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ABSTRACT
In this paper, we begin to address the longstanding algorithmic
gap between general and reversible Markov chains. We develop
directed analogues of several spectral graph-theoretic tools that
had previously been available only in the undirected setting, and
for which it was not clear that directed versions even existed.

In particular, we provide a notion of approximation for di-
rected graphs, prove sparsi�ers under this notion always ex-
ist, and show how to construct them in almost linear time. Us-
ing this notion of approximation, we design the �rst almost-
linear-time directed Laplacian system solver, and, by leverag-
ing the recent framework of [Cohen-Kelner-Peebles-Peng-Sidford-
Vladu, FOCS’16], we also obtain almost-linear-time algorithms for
computing the stationary distribution of a Markov chain, com-
puting expected commute times in a directed graph, and more.
For each problem, our algorithms improve the previous best
running times of O ((nm3/4 + n2/3m) logO (1) (nκϵ−1)) to O ((m +

n2O (
√
logn log logn) ) logO (1) (nκϵ−1)) where n is the number of ver-

tices in the graph,m is the number of edges, κ is a natural condition
number associated with the problem, and ϵ is the desired accuracy.

We hope these results open the door for further studies into
directed spectral graph theory, and that they will serve as a stepping
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stone for designing a new generation of fast algorithms for directed
graphs.
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1 INTRODUCTION
In the analysis of Markov chains, there has been a longstanding
algorithmic gap between the general case, corresponding to random
walks on directed graphs, and the special case of reversible chains,
for which the corresponding graph can be taken to be undirected.
This gap begins with the most basic computational task—computing
the stationary distribution—and persists for many of the fundamen-
tal problems associated with random walks, such as computing
hitting and commute times, escape probabilities, and personalized
PageRank vectors. In the undirected case, there are algorithms for
all of these problems that run in linear or nearly-linear time. In the
directed case, however, the best algorithms have historically been
much slower. Speci�cally, the best running times were given by a
recent precursor to the present paper [13], which showed that one
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could solve these problems on a graph with n vertices andm edges
in time Õ (nm3/4 + n2/3m).1 Prior to that work, it was unknown
whether one could solve any of them faster than the time needed to
solve an arbitrary linear system with the given size and sparsity, i.e.
Θ(min(mn,nω )) time, where ω < 2.3729 is the exponent for matrix
multiplication.

This gap has its origins in a broader discrepancy between the
state of algorithmic spectral graph theory in undirected and di-
rected settings. While the undirected case has a richly developed
theory and a powerful collection of algorithmic tools, similar results
have remained somewhat elusive for directed graphs. In particular,
the problems mentioned above can be expressed in terms of the
linear algebraic properties of the Laplacian matrix of a graph, and it
was shown in [13] how to reduce all these problems to the solution
of a small number of Laplacian linear systems. In the undirected
case, there has been a tremendously successful line of research on
how to use the combinatorial properties of graphs to accelerate
the solution of such systems, culminating in algorithms that can
solve them in nearly-linear time [14, 22–27, 32, 36]. Unfortunately,
these solvers relied heavily on several features that seemed intrinsic
to the undirected case and did not appear to be available for di-
rected graphs, thereby precluding an analogous solver for directed
Laplacians. In particular, the undirected solvers relied on:
Knowledge of the kernel/stationary distribution: Up to a sim-

ple rescaling by the vertex degrees, vectors in the kernel of a Lapla-
cian correspond to stationary distributions of the corresponding
random walk. For undirected graphs, the kernel is spanned by
the all-ones vector on each of the connected components, so it
and the space of stationary distributions can be easily computed
in linear time. For directed graphs, however, this is no longer the
case, and �nding the stationary distribution does not seem to be
any easier than the original problem of solving Laplacian linear
systems. In fact, while stationary distributions of random walks
on directed graphs have been studied for over 100 years [3], and
computing them has been extensively investigated in both the-
ory and practice (see e.g. [33, 37]), the Õ (nm3/4 + n2/3m) result
in [13] was the �rst to �nd them in less time than is required to
�nd the kernel of a general matrix.

Symmetry and positive semide�niteness: Undirected Lapla-
cians are symmetric and positive semide�nite. Essentially every
aspect of algorithmic spectral graph theory uses this symmetry
to treat the Laplacian as a quadratic form and relies on its expres-
sion as a sum of positive semide�nite contributions from each
of the edges to analyze its properties. This includes the Lapla-
cians’ connection to the graph’s cut structure, their relationship
to electrical circuits and e�ective resistances, the notion of graph
inequalities and spectral approximation, the combinatorial con-
struction of preconditioners, and the iterative methods used to
solve Laplacian systems. On the other hand, directed Laplacians
are asymmetric matrices, and their naive symmetrizations are
not typically positive semide�nite.

1 We use Õ notation to suppress terms that are polylogarithmic in n, the natural
condition number of the problemκ , and the desired accuracy ϵ . We use the term “nearly
linear” to refer to algorithms whose running time is Õ (m) =m logO (1) (nκϵ−1 ) and
“almost linear” to refer to algorithms that are linear up to sub-polynomial (but possibly
super-logarithmic) factors, i.e., whose running time is O (m (nκϵ−1 )o (1) ).

Sparsi�cation One of the most powerful algorithmic tools in the
undirected setting is the ability to construct sparsi�ers [5, 6, 35].
These allow one to approximate an arbitrarily dense graph by a
sparse graph that has only a slightly super-linear number of edges.
The classical notion of cut sparsi�cation requires that the value
of every cut in the original graph be approximately preserved in
the sparsi�er; the more recent notion of spectral sparsi�cation
is stronger, and also implies the former property. For directed
graphs, it can be shown that, even for the weaker notion of cut
sparsi�cation, such sparsi�ers do not generally exist. One simple
example is the complete bipartite graph. (See Section 1.1.2.) In
fact, it was not known how to de�ne any other useful notion of
sparsi�cation for which this would not be the case.
In this paper, we show how to cope with these fundamental dif-

ferences, and begin to address the algorithmic gap between general
and reversible Markov chains. Our core technical result is the �rst
almost-linear-time solver for directed Laplacian systems. Using
the work from [13], this yields the �rst almost-linear-time algo-
rithms for computing a host of fundamental objects and quantities
associated with a random walk on a directed graph, including the
stationary distribution, hitting and commute times, escape proba-
bilities, and personalized PageRank vectors.

More broadly, constructing our solver required the development
of directed versions of several foundational tools and techniques
from undirected algorithmic spectral graph theory. Most notably,
and perhaps surprisingly, we show that it is possible to develop
a useful notion of spectral approximation and sparsi�cation of
directed graphs, and that sparsi�ers under this de�nition exist and
can be constructed e�ciently.

In addition to their direct application to the analysis of Markov
chains, we hope that both the solver itself and the sparsi�cation
machinery will prove to be useful tools in the further development
of fast graph algorithms. In the undirected case, sparsi�ers have
been a core algorithmic tool since the early 1990s [1, 6, 17, 20, 21],
and fast solvers for undirected Laplacian solvers have recently led
to an explosion of algorithms operating in the so-called “Laplacian
Paradigm” [38], in both cases leading to asymptotic improvements
for many of the core algorithmic problems for undirected graphs.
Given the success these methods have enjoyed in the case of undi-
rected graphs, we hope that their directed analogues will spark
similar progress in the directed setting.

