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Abstract

In a recent work, Moshkovitz [FOCS "14] presented a transformation on two-player games
called “fortification”, and gave an elementary proof of an (exponential decay) parallel repe-
tition theorem for fortified two-player projection games. In this paper, we give an analytic
reformulation of Moshkovitz’s fortification framework, which was originally cast in combina-
torial terms. This reformulation allows us to expand the scope of the fortification method to
new settings.

First, we show any game (not just projection games) can be fortified, and give a simple
proof of parallel repetition for general fortified games. Then, we prove parallel repetition and
fortification theorems for games with players sharing quantum entanglement, as well as games
with more than two players. This gives a new gap amplification method for general games in
the quantum and multiplayer settings, which has recently received much interest.

An important component of our work is a variant of the fortification transformation, called
“ordered fortification”, that preserves the entangled value of a game. The original fortification
of Moshkovitz does not in general preserve the entangled value of a game, and this was a
barrier to extending the fortification framework to the quantum setting.

1 Introduction

A central concept in theoretical computer science and quantum information is that of a two-player
one-round game. A two-player game G is specified by question sets X and Y, answer sets A and B,
a distribution p over pairs of questions, and a verification predicate V: A x B x X xY — {0,1}.
The game is played between two cooperating (but non-communicating) players and a referee. The
referee samples (x,y) € X x Y according to p and sends x and y to each player, who provide answers

*bavarian@mit.edu. Work was supported by National Science Foundation grants CCF-0939370 and CCF-1420956.
Tvidick@cms.caltech.edu. Work was partially supported by the IQIM, an NSF Physics Frontiers Center (NFS Grant
PHY-1125565) with support of the Gordon and Betty Moore Foundation (GBMF-12500028).

ihyuen@mit.edu. Work was supported by Simons Foundation grant #360893, and National Science Foundation
Grants 1122374 and 1218547. Work partially conducted while visiting the IQIM at Caltech.


http://arxiv.org/abs/1603.05349v1

a € A and b € B respectively. The players win the game if their answers satisfy the predicate
V(a,b,x,v).

Games arise naturally in settings ranging from hardness of approximation [Has01] and in-
teractive proof systems [BOGKW88, FRS88] to the study of Bell inequalities and non-locality in
quantum physics [CHSH69, CHTW04]. Depending on the context it is natural to consider players
with access to different resources. In particular, in this work we distinguish between the classical
value VAL(G) of a game, defined as the maximum winning probability of players allowed to pro-
duce their answers using private and shared randomness, and the entangled value VaL*(G), for
which the players may use shared entanglement as well .

An important operation on games and the main focus of this work is that of repeated tensor
product or parallel repetition. This operation takes a game G and a parameter m and outputs a
new game G®" in which m independent instances of G are simultaneously played with the two
players: the referee samples m independent questions {(x;,y;)}/~, from G, sends (xy,...,x,,) to
the first and (vy,...,v,,) to the second player, and checks their corresponding answers (ay,...,a,,)
and (by,...,b,,) using the predicate V = [, V(a;,b;,x;,v;). Parallel repetition is often used
in complexity theory in order to perform some form of amplification, such as amplifying the
completeness-soundness gap of a proof system. A fundamental question that arises in this con-
text is how the value of a repeated game G®™ relates to the value of the original game G and the
number of repetitions m.

The behavior of the game value under parallel repetition can in general be quite subtle [FV02,
FKOO07, Raz11]. In a celebrated paper, Raz showed that if VAL(G) < 1, then VAL(G®™) goes to 0
exponentially fast in m [Raz98]. Even with later simplifications and improvements to the proof
(e.g. [Hol07, Raoll, BG15]), Raz’s parallel repetition theorem remains a substantial technical re-
sult.

