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Abstract

In this paper, we conduct a Markov analysis of learners’
professional skill development based on their conversations
in virtual internships, an emerging category of learning sys-
tems characterized by the epistemic frame theory. This theo-
ry claims that professionals develop epistemic frames, or the
network of skills, knowledge, identity, values, and episte-
mology (SKIVE) that are unique to that profession. Our
goal here is to model individual students’ development of
epistemic frames as Markov processes and infer the station-
ary distribution of this process, i.e. of the SKIVE elements.
Our analysis of a dataset from the engineering virtual in-
ternship Nephrotex showed that domain specific SKIVE el-
ements have higher probability. Furthermore, while compar-
ing the SKIVE stationary distributions of pairs of individual
students and display the results as heat maps, we can identi-
fy students that play leadership or coordinator roles.

Introduction

In virtual internships students play the role of interns in a
virtual training environment meant to simulate real intern-
ship experiences. The learning that occurs in virtual intern-
ships can be characterized by epistemic frame theory. This
theory claims that professionals develop epistemic frames,
or the network of skills, knowledge, identity, values, and
epistemology (SKIVE elements) that are unique to that
profession (Chesler et al. 2010). For example, engineers
share ways of understanding and doing (knowledge and
skills); beliefs about which problems are worth investigat-
ing (values), characteristics that define them as members of
the profession (identity), and ways of justifying decisions
(epistemology).

In this study, we propose a new method to characterize
learners’ professional skill development in virtual intern-
ships in terms of SKIVE elements distributions. The basic
idea is to use a Markov process approach to infer the sta-
tionary distribution of SKIVE elements based on an analy-
sis of interns’/learners’ conversations with other players,
e.g. a mentor or intern, in engineering virtual internships.
Specifically, we analyze interns’ online conversations dur-

ing the design process, a key activity in the engineering
virtual internships such as Nephrotex (NTX) in which stu-
dents research and create multiple engineering designs
(Bagley and Shaffer 2009).

Following prior work, elements of the engineering epis-
temic frame are operational zed as discourse codes in order
to detect when students activate such SKIVE elements dur-
ing conversations. An example of the identification of
SKIVE elements as discourse codes in virtual internship
conversations is shown in Table 1 where the student utter-
ance encodes a reference to design Skills.

Table 1.An example of an utterance and SKIVE codes.

Utterance

S K1 V E
Let me know if you have any 1 0 0 0 O
questions about their requirements

for membrane design.

While an empirical distribution could be derived by
computing the relative proportion of each activated SKIVE
elements during conversations, our goal is to infer the true
or stationary distribution of SKIVE elements for each stu-
dent by modeling students’ epistemic frames as Markov
processes. The stationary distribution is the true distribu-
tion of SKIVE elements that would be observed if the stu-
dent would talk forever (or an extremely long period of
time). We designed Markov processes for SKIVE elements
in virtual internships as briefly explained next. Markov
processes are characterized by a set of states, which in our
case are the SKIVE elements, and a set of transition proba-
bilities, which we derive from analyzing the activation of
SKIVE elements during the virtual internship conversa-
tions. For instance, we consider transitions from SKIVE
elements activated by a student in prior dialogue utterances
to the SKIVE elements activated by the student in the cur-
rent utterance. More precisely, we will use a moving win-
dow to delimit the number of previous dialogue utterances



to consider when deriving the transitions. The size of the
prior context moving window (in terms of number of utter-
ances) can be set by the experimenter, as we will explain
later. The larger the window the more likely we will identi-
fy transitions between various SKIVE elements, therefore,
reducing data sparseness issues. On the other hand, a larger
previous context window, i.e. one that includes many pre-
vious utterances, will account for long-distance transitions,
i.e. between SKIVE elements activated in utterances that
are far apart, which may be less relevant.

Given the above design, we experimented with several
methods of deriving Markov processes to infer SKIVE
elements’ stationary distributions. For instance, we differ-
entiated between methods that consider utterances from a
single player versus all utterances (of all players). Also, we
varied the way we derive the state-to-state transition
counts, which are used to compute the transition probabili-
ties, from a source state to a destination state: transitions
between SKIVE eclements/states in any utterance in the
moving window will make the same contributions to the
final transition count versus a penalizing model in which
transitions from SKIVE elements/states farther away in the
prior dialogue context are contributing less, e.g. there is a
discounting parameter. We also compared models with and
without a dummy SKIVE element/state (noSKIVE state)
used to characterize utterances in which no SKIVE element
is present (i.e., the student is not mentioning any discourse
code indicative of a SKIVE element).