1.1 Previous Work
In this section, we brie�y review some of the previous work related
to our results and techniques. Given the extensive prior research
on Markov chains, spectral graph theory, sparsi�cation, solving
general and Laplacian linear systems, and computing PageRank, we
do not attempt to give a comprehensive overview of the literature;
instead we simply describe the work that most directly relates to
or motivates this paper.

1.1.1 Directed Laplacian Systems, Stationary Distributions, and
PageRanks. The most direct precursor to this work is a recent pa-
per by a subset of the authors [13]. As mentioned above, it showed
that, by exploiting linear algebraic properties of directed Laplacians,
one could obtain faster algorithms for a wide range of problems
involving directed random walks. Prior to this paper, it seemed
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quite possible that the similarities between directed and undirected
Laplacians were largely syntactic, and that there was no way to
use the structure of directed Laplacians or random walks to obtain
asymptotically faster algorithms. In particular, despite extensive
theoretical and applied work in computer science, mathematics,
statistics, and numerical scienti�c computing, all algorithms that
we are aware of prior to [13] for obtaining high-quality2 solutions
for directed Laplacian systems, stationary distributions, or person-
alized PageRank vectors either have a polynomial dependence on a
condition number or related parameter (such as a random walk’s
mixing time or PageRank’s restart probability), or they apply a
general-purpose linear algebra routine and thus run in at least the
Ω(min(mn,nω )) time currently required to solve arbitrary linear
systems.

By showing that this was not the case, [13] provided the �rst
indication that one could actually use the structure of directed
Laplacian systems to accelerate their solution, which provided a
strong motivation to see how much of an improvement was possible.
It also created hope that the recently successful research program
in building and applying fast algorithms for solving (symmetric)
Laplacian systems [22–25, 27, 32, 36] could be applied to give more
direct improvements to running times for solving combinatorial
optimization problems on directed graphs.

In addition to motivating the search for faster Laplacian solvers,
[13] provided a set of reductions that we will directly apply in this
paper. In order to prove its results, [13] showed how to reduce
a range of algorithmic questions about directed walks, such as
computing the stationary distribution, hitting and commute times,
escape probabilities, and personalized PageRank vectors, to solving
a small number of linear systems in directed Laplacians.

It turns out that it is easier to work with such systems in the
special case where the graph is Eulerian. One of the main technical
tools in [13] is a reduction to this special case. They did this by
giving an iterative method that solved a general Laplacian system
by solving a small number of systems in which the graph is Eulerian.
Together, this showed that to solve the aforementioned problems,
it su�ces to give a solver for Eulerian graphs, and that this only
incurs a factor of Õ (1) overhead. It then obtained all of its results by
constructing an Eulerian solver that runs in time Õ (m3/4n+mn2/3).
In this paper we construct an Eulerian solver that runs in time
m1+o (1) and then just directly apply these reductions to obtain our
other results.

However, while [13] opened the door for further algorithmic
improvements in analyzing Markov chains, the arguments in it
provided little evidence that the running time could be improved to
anything approaching what was known in the undirected case. In-
deed, while the techniques in it suggested that it might be possible
to obtain further improvements, even the most optimistic interpre-
tations of the structural results in [13] only gave hope for achieving
running times of roughly Õ (m

√
n). This would make it no faster

than some of the existing algorithms that use undirected Laplacian
solvers to solve problems on directed graphs, such as the Õ (m10/7)
algorithms for unit cost maximum �ow [30, 31] and shortest path
2By high-quality, we mean that the algorithm should be able to �nd a solution with
error ϵ in time that is sub-polynomial in 1/ϵ , i.e. (1/ϵ )o (1) . For PageRank

there were some known techniques for achieving better dependence on n and m
at the expense of a polynomial dependence on 1/ϵ [2, 9–11].

with negative edge lengths [15], or the Õ (m
√
n) type bounds for

minimum cost �ow [28]. As such, while this would provide better
results for the applications to Markov chains, it would rule out the
hope of obtaining improved results for these directed problems by
replacing the undirected solver with a directed one.

Intuitively, the solver in [13] worked by showing how one could
use the existence of a fast undirected solver to solve directed Lapla-
cians. For a directed Eulerian Laplacian L, it showed that the sym-
metrized matrix U = (L + L>)/2 is the Laplacian of an undi-
rected graph, and that the symmetric matrix L>U+L was, in a
certain sense, reasonably well approximated by U. Given a lin-
ear system L~x = ~b, one could then form the equivalent system
L>U+L~x = L>U+~b and use a fast undirected Laplacian solver to
apply U+. One could then hope that the fact that the matrix on
the left is somewhat well-approximated by U would imply that U+
is a su�ciently good preconditioner for it to yield an improved
running time. It turned out that, while this would actually be the
case in exact arithmetic, numerical issues provided a legitimate
obstruction. This necessitated a more involved scheme, which gave
a slightly slower running time of Õ (m3/4n +mn2/3), rather than
the roughly Õ (n2/3m) running time that what would have been
achieved by exact arithmetic.

The way this algorithm works provides a good intuitive expla-
nation for why one would not expect it to give a solver yielding
substantial improvements for combinatorial “Laplacian Paradigm”
algorithms that rely on undirected solvers. At its root, the solver
from [13] works by trying to �nd the right way to ignore the di-
rected structure and solve the system with an undirected solver;
thus it is on essentially the same footing as the algorithms it would
hope to improve. The obstructions it faces are rooted in the fact that
directed Laplacians are fundamentally not very well-approximated
by undirected ones. In essence, the di�erence between the solver in
this paper and the one presented in [13] is that, instead of �guring
out how to properly neglect the directed structure, the solver we
present here intrinsically works with asymmetric (directed) objects,
and redevelops the theory from the ground up to properly capture
them.

1.1.2 Directed Graph Sparsification and Approximation. While
sparsi�cation of undirected graphs has been extensively studied [4–
6, 17, 29, 34, 35, 39], there has been very little success extending
the notion to directed graphs. In fact, it was not even clear that
there should exist a useful de�nition under which directed graphs
should have sparsi�ers with a subquadratic number of edges, and for
many of the natural de�nitions one would propose, sparsi�cation
is provably impossible.

For instance, a natural �rst attempt would be to try to generalize
the classical notion of cut sparsi�cation for undirected graphs [6,
19]. Given any weighted undirected graph G, Benczur and Karger
showed that one could construct a new graph H with at most
O (n logn/ϵ2) edges such that the value of every cut inG is within a
multiplicative factor of 1 ± ϵ of its value in H . While this de�nition
makes sense for directed graphs as well, there is no analogous
existence result. Indeed it is not hard to construct directed graphs
for which any such approximation must have Ω(n2) edges.
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a

b

Figure 1: An example of the family of cuts described inEqua-
tion (1.1). The only edge leaving the highlighted set is a → b,
so any sparsi�er that omits it will fail to approximate the
corresponding cut.