Recently, Moshkovitz [Mos14] introduced a simple yet powerful framework for parallel repeti-
tion, called parallel repetition via fortification. In this framework, a game G is transformed through
an operation called “fortification” to a new game G’. This new game G’ is equivalent to G in that
VaL(G) = VaL(G’), but then Moshkovitz shows that behavior of the value of fortified games un-
der parallel repetition is much simpler than the general case, and avoids many of the subtleties
encountered in the general case. The main benefits of fortified games are two-fold: first, their
behavior under parallel repetition is much simpler than the general case, and second, all games
can be easily fortified. Thus for nearly all intents and purposes, it suffices to focus on the parallel
repetition of fortified games.

Despite its attractive features, the fortification framework [Mos14] has some limitations; for
instance it is only applicable to the restricted (though very important) setting of classical two-
player projection games. In this work, we continue the study of the fortification approach to
parallel repetition and try to expand its scope to wider classes of games.

Previously, an attempt to address the limitation of fortification to projection games was made
in [BSVV15, Lemma 1.9], but this was only partially successful.! Here, using a slightly modified

IThe difficulty there was that fortification increases the alphabet size of the game considerably, which in turn in-
creased the additive error of the parallel repetition to the extent that for general two-prover games the whole approach
seemed to entirely break down. We get around this difficulty by showing that for the kinds of games (concatenated
games) that arise from the fortification procedure it is possible to establish a parallel repetition theorem where the
additive error only depends on the alphabet size of the original, rather than the fortified game. See Subsection 1.1 for
more on this.



form of the framework (see the discussion of our analytic formulation below), we are able to
extend fortification to all classical games (i.e. games that are not projection games, and involve any
number of players), as well as the challenging setting of entangled games.

More precisely, the following is a summary of our main contributions:

* Analytic formulation of fortification. The framework of parallel repetition by fortification
was originally cast in combinatorial terms; Moshkovitz’s definition of fortified games, which
we describe below in detail, involves a guarantee on the value of every sufficiently large
rectangular subgame of a game. In our analytic reformulation, fortified games are defined
in terms of substrategies, which one can think of as randomized strategies for the game where
the probability that the players output an answer may be less than 1. This definition behaves
much more “smoothly”, allowing us to generalize them to the entangled and multiplayer
settings.

* Fortification of general classical games and games with more than two players. Next, we
show how to fortify a general k-player game G, for any k > 2. We show that for any two
fortified general classical games G’ and H’, VAL(G' ® H') ~ VaL(G’) - VaL(H’). Together this
implies new gap amplification results for general (as opposed to projection) two-player and
multiplayer classical games.

* An entangled-value preserving variant of concatenation. A major obstacle in extending
the fortification framework to the quantum setting is that concatenation, the main ingre-
dient of the original fortification results, does not in general preserve the entangled value.
That is, if G’ is the fortification of G, it doesn’t generally hold that VaL'(G’) = VaL'(G) (even
though VaL(G’) = VaL(G)). This is problematic for obtaining gap amplification results: if
VAL'(G) = 1, then VaL"(G®") = 1, but VaL"(G’'®") could be exponentially small!

To resolve this issue, we augment the ordinary concatenation procedure of [Mos14] by giving
the players some auxiliary advice input (see Definition 1.4) which helps in keeping the en-
tangled value unchanged. Using this, we define a variant of the fortification transformation
which we call ordered fortification. As desired, in addition to preserving the classical value,
this transformation also preserves the entangled value, which is essential for the complete-
ness of our gap amplification result.

* Fortification of games with entangled players. We show that for a general two-player game
G, its ordered-fortification GpF is a two-player game such that VaL*(Gpp) = VAL*(G), and
is also quantumly fortified. We then prove that for any two quantumly fortified games
G’ and H', VaL' (G’ ® H') ~ VaL'(G’) - VaL (H'). Together this implies a new general gap
amplification method for entangled two-player games. This (see Theorem 1.3) is the most
technically challenging component of this work.