Once we inferred the SKIVE epistemic frame in terms of
a stationary distribution for each student/intern, we com-
pared students’ SKIVE epistemic frames against each other
and also against an average epistemic frame distribution
obtained by computing an average of the stationary distri-
butions of students’ epistemic frames. We compare the
epistemic frame distributions using Kullback-Leibler (KL)
divergence.

Our work has a merit in the sense that it provides a more
rigorous way of describing students’ emergence/mastery of
SKIVE elements in terms of stationary/true distributions as
opposed to empirically derived distributions.

In the next sections, we discuss related work, Markov
Chain theory and its use in virtual internship, the proposed
conversation models, the engineering virtual internship
Nephrotex datasets we used, and experiments and results.
The paper ends with Conclusions and Future Work.

Related Works

The epistemic network analysis (ENA) framework was
proposed as a way to characterize learning during intern-
ship when young apprentices are beginning their profes-
sional career by interacting with seasoned professionals
(Bagley and Shaffer 2009; Shaffer et al. 2009). ENA is

grounded in epistemic frame hypothesis (Shaffer
2006)according to which professionals develop epistemic
frames or the network of skills, knowledge, identity, values,
and epistemology(SKIVE) that are unique to that profes-
sion. The network or interconnections between concepts
enable the process of assessment of learning progression in
context. The ENA framework offers evidence-centered
design that provides evidence of learning by systematically
linking models of understanding, observable actions, and
evaluation rubrics.

Rupp and colleagues (2009) described a method to rep-
resent students’ epistemic frames using ENA. In their
method, the sequence of activities in the Urban Science, a
virtual internship game, is divided into time slices and each
slice is coded based on whether the slice activates one or
more of the SKIVE codes. They then constructed an adja-
cency matrix of these codes for each slice based on wheth-
er any two of the codes co-occur in the slice. A cumulative
adjacency matrix is also derived for a player/intern or the
mentor from the whole sequence of activities (an accumu-
lation of all activated SKIVE codes over all time slices).
They used different statistics such as overall weighted den-
sity, absolute and relative centrality and rescaled cumula-
tive association to build a network structure of SKIVE el-
ements based on the adjacency matrices. Students’ mastery
of SKIVE elements was measured by distance metrics
among different players under comparison.

In another work, Bodin (2012) analyzed university phys-
ics students’ epistemic frames while working on a task in
which they were supposed to simulate a particle-spring
model system. Students’ epistemic frames were analyzed
before and after the task using a network analysis approach
derived from an analysis of interview transcripts. They
found that students change their epistemic frames when
switching from a modeling task to a physics task.

Zhu and Zhang (2016) did a pilot investigation to under-
stand the patterns of the communication and connections of
engineering professional skills (EPSs). For the pattern of
communication, they identified who was talking to whom
at different points of time and identified whether one or
more EPSs co-occurred in an utterance. They applied so-
cial network analysis to the resulting co-occurrence net-
work and found that the high-performing group tend to
show denser and more balanced network connections in
both the communication and EPS networks.

In our work, we used Markov process theory to charac-
terize students’ development of SKIVE epistemic frames
in terms of stationary distributions, as described next. That
is, we consider students’ development of SKIVE elements
as a Markov process in which there is a state corresponding
to each SKIVE element and the transitions among those
SKIVE elements are observed during dialogues. Based on
the transitions, we can derive the stationary distribution of
an interns’ SKIVE elements, which can be regarded as a



reflection of that students’ master of their target profes-
sion’s skills, knowledge, identity, values, and epistemology.

Markov Process

A Markov process is a random process characterized by a
set of states and transition probabilities among these states.
The probability of the Markov process being in a particular
state only depends on the previous state. The dependency
of the current state only on the previous state, or a limited
history of previous states, is called the Markov property of
a Markov process. The Markov property is expressed for-
mally using the following equation:
P(Xn+1|X1X2r 'Xn) = P(Xn+1|Xn)

WhereX;, Xo,..., X, is a sequence of random variables.

The transition probability matrix of a Markov process is
of the form shown in equation 1, where rows indicates the
source state and columns indicate target/destination states.
A particular element, e.g. p;3, indicates the probability of
making a transition from source state, say 1, to a destina-
tion state, say, 3.
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The transition probabilities can be used to predict the prob-
ability of being in a particular state after a number of tran-
sitions when starting from a particular state. For instance,
the probability of being in state ; after 2transitions/steps
when starting from state i is shown in equation 3 where
superscript two (2) indicates the number of steps.