For example, consider the directed complete bipartite graph K
on the vertex set A∪B with all edges directed from A to B. For each
pair of a ∈ A and b ∈ B, the directed cut

E ({a} ∪ B \ {b}, {b} ∪A \ {a}) (1.1)

contains only the edge a → b. (See Figure 1.) Removing this edge
from the graph would change the value of this cut from 1 to 0,
resulting in an in�nite multiplicative error.

Any graph that multiplicatively approximates the cuts in K must
have |E (B,A) | = 0, so it must be supported on a subset of the edges
of K , and the above then shows that such a graph must contain
the edge a → b for every a ∈ A and b ∈ B. It thus follows that any
graph that approximately preserves every cut in K must contain
all |A| |B | potential edges, so K has no nontrivial sparsi�er under
this de�nition.

It would therefore seem that any attempt at reducing the number
of edges in a directed graph while preserving the combinatorial
structure is doomed to fail. However, Eulerian graphs present a
natural setting that circumvents this because cuts in Eulerian graphs
have the same amount of edge weight going in each direction,
the bipartite graph counterexamples above are precluded. This
balancedness allows one to incorporate sparsi�cation based tools
for �ows and routings in this setting to solve combinatorial �ow
and cut problems quickly on Eulerian graphs [16].

Most closely related to our notion of sparsi�cation of directed
graphs is the work by Chung on Cheeger’s inequality for directed
graphs [8]. This result transforms the graph into an Eulerian graph
G in a way identical to how we obtain Eulerian graphs [13]: by
rescaling each edge weight by the probability of its source vertex in
a stationary distribution. It then relates the convergence rate of ran-
dom walks onG to the eigenvalues of the undirected graph obtained

by removing directions on all edges. Speci�cally if the Eulerian di-
rected Laplacian is L, this symmetrization is

(
L + L>

)
/2.

Since the eigenvalues of the symmetrization of an Eulerian graph
give information about random walks on the original graph, it might
be tempting to de�ne approximation for Eulerian graphs in terms
of whether their symmetrizations approximate each other in the
conventional positive semide�nite sense. For our purposes, we re-
quire (and obtain) a substantially stronger notion of approximation
that preserves much of the directed structure that would be erased
by symmetrizing. The reason why we need a stronger notion of
approximation is that we want graphs that approximate each other
under this notion to be good preconditioners of one another. In
contrast, if one de�nes approximation according to whether the
symmetrizations approximate one another, one would have to say
that the length n undirected cycle and the length n directed cycle
approximate each other, since they are both Eulerian and have the
same undirected symmetrization. However, they are not good pre-
conditioners of one another, and using one as a substitute for the
other would incur very large losses in our applications. Under the
notion of approximation we introduce in this paper, these graphs
di�er by a factor of Ω(n2).

1.1.3 Laplacian System Solvers. Our algorithms build heavily
on the literature for solving undirected Laplacians systems. Since
undirected Laplacians are special cases of directed Laplacians, any
directed solver will yield an undirected solver when given a sym-
metric input. It is thus helpful to consider what undirected solver
we would like our method to resemble in this case.

There are now a fairly large number of reasonably distinct algo-
rithms for solving such systems, and we believe that several of them
provide a template that could be turned into a working directed
solver. Of these, the one that our solver most closely resembles is
the parallel solver by Peng and Spielman [32], which we will brie�y
summarize here.

To simplify the notation and avoid having to keep track of de-
gree normalizations, we only consider regular graphs when giving
the intuition behind the algorithm. Suppose that we are given a
d-regular undirected graphG with LaplacianL = dI−A = d (I−A),
whereA = A/d has ‖A‖ < 1 on ker(L)⊥. For simplicity, in the
equations that follow, we restrict our attention to the space perpen-
dicular to the kernel of L. With this convention, the algorithm of
[32] is then motivated by the series expansion

(I −A)−1 =
∑
i≥0
A

i =
∏
k≥0

(
I +A2k

)
, (1.2)

which is a matrix version of the standard scalar identity 1/(1−x ) =
1 + x + x2 + x3 + · · · = 1(1 + x ) (1 + x2) (1 + x4) · · · . If λ is the
smallest nonzero eigenvalue of I −A, then truncating this product
atk = Θ(log 1/λ) yields a constant relative error, which can be made
arbitrarily small by further increasing k . Hence if λ > 1/poly(n),
we obtain a small error by multiplying the �rst O (logn) terms of
the product. This seems to suggest a good algorithm for solving a
systemL~x = ~b: simply compute I+A2k for k = 0, . . . , t = O (logn)
and then return 1

d (I +A
20 ) · · · (I +A2t )~b.

Unfortunately, this algorithm (implemented naively) would be
too slow. As k grows,Ak quickly becomes dense, so computing
it requires repeatedly squaring dense matrices, which takes time
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O (nω ). To deal with this, their algorithm instead replaces these
matrices with sparse approximations of them. Peng and Spielman
showed that given a graph with n vertices and m edges, one can
compute a sparse approximation of the requisite squared matrix in
nearly-linear-time.

Making this idea work requires care, since in general it is not
true that the product of two matrices will be well approximated
by the product of their approximations. For positive semide�nite
matrices, however, there is a variant of this statement that holds
if one takes the products symmetrically: if A and B are PSD and
A is a good approximation of B, then for any matrix V, V>AV is a
good approximation of V>BV . This led the authors of [32] to work
with a more stable symmetric version of the series described above,
which allowed them to obtain their result.

This turns out to be a reasonably convenient template for our
directed solver. In particular, it has fewer moving parts than many
of the other methods, and it does not require constructing combi-
natorial objects, like low-stretch spanning trees. Instead it directly
relies on sparsi�cation, which is our main new technical tool for
directed graphs.

Unfortunately, we cannot directly apply the methods described
above, since the symmetric product constructions that are used
to control the error are no longer available for the (asymmetric)
Laplacians of directed graphs. Moreover, the strong notions of
graph approximation and positive semide�nite inequalities that
facilitate the analysis for the undirected solver are unavailable in
the directed setting. As such, we end up having to work with weaker
error guarantees, and correct the extra error they introduce using
a more involved iterative method.

1.2 Our Results
In this paper, we show that, in spite of these seemingly fundamental
di�erences between the directed and undirected settings, we can
develop directed analogues of several of the core spectral primitives
that have been deployed to great e�ect on undirected graphs, and
we use them to obtain the �rst almost-linear-time algorithms for
many of the central problems in the analysis of non-reversible
Markov chains. The main new theoretical tools and algorithmic
primitives we introduce are:

• Directed graph approximation: We develop a well-behaved
notion of spectral approximation for directed graphs, despite the
fact that the corresponding Laplacians lack the symmetry and
positive semide�niteness properties that the undirected version
crucially relies on. Our de�nition specializes to the standard
version based on PSD matrix inequalities when applied to undi-
rected graphs, and it retains many of the useful features of the
undirected de�nition. For example, our notion of graph approxi-
mations roughly preserve the behavior of random walks, behave
well under composition and change of basis, retain certain key
aspects of the combinatorial structure, and provide good precon-
ditioners for iterative methods.