Let us note that our extensions of the fortification approach, as described in the last three
items above, are ultimately enabled by the analytic viewpoint described in point 1. In order to
describe the main ideas behind these results, we first briefly recall the combinatorial framework
from [Mos14].



The combinatorial framework. Let G be a two-player game with question sets X,Y and accep-
tance predicate V. For S € X and T < Y, the subgame Gg, 1 is defined as the game where the
referee selects (x,y) € X x Y according to u conditioned on x € S,y € T and checks the players’
answers according to the same predicate V (the referee accepts automatically if u(S x T) = 0). A
game G is said to be (¢, 8)-combinatorially fortified? if

VAL(Gsy 1) < VAL(G) + ¢, VSCX, TCY,st u(SxT)=o. (1)

The main insight underlying [Mos14] is that games satisfying (1) also satisfy a strong form of
parallel repetition (up to some number of rounds depending on ¢, 6, and the alphabet size of
G). This motivates the following approach to parallel repetition: Given a game G, Moshkovitz
transforms the game G — G’ such that VaL(G’) ~ VaL(G) and G’ is (¢, 8)-combinatorially fortified
for an appropriate choice of (¢, ). Since fortified games satisfy a strong form of parallel repetition,
one expects

VaL(G"®™) ~ VaL(G')" ~ VAL(G)™. (2)

Indeed, by appropriately choosing the parameters (¢,0), [Mos14] can show that the full procedure
G— G — G®" (3)
amounts to a size-efficient method of gap amplification. That is, we have

VAL(G)=c¢ =  VaL(G®")z ™ ()
VAL(G)<s =  VaL(G®")gsm’

where we refer to the first condition as completeness and the second as soundness. The gap
amplification procedure of Moshkovitz G — G’ — G'®" from (3) has three components: (i) a
preprocessing step (biregularization), (ii) fortification, (iii) parallel repetition for fortified games.

The goal of the preprocessing step — the simplest step of the three — is to make the game
biregular (a game G is called biregular if the marginals of questions on both Alice and Bob sides
are uniform), since it is typically easier to analyze the fortification procedure for such games.
The second step is fortification, which is the main technical ingredient of the whole approach.
It is achieved by “concatenating” the game (see Section 1.1 below) with appropriate bipartite
pseudorandom graphs. The third step G’ — G'®" is the parallel repetition of fortified games,
which as observed by [Mos14] is considerably simpler to analyze than the general (non-fortified)
games.

1.1 Results and techniques

The main result of our work is the extension of the fortification framework to general classical
games (with any number of players) and two-player entangled games. On the way to these results
we prove new results on all three components of the fortification framework: (i) biregularization,
(ii) fortification, and (iii) parallel repetition. In this subsection, we discuss some of these results
in detail.

2We shall refer to this notion as combinatorial fortification to distinguish it from the distinct (though closely related)
notion of analytic fortification we primarily use throughout the paper; see Definition 3.1.



Parallel repetition. A main contribution of [Mos14] was the realization that the two-player pro-
jection fortified games satisfy a strong form of parallel repetition, up to an additive error. This
additive error depended on the parameters of fortification as well as the alphabet size of the for-
tified game. In this work, we prove an improved parallel repetition theorem (Theorem 3.4) which
has the same dependance in the parameters of fortification, but instead of the alphabet size of
the resulting fortified game, it only depends on the alphabet size of the original game (which has
exponentially smaller alphabet size). This new parallel repetition theorem is crucial for extending
the fortification framework to the setting of general (as opposed to projection) two-player games.

Let us remark that the reason why alphabet blow-up of fortification does not cause an issue for
projection games is because for projection games it suffices to only fortify one side of the game (by
working with so-called “square projection” version of the game). As a result there is no alphabet
blow-up for the “unfortified” side, which allows the arguments of [Mos14, BSVV15] to go through.
This one-sided fortification does not work for general games, which is why we need Theorem 3.4.