Y = pubij + Piabaj o+ Pl ()

Furthermore, equation 2 is simply the dot product of the i
row and j" column vectors of the transition matrix. There-
fore, we can predict the future state of the Markov process
by obtaining the power of the transition matrix. The proba-
bility that a Markov process reaching state j from state i
after transiting to k-Istates in between is given by (ij)™"
element of the matrix Pk=P*P*  *P (P multiplied &
times).

Importantly for our work, the convergence theorem of
Markov processes indicates that when & tends to infinity
the matrix P¥ attains a stationary state in which all rows are
equal (Tierney 1994).After reaching convergence, the
probability of reaching a state is constant irrespective of

the state from which the system had started. In our case,
we rely on this convergence theorem to derive the station-
ary distribution of students’ SKIVE elements based on
transition probabilities derived from conversations during
virtual internships, as explained next.

Markov Processes for Epistemic Frames

Besides content knowledge, students need to master their
target profession's skills, knowledge, identity, values, and
epistemology (SKIVE or epistemic frame elements).We
propose here a novel way to monitor and assess students’
mastery of the SKIVE elements in terms of stationary dis-
tributions of the states of a SKIVE Markov process in
which there is a state for each of the SKIVE elements. We
rely on students’ activation of SKIVE elements during
their conversations with other players in the virtual intern-
ship to characterize the underlying Markov process and
infer the stationary SKIVE distribution for each intern.

For this purpose, every utterance of a conversation is
being annotated with binary codes indicating whether a
particular SKIVE element is present or absent in the utter-
ance. That is, whether the student activated the correspond-
ing SKIVE elements during his conversational moves.

We model each SKIVE element as a state of an underly-
ing Markov process. Because a student can activate multi-
ple SKIVE elements in the same utterance, another option
is to consider as a state a combination of SKIVE elements
that students may articulate in any given utterance. We
opted for the one-SKIVE-element per Markov process
state option because we are interested in characterizing
students in terms of SKIVE elements distributions as op-
posed to combinations of such elements. Secondly, consid-
ering all possible combinations SKIVE elements increases
the complexity of the Markov process by increasing expo-
nentially the number of states to all possible subsets of
SKIVE elements, i.e. to 2" states where 7 is the number of
SKIVE elements. This will lead to two problems: (i) a data
sparseness problem when deriving the transition probabili-
ties and (ii) difficulty with interpreting the outcome.

We derive transition probabilities for each student’s
Markov process from the sequence of SKIVE elements
identified in student’s utterances during virtual internship
conversations. That is, SKIVE elements activated in previ-
ous utterances are considered source states and SKIVE
elements activated in the current utterance are considered
target states of a state transition. We count each such tran-
sition from a source SKIVE state to a target SKIVE state
and then normalize the values across all transitions with
the same source state to infer the transition probabilities.

There are three important aspects of the way in which
we derive the transition probabilities. First, instead of using
the full previous dialogue context to detect source states



for the transitions, we use a limited dialogue history in the
form of a moving window of k previous utterances relative
to the current utterance inspired from previous work (Rupp
et al. 2009; Rus et al 2014). The larger the window the
more likely it is that we will identify transitions between
various SKIVE elements, therefore, reducing data sparse-
ness issues. On the other hand, a larger previous context
window, i.e. one that includes many previous utterances,
will account for long-distance transitions, i.e. between
SKIVE elements activated in utterances that are far apart,
which may be less relevant.

Second, when analyzing conversations to count the
number of transitions from one SKIVE element to another,
one can treat transitions from utterances close to each other
the same way as transitions from utterances far apart in
which case both such types of transitions will contribute an
equal count of 1 to the final count. An alternative is to give
less weight to transitions derived from utterances far apart.
We present results with both these weighting methods.

A third key aspect with respect to deriving the transition
probabilities is what utterances in a conversation to consid-
er: the utterances of the student being analyzed or all utter-
ances of all the players. We present results with both mod-
els: student-utterances vs. all-utterances.

A formal description of our conversation models and the
transition probabilities are derived is presented next.