• Directed sparsi�cation: We show that, under our notion of
approximation, any strongly-connected directed graph can be
approximated by a sparsi�er with only Õ (n/ϵ2) edges, and we
give an algorithm to compute such a sparsi�er in almost-linear

time. To our knowledge, this is the �rst time that directed spar-
si�ers with o(n2) edges have been proven to exist, even non-
algorithmically, for any computationally useful de�nition that
retains the directed structure of a graph.

• Almost-linear-time solvers for directed Laplacian systems:
Given the Laplacian L = D − A> of a directed graph with n ver-
tices and m edges, we provide an algorithm that leverages our
sparsi�er construction to solve the linear system L~x = ~b in time

T = O
(
m + n2O (

√
logn log logn)

)
logO (1) (

nκϵ−1
)

= O
(
m + n1+o (1)

)
logO (1) (

nκϵ−1
)
, (1.3)

where κ = max(κ (L),κ (D)) is the maximum of the condition
numbers of L and D, improving on the best previous running
time of O

(
nm3/4 + n2/3m

)
logO (1) (

nκϵ−1
)
. To do so, we intro-

duce a novel iterative scheme and analysis that allows us to
mitigate the accumulation of errors from multiplying sparse
approximations without having access to the more stable con-
structions and bounds available for symmetric matrices.

In [13], we provided a suite of reductions that used a solver for
directed Laplacians to solve a variety other problems. Plugging our
new solver’s running time into these reductions immediately gives
the following almost-linear-time algorithms:3

• Computing stationary distributions: We can compute a vec-
tor within `2 distance ϵ of the stationary distribution of a random
walk on a strongly connected directed graph in time T .

• Computing Personalized PageRank vectors: We can com-
pute a vector within `2 distance ϵ of the Personalized PageR-
ank vector with restart probability β for a directed graph in
time T log2 (1/β ).

• Simulating random walks: We can compute the escape prob-
abilities, commute times, and hitting times for a random walk on
a directed graph and estimate the mixing time of a lazy random
walk up to a polynomial factor in time T .

• Estimating all-pairs commute times: We can build a data
structure of size Õ (nϵ−2 logn) in time T /ϵ2 that, when queried
with any two vertices a and b, outputs a 1 ± ϵ multiplicative
approximation to the expected commute time between a and b.

• Solving row- and column-diagonally dominant linear sys-
tems: We can solve linear systems that are row- or column-
diagonally dominant in time T logK , where K denotes the ratio
of the largest and smallest diagonal entries.

This gives the �rst almost-linear-time algorithm for each of these
problems. For all of them, the best previous running time for ob-
taining high-quality solutions was what is obtained by replacing T
with O

(
nm3/4 + n2/3m

)
logO (1) (

nκϵ−1
)

and was proven in [13].

3We use T to denote anything of the form given in equation 1.3, not the time required
for one call to the solver. Some of the reductions call the solver a logarithmic number
of times, so precise value of the logO (1) (nκϵ−1 ) term varies among the applications.
Also, note that in this paper we give solving running times in terms of the condition
number of symmetric Laplacian whereas in [13] they are often given in terms of the
condition number of the corresponding diagonal matrix. However it is well-known
that these di�er only by a O (poly(n)) factor and as they are in the logarithmic terms,
this does not a�ect the running times.
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2 PRELIMINARIES
First we give notation in Section 2.1 and then we give basic infor-
mation about directed Laplacians in Section 2.2. Much of this is
inherited from [13]. With this notation in place we give an overview
of our approach in Section 2.3.

2.1 Notation
Matrices: We use bold to denote matrices and let I, 0 ∈ Rn×n de-
note the identity matrix and zero matrix respectively. For a matrix
A we use nnz(A) to denote the number of non-zero entries in A.
When A ∈ Rn×n we use supp(A) to denote the subset of [n] corre-
sponding to the indices for which at least one of the corresponding
row or column in A is non-zero.

Vectors: We use the vector notation when we wish to highlight
that we are representing a vector. We let ~0,~1 ∈ Rn denote the all
zeros and ones vectors, respectively. We use ~1i ∈ Rn to denote the
i-th basis vector, i.e. (~1i )j = 0 for j , i and (~1i )i = 1. Occasionally,
when it is obvious from the context, we apply scalar operations to
vectors with the interpretation that they be applied coordinate-wise.
As with matrices, we use supp(~x ) to denote the indices of ~x with
non-zero entries.

Positive Semide�nite Ordering: For symmetric matrices A,B ∈
Rn×n we use A � B to denote the condition that x>Ax ≤ x>Bx ,
for all x . We de�ne �, ≺, and � analogously. We call a symmetric
matrix A ∈ Rn×n positive semide�nite (PSD) if A � 0. For vec-
tors x , we let ‖x ‖A

def
=
√
x>Ax . For asymmetric A ∈ Rn×n we let

UA
def
= 1

2 (A + A
>) and note that x>Ax = x>A>x = x>UAx for all

x ∈ Rn .

Operator Norms: For any norm ‖ · ‖ de�ned on vectors in Rn we
de�ne the seminorm it induces onRn×n by ‖A‖ = maxx,0 ‖Ax ‖‖x ‖ for
all A ∈ Rn×n . When we wish to make clear that we are considering
such a ratio we use the→ symbol; e.g., ‖A‖H→H = maxx,0 ‖Ax ‖H‖x ‖H

,

but we may also simply write ‖A‖H
def
= ‖A‖H→H in this case. For

symmetric positive de�nite H we have that ‖A‖H→H can be equiv-
alently expressed in terms of ‖ · ‖2 as ‖A‖H→H = ‖H1/2AH−1/2‖2.
Also note that ‖A‖1 is the is the maximum `1 norm of a column of
A, and ‖A‖∞ is the maximum `1 norm of a row of A.

Diagonals For x ∈ Rn we let diag(x ) ∈ Rn×n denote the diag-
onal matrix with diag(x )ii = xi and typically use X def

= diag(x ). For
A ∈ Rn×n we let diag(A) ∈ Rn denote the vector corresponding
to the diagonal of A, i.e. diag(A)i = Aii and we let diag(A) denote
the diagonal matrix having the same diagonal as A.

Linear Algebra For a matrix A, we let A+ denote the (Moore-
Penrose) pseudoinverse of A. For a symmetric positive semide�nite
matrix B, we let B1/2 denote the square root of B, that is the unique
symmetric positive semide�nite matrix such that B1/2B1/2 = B.
Furthermore, we let B+/2 denote the pseudoinverse of the square
root of B. We use ker(A) to denote nullspace (kernel) of A. We use
span(x1,x2, ...,xk ) to denote the subspace spanned by x1, ...,xk .

For a symmetric PSD matrix A we let λ∗ (A) denote the smallest
non-zero eigenvalue of A.

Misc: We let [n] def
= {1, ...,n}. For A ∈ Rn×n , let κ (A) def

= ‖A‖2 ·
‖A+‖2 denote the condition number of A. For symmetric PSD ma-
trices A and B with the same kernel, let κ (A,B) def

= κ (A+/2BA+/2)
denote their relative condition number (e.g. if αB � A � βB then
κ (A,B) ≤ β/α ). Note that our use of pseudoinverse rather than
inverse in these de�nitions is non-standard but convenient.

