the stationary state. Figure 1 

shows the average stationary distribution of SKIVE ele-
ments when the utterances from all the players are consid-
ered while Figure 2 shows the average stationary distribu-
tion derived using only utterances of one player.  

Because the Nephrotex dataset is an engineering design 
internship, engineering specific components such as de-
sign, data, manufacturing, attributes, materials and engi-
neers have higher probabilities compared to others. Also 
adding a no-SKIVE state in the analysis, shifted a good 
chunk of probability to the no-SKIVE state. This is the 
case because a significant part of the conversation consist 
of short dialogue turns in which the speakers use elliptical 
responses, in which much is implied from the context, or 
they focus on general conversation and process topics, e.g. 
greeting each other or asking about how to use the system. 

When comparing the weighted window model to its non-
weighted counterpart, the distributions are similar as con-
firmed by distance measures (KL-divergence) between the 

corresponding distributions of SKIVE elements of the 
weighted and non-weighted models (KL=0.00031 for all 
player without no-SKIVE state; KL=0.00035 for one play-
er without no-SKIVE state). However, one can notice that 
the probability distribution of the least frequent SKIVE 
elements are boosted. This is in a way a desired effect be-
cause the most frequent elements, if not penalized, tend to 
dominate by the simple fact that they occur in more utter-
ances throughout a conversation and therefore are more 

SN Player Content s.design s.professional s.collaboration s.data 

1 4 
Let me know if you have any questions about their 
requirements for membrane design. 1 0 0 0 

2 4 
At Nephrotex, we have internal consultants who are 
experts in their fields. 0 0 0 0 

3 18 
When they say carbon nanotubes, to which surfac-
tant are they referring to? 0 0 0 0 

4 16 
I believe it's any of them. It's just using the carbon 
nanotubes in general. 0 0 0 0 

Table 4. Excerpt of a conversation in Nephrotex (only few SKIVE codes shown). 

Figure 2. Distribution probabilities of SKIVE elements for single 
player conversation model with non-weighted and weighted win-
dow (top left and top right) and distributions when noState add-
ed(bottom left and bottom right) 

Figure 1. Distribution of probabilities of SKIVE elements for all-
player conversation model with non-weighted and weighted win-
dow and distributions when noState added. 



likely to be present in a moving window which in turn 
leads to increased transition counts. The weighted model 
penalizes frequent components when occurring in remote 
utterances relative to the current utterance. 

Once the stationary distributions of SKIVE elements 
were obtained, we conducted an analysis of students’ 
SKIVE profiles by computing KL-divergence (KL) scores 
between pairs of distributions of SKIVE elements for indi-
vidual students. A summary of the KL scores is shown as a 
heat map in Figure 3. Student players are sorted based on 
their average KL score with other players. The left vertical 
color bar in the maps show the intensity of the user’s aver-
age KL score in sorted order. 

It can be seen that some players have similar distribu-
tions, e.g. those shown in the lower left corner of the heat 

maps in Figure 3. The lower left corner corresponds to 
lower divergence scores. When using a no-SKIVE state 
and weights, the distributions of SKIVE elements between 
players seem to be more similar as shown in the heat maps 
on the lower right hand side of Figure 3. Furthermore, add-
ing a no-SKIVE state (bottom left and bottom right) re-
vealed that some of the players move from an upper posi-
tion, corresponding to a higher average divergence score, 
to lower-divergence positions in the heat map. Those that 
move to lower-divergence positions are more likely to have 
utterances in which no SKIVE elements are activated. 
They may correspond to students playing more leader-
ship/coordinator roles as their utterances focus more on 
process and conversational management topics and less on 
SKIVE elements. We only show results for single-player 
utterances models due to space reasons. 

Conclusion and Future Work 
We conducted a Markov process analysis of students’ mas-
tery of epistemic frames which is generally applicable to 
any epistemic frame. We have experimented and validated 
our method on data from an engineering epistemic frame 
using eight different ways to model Markov processes for 
each student participating in engineering virtual intern-
ships. The comparison of the distribution of SKIVE ele-
ments for individual students in models with noState re-
vealed that some students may play more managerial or 
coordinator roles than others. 

In future work, we plan to use the stationary distribution 
of SKIVE components obtained from this analysis to better 
understand students’ effectiveness of acquiring much 
needed skills to be successful professionally. Furthermore, 
we plan to develop a dual Markov process to infer station-
ary distributions of states and transitions. 
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