Fortification. We start with a definition. Let G = (X x Y,A x B,u, V) be a game, and M and P
two bipartite graphs over vertex sets (X’,X) and (Y’,Y) respectively. For each x € X or x’ € X’ let
N(x) € X’ and N(x’) € X denote the set of neighbors of x and x’, respectively (similarly for any

v,9).

Definition 1.1 (Concatenated game [Mos14]). In the concatenated game G' = (M o Go P), the referee
selects questions (x,v) according to p, and independently selects a random neighbor x' for x using M, and
y' for y using P. The players receive questions x" and y' and respond with assignments a’ : N(x') — A
and b’ : N(y') — B respectively. The players win if V(a'(x),b'(y),x,y) = L.

Our first two main results show how, both in the classical and quantum settings, any game
can be fortified by concatenating it with bipartite graphs M and P with sufficiently good spectral
expansion.> (See Section 2.4 for the definition of spectral expanders, and Section 3.1 for the notion
of weak fortification.)

Theorem 1.2 (Main-classical). Let G be a biregular game and M and P two bipartite A-spectral ex-

panders. If A < %\/g, then the concatenated game G' = (M o Go P) is (¢,0)-weakly fortified against
classical substrategies.

Theorem 1.3 (Main-quantum). Let G be a biregular game and M and P two bipartite A-spectral
expanders. If A < %2—6‘5, then the concatenated game G' = (M o Go P) is (¢,0)-weakly fortified against
entangled strategies.

We stress that both in the quantum and classical settings the procedure used to fortify a game
is precisely the same, i.e. concatenation with spectral expanders, and the only difference is in
the resulting parameters. Despite the similarities, the proof of Theorem 1.3 is significantly more
involved, requiring several new ideas and substantial matrix analytic arguements.

Next we discuss a distinctively quantum phenomenon which makes the construction of a full
quantum gap amplification theorem — quantum analogue of (4) — considerably more difficult. As

3Even though explaining these results in full requires the definition of analytically fortified games, which we intro-
duce only later in Section 3.1, the analogy with the notion of combinatorially fortified games from (1) should still be
sufficient to understand the basic ideas.



it turns out, even though Theorem 1.3 is sufficient to prove the soundness case of the gap amplifi-
cation theorem, the concatenation procedure used in the process can undermine the completeness
condition (i.e. VAL"(G’®™) 2 VaL"(G)™ in general fails to hold).

The issue is as follows: let G be a game and G’ = (M o G o P) be a concatenated version of G.
Classically we have VAL(G’) = VaL(G). Quantumly, even though we still have Var'(G’) < VaL'(G)
the other direction in general fails: we would have liked to argue that the players in G’ are able to
utilize the strategy in G to achieve the same success probability in the concatenated game, but this
seems impossible: having received x’ € X" and y’ € Y/, the players have access to lists N(x') € X
and N (y’) € Y that they know contain the true questions of the referee, i.e. x* € N(x'), v* € N(v').
The players would like to apply their optimal strategy in G to each and every (x,y) € N(x") x N(v’)
simultaneously, but this is in general impossible in the quantum setting.*

Note that the same issue does not arises classically because the optimal strategy in G can be
taken to be a deterministic one, and the players in G’ can use the same labeling suggested by
the optimal strategy in G to give labels to all of N(x’) and N(y’) simultaneously. This strategy
however relies on the fact that classically different questions have a simultaneous labeling, a fact
which certainly has no quantum analogue.

We resolve the above issue using a novel entangled value-preserving variant of fortification
which we call ordered fortification. The basic idea for ordered fortification is to give the players
some extra advice information which helps in preserving the entangled value.

Let G beagame and G’ = (MoGoP) be a concatenated version of G. There is an extra parameter
I in the construction defined as I = max {max,ex: [N (x')|, max,cy: [N (v')}.