2.2 Directed Laplacians
Here we provide notation regarding directed Laplacians and review
basic facts regarding these matrices that were proved in [13].
We begin with some basic de�nitions and notation regarding
Laplacians:

Directed Laplacian: A matrix L ∈ Rn×n is called a directed
Laplacian if (1) its o� diagonal entries are non-positive, i.e. Li, j ≤ 0
for all i , j, and (2) it satis�es ~1>L = ~0, i.e. Lii = −

∑
j,i Lji for

all i .

Associated Graph: To every directed Laplacian L ∈ Rn×n

we associate a graph GL = (V ,E,w ) with vertices V = [n], and
edges (i, j ) of weight wi j = −Lji , for all i , j ∈ [n] with Lji , 0.
Occasionally we write L = D − A> to denote that we decompose
L into the diagonal matrix D (where Dii = Lii is the out degree
of vertex i in GL ) and non-negative matrix A (which is weighted
adjacency matrix of GL , with Ai j = wi j if (i, j ) ∈ E, and Ai j = 0
otherwise).

Eulerian Laplacian: A matrix L is called an Eulerian Laplacian if
it is a directed Laplacian with L~1 = ~0. Note that L is an Eulerian
Laplacian if and only if its associated graph is Eulerian.

(Symmetric) Laplacian: A matrix U ∈ Rn×n is called a
symmetric or undirected Laplacian or just a Laplacian if it is
symmetric and a directed Laplacian. Note that the graph associated
with an undirected Laplacian is undirected, i.e. for every forward
edge there is a backward edge of the same weight.

Running Times: Our central object is almost always a di-
rected Laplacian L = D − A ∈ Rn×n , where m = nnz(A),
U

def
= maxi, j |Ai j |/mini, j :Ai j,0 |Ai j |. We use Õ (·) notation to

suppress factors polylogarithmic in n, m, U , and κ, the natural
condition number of the particular problem.

2.3 Overview of Our Approach
Here we provide an overview of our approach for solving linear
systems in directed Laplacians. We split it into three parts. In the
�rst part, Section 2.3.1, we describe how to reduce the problem to
the special case of solving Eulerian Laplacians with polynomial
condition number. In the second part, Section 2.3.2 we cover the
e�cient construction of sparsi�ers. Finally, in the third part, Sec-
tion 2.3.3, we discuss how to use the sparsi�er construction to build
an almost-linear-time solver for polynomially well-conditioned
Eulerian Laplacian systems.
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2.3.1 Reductions. We begin by applying two reductions. The
�rst is a result from [13], which states that one can solve row-
and column-diagonally dominant linear systems, which include
general directed Laplacian systems, by solving a small number of
Laplacian systems in which the graphs are Eulerian. Letting T
be the time required to solve an Eulerian Laplacian system in the
sense that �nding an approximate solution x ′ to Lx = b such that
‖x ′ − L+b‖U ≤ ϵ ‖b‖U+ , with high probability, can be done in time
O (T log(1/ϵ )) time, where U = 1

2 (L +L
>), we have the following

theorem:

Theorem 2.1 (Theorem 42 from [13]). LetM be an arbitrary n × n
column-diagonally-dominant or row-diagonally-dominant matrix
with diagonal D. Let b ∈ im(M). Then for any 0 < ϵ ≤ 1, one can
compute, with high probability and in time

O

(
T log2

(
n · κ (D) · κ (M)

ϵ

))
a vector x ′ satisfying ‖Mx ′ − b‖2 ≤ ϵ ‖b‖2.

Furthermore, all the intermediate Eulerian Laplacian solves re-
quired to produce the approximate solution involve only matrices R
for which κ (R + R>), κ (diag(R)) ≤ (nκ (D)κ (M)/ϵ )O (1) .

If we were to combine this directly with our algorithm for solv-
ing Eulerian Laplacian systems, it would give a running time of
Õ

((
m + n expO

(√
logκ · log logκ

))
logO (1) (1/ϵ )

)
to solve linear

systems in a directed Laplacian L = D − A>, where κ is the condi-
tion number of the normalized Laplacian D−1/2LD−1/2. While κ
is typically polynomial in n, it is possible for it to be exponential,
so we would like our running time to depend on it logarithmically,
instead of just sub-polynomially.

We show how to do this in the full version of the paper, where
we give an algorithm to solve an arbitrarily ill-conditioned Eulerian
Laplacian systems by solvingO (log(nκ)) Eulerian Laplacians whose
condition numbers are polynomial inn. This allows us to restrict our
attention for the rest of the paper to the case where κ is polynomial
in n and, when used in conjunction with our linear system solving
algorithm, gives the �nal running time of logO (1) (nκϵ−1)).

2.3.2 Sparsification. Our primary new graph theoretic tool is
a directed notion of spectral sparsi�ers, along with e�cient tech-
niques for constructing them for an Eulerian graph and its square.
As discussed in the introduction, there are seemingly intrinsic prob-
lems with many of the notions of directed sparsi�cation that one
would propose based on analogies to the undirected case. In partic-
ular, both the cut-based and spectral notions have seemingly fatal
issues that preclude their use in directed graphs. For the cut-based
notion, as shown in Section 1.1.2, good sparsi�ers provably don’t
exist for some graphs.

If one instead seeks to generalize the undirected de�nition of
spectral sparsi�ers, which requires a sparsi�er H of a graph G to
obey (1− ϵ )~x>LH ~x ≤ ~x>LG~x ≤ (1+ ϵ )~x>LH ~x , the problems are
perhaps even more severe. For instance, when G is directed LG is
no longer symmetric, so it’s not clear that it makes sense to use it
as a quadratic form ~x>LG~x , and doing so essentially symmetrizes
it and discards the directed structure, since ~x>LG~x = ~x>L>G~x =

~x>
(
LG+L

>
G

2

)
~x . In addition, the resulting quadratic form is not

typically PSD, i.e. there often exist ~x for which ~x>LG~x < 0, in
which case G would not approximate itself under the de�nition
given for ϵ > 0.

One also has to deal with the fact that, unlike in the undirected
case, the kernels of directed graph Laplacians are rather subtle
objects: for a strongly-connected graph G, the kernel of LG =
D−A> is given byD−1ϕ, whereϕ is the stationary distribution of the
random walk on G . This carries various problematic consequences,
including the fact that L and L> typically have di�erent kernels,
and even small changes in the graph can change whether L~x = 0
for a given vector ~x .

Our approach to this is based on the fact that many of these
problems do not occur for Eulerian graphs. In particular, if L is the
Laplacian of an Eulerian directed graphG , UL = (L+L>)/2 is the
Laplacian of an undirected graph and thus positive semide�nite,
and cuts in the corresponding undirected graph are the same as
those in G. In addition, the kernel of L is spanned by the all-ones
vector and is the same as the kernel of L>. In addition, the fol-
lowing was shown in [13], which says that the Laplacian of any
strongly connected graph can be turned into an Eulerian Laplacian
by applying a diagonal scaling:

Lemma 2.2 (Lemma 1 from [13], abridged). Given a directed Lapla-
cian L = D − A> ∈ Rn×n whose associated graph is strongly con-
nected, there exists a positive vector ~x ∈ Rn>0 (unique up to scal-
ing) such that L · diag(~x ) is an Eulerian Laplacian. Furthermore,
ker(L) = span(~x ), and ker(L>) = span(~1).