Conversation Model

A conversation is a sequence of utterances u;...ur where an
utterance ux is coded with a set of binary codes correspond-
ing to each of the SKIVE elements Cy,...Cry. We also de-
fine a set of weights w...wn corresponding to an utterance
uk such that a weight w; is given by:

<

I
=

I
-

ab~krC, if previous utterance window is weighted
p=k-n
wj=11 otherwise if C,; = 1 for some p and previous utterance
window is unweighted
0 otherwise if C,; = 0 for all p and previous utterance

window is unweighted

where o is a decay factor (set to 2, as explained later)that
penalizes the contribution of farther utterances in the win-
dowr/slice corresponding to the current utterance. C,; is the
j*" SKIVE element of previous utterance p within the mov-
ing window of size n.

The weighted count transition matrix M of dimension
NxN is obtained by the algorithm listed in Table 2. The
above conversation model allows us to derive the transition
probabilities among SKIVE elements by constructing an
adjacency, binary or weighted, matrix.

Table 2.Algorithm to obtain weighted count matrix

Initialize: M = a zero matrix
do for each utterance u;:
U = a NxN zero matrix
do for each code C; of u;:
uy =w;i*C;, where ujjis an element of U
M= M+U

The adjacency matrix for a given student is basically
constructed by scanning her conversation utterances and
counting the number of times the student activates SKIVE
element B in the current utterance while activating SKIVE
element A in one of the k previous utterances included in
our moving window of size k. The adjacency matrix thus
obtained cumulatively counts the number of transitions
between any pair of SKIVE elements. The result is a state
transition matrix whose entries are raw cumulative count of
transitions from one SKIVE element to another.

The final state transition probability matrix is obtained
by dividing each entry in the adjacency matrix by the sum
of the elements in the corresponding row. In order to deal
with sparse matrices, which have many zero entries, we do
Laplace’s add-one smoothing (Lidstone, 1920).

Adjacency Matrix with single player window

In this model, an adjacency matrix is created for each play-
er by considering only utterances of that player. For exam-
ple in Table 3, for any player pl;, the utterance for the play-
er is the set of all utterances where pl; is marked (x).

Table 3.Table of utterance and players in a conversation.

ph  pk .. pln

uttiy  x
uttz X
uttk X

Adjacency Matrix with multi player window

In this model, an adjacency matrix is created for each play-
er by taking into consideration utterances spoken by all the
players in the conversation. In this case, in Table 3, for any
player pli, the utterances for the player is the set of all the
utterances utt; through utty

The Nephrotex Dataset

We experimented with data from the virtual internships
Nephrotex in which groups of students work together on a
design problem, e.g. designing filtration membranes for
hemodialysis machines, with the help of a mentor.

In the Nephrotex dataset, there are 25 players divided
into five groups. Each group is assigned a virtual room to
work together on a task.



Table 4. Excerpt of a conversation in Nephrotex (only few SKIVE codes shown,).

SN Player Content

s.design s.professional s.collaboration s.data

Let me know if you have any questions about their

1 4 requirements for membrane design. 1 0 0 0
At Nephrotex, we have internal consultants who are

2 4 experts in their fields. 0 0 0 0
When they say carbon nanotubes, to which surfac-

3 18 tant are they referring to? 0 0 0 0
I believe it's any of them. It's just using the carbon

4 16 nanotubes in general. 0 0 0 0

Once the task is finished, the players are assigned to other
groups and a group is again assigned a room to work on a
task. In total, there were 10 unique groups and 19 unique
rooms formed. The dataset consists of a total of 2,970 ut-
terances with an average of 37 utterances per room.

Table 4 is an excerpt of a conversation in Nephrotex.
The utterances are coded with 20 SKIVE elements. While
analyzing the dataset, we found that some of the utterances
do not contain any SKIVE elements, hence a row attributed
to that utterance has zero counts across all SKIVE ele-
ments, i.e. columns in Table 4. We handled such scenario
following two different approaches. In a first approach, we
discarded all the utterances with all-zero counts. In another
approach, we introduced a dummy state, called no-SKIVE
state, which indicates a state when no SKIVE element was
activated by a student in an utterance.

Experiments and Results

We experimented with a combination of single-player vs
multi-player models, weighted vs. non-weighted
counts/binary counts, and Markov processes with or with-
out no-SKIVE state. For the weighted window models, we
selected a decay factor of a=2thus penalizing by a factor of
2 transition counts from previous utterances for each one
unit increase in distance from the current utterance.