Definition 1.4 (Ordered concatenation). Let G and G’ be as above. In Gy, the referee samples (x,v)
according to G and picks random neighbors x' ~ N (x) and y’" ~ N (y) independently. She then also picks
two random injective maps ry : N(x') — [I] and s, : N(y') — [I] conditioned on s,(x) = r,(y). The
referee sends x" and ry to the first player, and y'" and s, to the second and accepts if the players” answers
a:N(x')—>Aand b : N(y') — Bsatisfy V(a'(x),b'(v),x,v) = 1.

Here the crucial point is that v and s,/ are correlated. They give matching labels to true
questions x and y. To achieve the same winning probability as in G, the players in G, will share
I copies of the state |¢) from the optimal strategy in G. For each x* € N(x") with label i = r/(x*),
the first player will apply the optimal G-strategy for x to the i copy of i) (similarly for the
second player). The fact that r/(x) = s,/(y) ensures that for the true questions x and y the players
apply the optimal G strategies to the same copy of |¢), and hence are able to win with exactly the
same winning probability as in G.

Of course, the crucial part here is that even though the auxiliary information in r,v and sy is
helpful to the players for replicating the winning probability of G, it should not be “too helpful”.
In particular, we need to still be able to prove that G, is fortified with appropriate parameters.
This point is established by the following theorem.

Theorem 1.5 (Main-ordered fortification). Let G be a game and M and P be two bipartite graphs as
above. Let G, be constructed from G and G' = (M o G o P) as in Definition 1.4. Then, we have

VaL' (Gpp) = VAL (G).

4This is because the measurement operators of different questions do not in general commute which prevents Alice
(say) to obtain simultaneous answers for all questions in N (x’). As a further illustration of this issue, see Section 2.2
for an example of a game where Var' (G’) < Var"(G).



Furthermore if M and P are A-spectral expanders and A < %, then Gy is also (e,0) weakly fortified.

We prove Theorem 1.5 in Section 6 using a spectral argument that reduces it to Theorem 1.3.
Beside the above, we also prove a simple multiplayer fortification in Section 5 for classical games.
It may be possible to adapt the proofs of Theorem 1.3 and Theorem 5.2 to obtain a multiplayer
fortification theorem for entangled games. Although plausible, some further technical issues arise
in this case which we do not pursue here.

Biregularization. As already mentioned, biregularization is a minor (but necessary) step in the
fortification framework. Our biregularization lemmas are presented in Subsection 2.3 and are
proved in Appendix A. In terms of final statement, our biregularization lemmas are incomparable
with those of [Mos14, BSVV15]. For example, in the case of graphical games, we prove a biregular-
ization lemma which preserves the value exactly but has a cubic blow-up in the number of ques-
tions, whereas the biregularization lemmas from [BSVV15, Mos14] had a nearly linear blow-up
but only preserved value up to an additive error. Moreover, in this work we prove biregularization
for all games whereas [BSVV15, Mos14] only considered graphical games. (See Subsection 2.3 for
definitions.)

1.2 Related work

The main result underlying the present work is Moshkovitz [Mos14], where the framework of
parallel repetition via fortification was first introduced. Some simplifications and corrections
to the work of Moshkovitz appeared in Bhangale et al. [BSVV15]. In particular, an important
contribution of [BSVV15] was the clarification of the best bounds possible in classical fortification
theorems [BSVV15, Appendix C]. Going back, the general idea of modifying the game in order to
facilitate its analysis under parallel repetition originates from the work of Feige and Kilian [FK00]
who introduced the confuse/miss-match style repetition of games. The Feige-Kilian type parallel
repetition was later extended by Kempe and Vidick [KV11] to the quantum setting allowing them
to obtain the first general parallel repetition theorem for quantum games.>

Another important set of ideas underlying our work is related to the analytic approach to par-
allel repetition pioneered by Dinur and Steurer [DS14], further extended by Dinur et al. [DSV14].
Our analytic reformulation of fortification framework is very much inspired by the ideas in these
works.