Moreover, it was shown in [13] that one could �nd a high-
precision approximation to this scaling e�ciently given access
to an Eulerian solver.

Intuitively, we de�ne our notion of sparsi�cation and approxi-
mation for Eulerian graphs, and we show that this notion induces
a well-behaved de�nition for other strongly-connected graphs
through the Eulerian scaling. As we do not want to neglect the
directed structure, we will think of Laplacians as linear operators,
not quadratic forms, and we study their sizes through various oper-
ator norms.

For Laplacians of Eulerian graphs, we use the fact that their
symmetrizations are PSD, and our de�nition of approximation will
demand that the di�erence between the two operators be small
relative to the corresponding quadratic form. More precisely, we say
that an Eulerian Laplacian LH ϵ-approximates another Eulerian
LaplacianLG if 


U

+/2
LG

(LH −LG )U
+/2
LG




2 ≤ ϵ . We note that this use
of ULG is closely related to the L>GU

+
LG
LG matrix that appeared

in [13]. The di�erence, however, is that we are not trying to directly
use this matrix as a symmetric stand-in for our Laplacian; we are
working directly with the original (asymmetric) Laplacians and are
just using it to help de�ne a matrix norm.

To construct sparsi�ers of Eulerian graphs with respect to this
notion, we follow a similar approach to the one originally used
by Spielman and Teng for spectral sparsi�cation, but carefully tai-
lored to the directed setting. The idea is to �rst partition our graph
into well-connected components. Because the cuts in an Eulerian
graph match those in its symmetrization, it makes sense to do this
partitioning by simply partitioning the corresponding undirected
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graph into clusters with good expansion. We use existing decompo-
sition techniques to argue that one can �nd such a partition with
a signi�cant fraction of the edges contained in the clusters. We
then show a concentration result for asymmetric matrices that says
that appropriately sub-sampling within these clusters preserves
the relevant structure reasonably well while only keeping a small
number of edges relative to the cluster size.

In the undirected case, one would just repeat this procedure
until the graph is sparse. Where our procedure di�ers, however,
is that we keep track of the directed structure along the way, and
“patch” the subsampled object to keep it from diverging from what
it should be. In particular, the sampling procedure, when applied
to an Eulerian graph will produce a non-Eulerian graph. However,
we add additional edges to �x this after every sampling step and
use our concentration bounds to show that the patches we add are
su�ciently small to not decrease the quality of our approximation.

Carefully, analyzing this procedure allows us to produce a sparsi-
�er in nearly linear time. However, in order to use our sparsi�cation
routine to produce a solver, we also need to sparsify the Laplacian
of the square of a graph. To do this, we could just explicitly form
the square and then sparsify it. However, we would like to perform
this procedure in time that is nearly-linear in the number of edges
of the original graph, whereas explicitly forming the square would
cause the running time to grow with the number of edges of the
square, which could be substantially larger. To prevent this, we
instead show how to work with an implicit representation of the
square that we can manipulate more e�ciently, similar to [32].

2.3.3 Linear System Solving. We describe our algorithm for solv-
ing Eulerian Laplacian systems of equations. It begins with a similar
template to the Peng-Spielman solver [32] described in Section 1.1.3,
but with modi�cations to accommodate our non-symmetric setting.
Given a linear system in an Eulerian Laplacian L = D − A>, we
write L = D1/2 (I −A)D1/2, where A = D−1/2A>D−1/2. This
reduces the problem to solving linear systems in L = I −A where
we can show that ‖A‖2 = 1. We then apply the expansion in
Equation (1.2), but with some slight modi�cations:
• We �nd it convenient to build up the product expansion in Equa-

tion (1.2) recursively. We do so using the identity

(I −A)+ = (I −A2)+ (I +A), (2.1)
which can be thought of as a matrix analogue of the rational
function identity

1
1 − z =

1 + z
1 − z2

.

Applying this identity repeatedly gives

(I −A)+ = (I −A2)+ (I +A) = (I −A4)+ (I +A2) (I +A)

= (I −A8)+ (I +A4) (I +A2) (I +A) = . . . .

After k applications of the identity, this yields the �rst k terms of
the product expansion in (1.2) times (I−A2k )+, which converges
to the identity as k gets large if ‖A‖2 < 1. Some advantages of
this compared to the in�nite product expansion are that it gives
an exact expression rather than an asymptotic result, which will
be more convenient to work with when analyzing the growth
of errors, and that the pseudoinverses in the expression gives a
correct answer when ‖A‖ = 1, which decreases the extent to

which we need to explicitly handle the kernel of L as a special
case.

• If z , 1 is a complex number with |z | = 1, 1/(1 − z) exists but
the series 1/(1 − z) = 1 + z + z2 + . . . does not converge, and
our matrix expansion will exhibit similar behavior. Graph theo-
retically, this case corresponds periodic behavior in the random
walk, and we deal with it, as usual, by adding self-loops and
working with a lazy random walk. Algebraically, we work with
a convex combination with the identity,

A
(α ) = α I + (1 − α )A,

and we note that I −A (α ) = (1 − α ) (I −A). We then replace
the identity in Equation (2.1) with the modi�ed identity

(I −A)+ = (1 − α )
(
I −A (α )

)+
= (1 − α )

(
I −A (α )2)+ (

I +A (α )
)
, (2.2)

which leads to better convergence behavior. This step insures
that each application of the identity causes a change that is more
gradual than squaring. Moreover, our analysis takes advantage
of the fact that taking a linear combination with the identity
makes it easier to relate I − A (α )

j+1 to I − A (α )
j . While it may

not be necessary to do at every step, it is used to simplify the
current analysis. Note, that this algebraic simpli�cation through
‘lazy’ random walks is also present in other works involving
squaring [7, 18].
Similarly to the approach in [32], our strategy is to repeat-

edly apply (2.2), but to replace (A (α ) )2 with a sparsi�er in each
step to allow us to decrease the computational costs. More pre-
cisely, we show how to e�ciently construct a sequence of matrices
A0,A1, . . . ,Ad and associated matricesA (α )

i = α I + (1 − α )Ai

such that each matrix in the sequence has Õ (n/ϵ2) nonzero en-
tries, I − A0 is an ϵ-approximation of I − A, and I − Ai is an
ϵ-approximation of I − (A

(α )
i−1)

2 for each i ≥ 1 (note that we set
A0 by sparsifying the original Laplacian). We call this a square-
sparsi�cation chain. We show how to compute all of the matrices in
such a chain in time Õ (nnz(L) + nϵ−2d ), which we note is within
logarithmic factors of the total number of nonzero entries.