All players window model

| Non-weighted
|EE Weighted

i ___All players window model [noState)

. Non-weighted
0.10| mmm Weighted

012

i.engineer
manufacturing

Figure 1. Distrii)ution of probabilities of SKIVE e?ementsfor all-
player conversation model with non-weighted and weighted win-
dow and distributions when noState added.

For each model we ran the Markov process iteratively until
it converged, i.e. reaching the stationary state. Figure 1

shows the average stationary distribution of SKIVE ele-
ments when the utterances from all the players are consid-
ered while Figure 2 shows the average stationary distribu-
tion derived using only utterances of one player.

Because the Nephrotex dataset is an engineering design
internship, engineering specific components such as de-
sign, data, manufacturing, attributes, materials and engi-
neers have higher probabilities compared to others. Also
adding a no-SKIVE state in the analysis, shifted a good
chunk of probability to the no-SKIVE state. This is the
case because a significant part of the conversation consist
of short dialogue turns in which the speakers use elliptical
responses, in which much is implied from the context, or
they focus on general conversation and process topics, e.g.
greeting each other or asking about how to use the system.

When comparing the weighted window model to its non-
weighted counterpart, the distributions are similar as con-
firmed by distance measures (KL-divergence) between the

One player window mode! {noState)
- Non-welqmed‘

. Weighted

012~ One player window madel 012
I Non-weighted
W Weighted

0.10

s.design
s.data
e.design

s.professional

s.collaboration
e.client

e.consultant

i.engineer

Figure 2. Distribution probabilities of SKIVE elements for single
player conversation model with non-weighted and weighted win-
dow (top left and top right) and distributions when noState add-
ed(bottom left and bottom right)

corresponding distributions of SKIVE elements of the
weighted and non-weighted models (KL=0.00031 for all
player without no-SKIVE state; KL=0.00035 for one play-
er without no-SKIVE state). However, one can notice that
the probability distribution of the least frequent SKIVE
elements are boosted. This is in a way a desired effect be-
cause the most frequent elements, if not penalized, tend to
dominate by the simple fact that they occur in more utter-
ances throughout a conversation and therefore are more



likely to be present in a moving window which in turn
leads to increased transition counts. The weighted model
penalizes frequent components when occurring in remote
utterances relative to the current utterance.

Once the stationary distributions of SKIVE elements
were obtained, we conducted an analysis of students’
SKIVE profiles by computing KL-divergence (KL) scores
between pairs of distributions of SKIVE elements for indi-
vidual students. A summary of the KL scores is shown as a
heat map in Figure 3. Student players are sorted based on
their average KL score with other players. The left vertical
color bar in the maps show the intensity of the user’s aver-
age KL score in sorted order.

It can be seen that some players have similar distribu-
tions, e.g. those shown in the lower left corner of the heat

LD with one player window (non-weighted)
W i

KLD with one player window(weighted)
B
E
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Figure 3. KL-divergence of distribution SKIVE elements of
players for window with single player utterances (top two are
for weighted and non-weighted and bottom two are for weighted
and non-weighted with noState)

maps in Figure 3. The lower left corner corresponds to
lower divergence scores. When using a no-SKIVE state
and weights, the distributions of SKIVE elements between
players seem to be more similar as shown in the heat maps
on the lower right hand side of Figure 3. Furthermore, add-
ing a no-SKIVE state (bottom left and bottom right) re-
vealed that some of the players move from an upper posi-
tion, corresponding to a higher average divergence score,
to lower-divergence positions in the heat map. Those that
move to lower-divergence positions are more likely to have
utterances in which no SKIVE elements are activated.
They may correspond to students playing more leader-
ship/coordinator roles as their utterances focus more on
process and conversational management topics and less on
SKIVE elements. We only show results for single-player
utterances models due to space reasons.

Conclusion and Future Work

We conducted a Markov process analysis of students’ mas-
tery of epistemic frames which is generally applicable to
any epistemic frame. We have experimented and validated
our method on data from an engineering epistemic frame
using eight different ways to model Markov processes for
each student participating in engineering virtual intern-
ships. The comparison of the distribution of SKIVE ele-
ments for individual students in models with noState re-
vealed that some students may play more managerial or
coordinator roles than others.

In future work, we plan to use the stationary distribution
of SKIVE components obtained from this analysis to better
understand students’ effectiveness of acquiring much
needed skills to be successful professionally. Furthermore,
we plan to develop a dual Markov process to infer station-
ary distributions of states and transitions.
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