The length of the chain is then dictated by the condition num-
ber κ = κ (UI−A ), the condition number of the symmetric Lapla-
cian associated with the input Eulerian Laplacian. Note that κ =
O (poly(nU )) where U def

= maxi, j |Ai j |/mini, j :Ai j,0 |Ai j | and may
be smaller. If we set d = Ω(logκ), we show that I −A (α )

d well-
conditioned. We can thus stop our recursion at this point and (ap-
proximately) apply (I −A (α )

d )+ using a small number of iterations
of a standard iterative method, Richardson iteration.

Expanding the recurrence in (2.2) gives

(I −Ai )
+ ≈ (1 − α ) j−i

(
I −A (α )

j

)+ (
I +A (α )

j−1

)
·

(
I +A (α )

j−2

)
· · ·

(
I +A (α )

i

)
. (2.3)

If we have already computed the matrices in the chain, we can
apply the right-hand side to a vector ~b by performing (j − i ) matrix-
vector multiplications and solving a linear system in I −A (α )

j . It is
useful to think of this as an approximate reduction from applying
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(I −Ai )
+ to applying (I −A (α )

j )+. The matrices in (2.3) have at
most Õ (n/ϵ2) nonzero entries, so the total time for the matrix vector
multiplications is then at most Õ

(
(j − i )nϵ−2

)
.

Because of the errors introduced by the sparsi�cation steps, the
right-hand side of (2.3) is only an approximation of (I −Ai )

+, so
applying it directly to ~b only yields a (typically somewhat crude)
approximation to solution to (I − Ai )~x = ~b. To obtain a better
solution, we instead use it as a preconditioner inside an iterative
method for the linear system. This allows us to obtain an arbitrarily
good solution to the system, and the quality of the approximation
in (2.3) then determines the number of iterations required.

This suggests that we quantify the error in our approximations
using a notion that directly bounds the convergence rate of such a
preconditioned iterative method. We do so with the notion of an
ϵ-approximate pseudoinverse (de�ned with respect to some PSD
matrix U). Roughly speaking, solving a linear system with an ap-
propriate iterative method using such a matrix as a preconditioner
will guarantee the U-norm of the error to decrease by a factor of
ϵ in each iteration. We note that this is only useful for ϵ < 1. For
technical reasons, we measure the quality of approximate pseu-
doinverses with respect to di�erent U matrices at di�erent stages
of the algorithm and translate between them. For simplicity, we
just refer to an “ϵ-approximate pseudoinverse” in this overview,
but in our algorithm we set the value of ϵ in our sparsi�cation
routines and apply iterative methods, again Richardson iterations,
to appropriately pay for the costs of translating between norms.

To analyze the errors introduced by sparsi�cation, we therefore
need to:

(1) Relate our notion of graph approximation to approximate
pseudoinverses, and

(2) Bound the rate at which the quality of the approximate
pseudoinverse we produce decreases as we increase the
number of terms in (2.3). We use (2.3) recursively, so it
is also useful to bound how this is a�ected if we use an
approximate pseudoinverse instead of the exact operator(
I −A (α )

j

)+.

For the former, we show that our notion of an ϵ-sparsi�er leads
to anO (ϵ )-approximate pseudoinverse. For the latter, we show that
using a square-sparsi�er chain of length d with some given ϵ , and
using an ϵ ′-approximate pseudoinverse of

(
I −A (α )

j

)
in place of(

I−A (α )
j

)+, produces an (ϵ+ϵ ′) ·2O (d )-approximate pseudoinverse

for I −A (α )
j .

The exponential dependence of the error on length of the chain
is a key di�erence between our analysis and the undirected case,
and it is what prevents us from having a simpler and more e�cient
algorithm. If the dependence on the chain length were polynomial,
applying (2.3) with i = 0 and j = d would provide an ϵ · polylog(n)-
approximate pseudoinverse. We could thus set ϵ = 1/polylog(κ) in
our sparsi�er chain and get an O (1)-approximate pseudoinverse
in Õ (n) time. An iterative method could then call this log(1/δ )
times to obtain a solution with error δ . However, because of the
exponential dependence on the chain length, we would only get
an ϵ · poly(κ)-approximate pseudoinverse. We would thus need to
set ϵ = 1/poly(κ) to get a value less than 1, which would lead to

“sparsi�ers” with Ω̃(n · poly(κ)) edges. In the typical case where
κ = poly(n), simply writing these down would exceed the desired
almost-linear time bound.

To prevent this, we do not wait until the end to apply an iterative
method to reduce the error. Instead, we break our sparsi�cation
and squaring steps into dd/∆e blocks of size ∆ � d , each of which
we will wrap in several steps of Richardson iteration, in order to
keep the error under control.

Our algorithm �rst computes (once, not recursively) a square-
sparsi�er chain of length d = O (logκ) in which the sparsi�ers are
ϵspar-approximations. It then recursively combines two types of
steps that are suggested by the discussion above:

• High error
(
I−A (α )

i

)+
from low error

(
I−A (α )

i+∆

)+: Given a
routine to apply an ϵlo-approximate pseudoinverse of I −A (α )

i+∆
in time Ti+∆,ϵlo , we can use the expansion in (2.3) to apply an ϵhi-
approximate pseudoinverse of I−A (α )

i in time Ti,ϵhi = Ti+∆,ϵlo +
Õ (∆nϵ−2spar), where ϵhi = (ϵspar + ϵlo)2O (∆) .

• Low error
(
I −A (α )

i

)+
from high error

(
I −A (α )

i

)+: By run-
ning Richardson iteration for O (log ϵlo/ log ϵhi) steps, we can
turn an ϵhi-approximate pseudoinverse of I −A (α )

i into a ϵlo-
approximate pseudoinverse. This applies the former once in each
iteration, so it takes time

Ti,ϵlo = O

(
log ϵlo
log ϵhi

)
Ti,ϵhi

= O

(
log ϵlo
log ϵhi

) (
Ti+∆,ϵlo + Õ

(
∆nϵ−2spar

))
. (2.4)

If we set ϵhi to be a constant (say, 1/10), we get ϵspar + ϵlo =
2−Ω(∆) , so we set ϵspar = ϵlo = 2−Θ(∆) , and (2.4) simpli�es to

Ti,ϵlo = O (∆)
(
Ti+∆,ϵlo + Õ

(
∆n2Θ(∆)

))
= O (∆) Ti+∆,ϵlo + Õ

(
n2Θ(∆)

)
.

For the base case of our recurrence, I −A (α )
d is well-conditioned,

so we can approximately apply its pseudoinverse using a stan-
dard iterative method in time Td,ϵlo = Õ (nnz(A (α )

d ) log ϵ−1lo ) =

Õ (nϵ−2spar log ϵ−1lo ) = Õ
(
n2Θ(∆)

)
. This can be folded into the additive

Õ
(
n2Θ(∆)

)
term in the recurrence, so it does not signi�cantly a�ect

the time bound.
To estimate the solution to the recurrence, we note that depth

of the recursion is dd/∆e, and at each stage we multiply by O (∆).
We can think of this as producing a recursion tree with O (∆) dd/∆e

nodes, and we add Õ
(
n2Θ(∆)

)
at each, so we get that

T0,ϵlo = O (∆) dd/∆eÕ
(
n2O (∆)

)
= nO (∆)O (d/∆)2O (∆) = n2O

(
∆+

d log∆
∆

)
.

Setting ∆ =
√
d logd =

√
logκ log logκ approximately balances the

two terms in the exponent. Plugging this in and adding the Õ (m)
for the overhead from the non-recursive parts of the algorithm
gives our running time bound of Õ (m) + n2O (

√
logκ log logκ ) .
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cuts in Õ (n2 ) time. In Proceedings of the Twenty-Eighth Annual ACM Symposium
on Theory of computing (STOC ’96). ACM, New York, NY, USA, 47–55. DOI:
https://doi.org/10.1145/237814.237827

[7] Dehua Cheng, Yu Cheng, Yan Liu, Richard Peng, and Shang-Hua Teng. 2015.
E�cient Sampling for Gaussian Graphical Models via Spectral Sparsi�cation.
Proceedings of The 28th Conference on Learning Theory (2015), 364–390. Available
at http://jmlr.org/proceedings/papers/v40/Cheng15.pdf.

[8] Fan Chung. 2005. Laplacians and the Cheeger inequality for directed graphs.
Annals of Combinatorics 9, 1 (2005), 1–19.

[9] Fan Chung and Olivia Simpson. 2013. Solving Linear Systems with Boundary
Conditions Using Heat Kernel Pagerank. In Algorithms and Models for the Web
Graph - 10th International Workshop, WAW 2013, Cambridge, MA, USA, December
14-15, 2013, Proceedings. 203–219.

[10] Fan Chung and Olivia Simpson. 2014. Computing Heat Kernel Pagerank and
a Local Clustering Algorithm. In Combinatorial Algorithms - 25th International
Workshop, IWOCA 2014, Duluth, MN, USA, October 15-17, 2014, Revised Selected
Papers. 110–121.

[11] Fan Chung and Wenbo Zhao. 2010. A sharp PageRank algorithm with appli-
cations to edge ranking and graph sparsi�cation. In International Workshop on
Algorithms and Models for the Web-Graph. Springer, 2–14.

[12] Michael B. Cohen, Jonathan A. Kelner, John Peebles, Richard Peng, Anup
Rao, Aaron Sidford, and Adrian Vladu. 2016. Almost-Linear-Time Algorithms
for Markov Chains and New Spectral Primitives for Directed Graphs. CoRR
abs/1611.00755 (2016). http://arxiv.org/abs/1611.00755

[13] Michael B. Cohen, Jonathan A. Kelner, John Peebles, Richard Peng, Aaron Sidford,
and Adrian Vladu. 2016. Faster Algorithms for Computing the Stationary Distri-
bution, Simulating Random Walks, and More. arXiv preprint arXiv:1608.03270
(2016).

[14] Michael B. Cohen, Rasmus Kyng, Gary L. Miller, Jakub W. Pachocki, Richard
Peng, Anup Rao, and Shen Chen Xu. 2014. Solving SDD linear systems in nearly
m log1/2 n time. In STOC. 343–352.

[15] Michael B. Cohen, Aleksander Madry, Piotr Sankowski, and Adrian Vladu. 2016.
Negative-Weight Shortest Paths and Unit Capacity Minimum Cost Flow in
Õ(m10/7 log W) Time. CoRR abs/1605.01717 (2016). http://arxiv.org/abs/1605.
01717

[16] Alina Ene, Gary L. Miller, Jakub Pachocki, and Aaron Sidford. 2016. Routing
under balance. In Proceedings of the 48th Annual ACM SIGACT Symposium on
Theory of Computing, STOC 2016, Cambridge, MA, USA, June 18-21, 2016. 598–611.
Available at: https://arxiv.org/abs/1603.09009.

[17] Wai Shing Fung, Ramesh Hariharan, Nicholas J.A. Harvey, and Debmalya Pani-
grahi. 2011. A General Framework for Graph Sparsi�cation. In Proceedings of
the Forty-Third Annual ACM Symposium on Theory of Computing (STOC ’11).
ACM, New York, NY, USA, 71–80. DOI:https://doi.org/10.1145/1993636.1993647
Available at http://arxiv.org/abs/1004.4080.

[18] Gorav Jindal and Pavel Kolev. 2015. An E�cient Parallel Algorithm for Spec-
tral Sparsi�cation of Laplacian and SDDM Matrix Polynomials. arXiv preprint

arXiv:1507.07497 (2015).
[19] David R Karger. 1994. Random sampling in cut, �ow, and network design

problems. In Proceedings of the twenty-sixth annual ACM symposium on Theory
of computing. ACM, 648–657.

[20] David R Karger. 2000. Minimum cuts in near-linear time. Journal of the ACM
(JACM) 47, 1 (2000), 46–76.

[21] David R Karger and Matthew S Levine. 2002. Random sampling in residual
graphs. In Proceedings of the thiry-fourth annual ACM symposium on Theory of
computing. ACM, 63–66.

[22] Jonathan A. Kelner, Lorenzo Orecchia, Aaron Sidford, and Zeyuan Allen
Zhu. 2013. A simple, combinatorial algorithm for solving SDD systems in
nearly-linear time. In Proceedings of the 45th Annual Symposium on Theory
of Computing (STOC ’13). ACM, New York, NY, USA, 911–920. Available at
http://arxiv.org/abs/1301.6628.

[23] Ioannis Koutis, Gary L. Miller, and Richard Peng. 2010. Approaching Optimality
for Solving SDD Linear Systems. In Proceedings of the 2010 IEEE 51st Annual
Symposium on Foundations of Computer Science (FOCS ’10). IEEE Computer
Society, Washington, DC, USA, 235–244. DOI:https://doi.org/10.1109/FOCS.
2010.29 Available at http://arxiv.org/abs/1003.2958.

[24] Ioannis Koutis, Gary L. Miller, and Richard Peng. 2011. A Nearly-m log n Time
Solver for SDD Linear Systems. In Proceedings of the 2011 IEEE 52nd Annual
Symposium on Foundations of Computer Science (FOCS ’11). IEEE Computer
Society, Washington, DC, USA, 590–598. DOI:https://doi.org/10.1109/FOCS.
2011.85 Available at http://arxiv.org/abs/1102.4842.

[25] Rasmus Kyng, Yin Tat Lee, Richard Peng, Sushant Sachdeva, and Daniel A Spiel-
man. 2016. Sparsi�ed Cholesky and multigrid solvers for connection laplacians. In
Proceedings of the 48th Annual ACM SIGACT Symposium on Theory of Computing.
ACM, 842–850. Available at http://arxiv.org/abs/1512.01892.

[26] Rasmus Kyng and Sushant Sachdeva. 2016. Approximate Gaussian Elimination
for Laplacians: Fast, Sparse, and Simple. CoRR abs/1605.02353 (2016). http:
//arxiv.org/abs/1605.02353

[27] Yin Tat Lee and Aaron Sidford. 2013. E�cient accelerated coordinate descent
methods and faster algorithms for solving linear systems. In Foundations of
Computer Science (FOCS), 2013 IEEE 54th Annual Symposium on. IEEE, 147–156.

[28] Yin Tat Lee and Aaron Sidford. 2014. Path Finding Methods for Linear Program-
ming: Solving Linear Programs in Õ
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