Yet another different stream of work (more distantly related to the present work) follows the
original ideas of Raz and Holenstein [Raz98, Hol07] by taking a more information theoretic ap-
proach to quantum parallel repetition. The first results in this direction were obtained by Chail-
loux and Scarpa [CS14] and Jain et al. [JPY14] who prove exponential-decay parallel repetition
results for free two-player games. Their analysis, as well as the follow-up work of Chung et
al. [CWY15], provided the basis for the recent work of the authors [BVY15] who obtained hard-
ness amplification method in great generality by introducing and analyzing the parallel repetition
of a class of games called anchored games. The final hardness amplification results obtained here
through fortification are incomparable to that of [BVY15]: fortification allows for a somewhat

STheir transformation did not preserve the entangled value, and hence did not lead to a fully general hardness
amplification method for entangled games (being restricted to the case where the completeness holds with classical
strategies). Our Theorem 1.3, without the improvement of Theorem 1.5, is applicable to a similar setting.



faster rate of decay in some regimes,® yet it suffers from a much larger blow-up in terms of alpha-
bet size.

Turning to the multiplayer setting, very little was known prior to the present work and [BVY15].

It is folklore that free games with any number of players satisfy a parallel repetition theorem, and
this was explicitly proved in both classical and quantum settings in [CWY15]. Multiplayer par-
allel repetition has been studied in the setting of non-signaling strategies, a superset of entangled
strategies which allows the players to generate any correlations that do not imply communication.
Buhrman et al. [BFS13] show that the non-signaling value of a game G with any number of players
decays exponentially under parallel repetition, with a rate of decay that depends on the entire de-
scription of the game G. Arnon-Friedman et al. [AFRV14] and Lancien and Winter [LW15] achieve
similar results using a different technique based on “de Finetti reductions”. An interesting fact
about the latter work [LW15] is the use of a notion of sub-no-signalling strategies which seems
related to our notion of quantum/classical substrategies.

1.3 Organization

In Section 2, we introduce some basic definitions and notation including the notion of substrate-
gies, induced strategies, and some other basic results and definitions that are used throughout
the paper. In Section 3, we complete the presentation of our main results (which was started in
the introduction), discuss the parameters of the final gap amplification results, and present the
formal definition of analytically fortified games.

The remaining sections contain proof of the main theorems. Our parallel repetition theorem
is proved in Section 4. Theorems 1.2 and 1.3 are proved in Sections 5 and 7, respectively. The
reduction from Theorem 1.5 to Theorem 1.3 is given in Section 6. The biregularization lemmas
are proved in Appendix A. We conclude by some open problems in Section 8.

2 Preliminaries

Given a distribution p, by z ~ y we mean that the random variable z is distributed according to p.
For a set S, by z ~ S we mean z ~ Ug where Ug is the uniform distribution over S. For Hermitian
matrices A, B we write A > B if and only if A — B is positive semidefinite.

Given two games G; and G,, we define the tensor product game G; ® G, as the game where
the referee selects two pairs of questions (x,y;) and (x,,v,) independently according to G; and
Gy, sends (x1,x,) and (;,7;) to Alice and Bob respectively, and checks their answers (ay,4}) and
(by, b,) according to the product predicate [ |2, V (a;, b;, xi, v;).

2.1 Game value and strategies

The main goal of this section is to introduce the notion of classical and quantum substrategies
which replace the notion of subgames from [Mos14, BSVV15]. As subgames were central in the
combinatorial framework of [Mos14], substrategies are similarly central to our analytic framework.

Let G be a game with question sets X, Y, answer sets A, B, predicate V, and question distribu-
tion pon X x Y.

Definition 2.1 (Classical substrategies). Let G = (X xY,AxB, u, V') be a two-player game. A classical

For example, for general two-player games the fortification approach gives a nearly perfect decay in terms of

number of repetitions and question size blow-up, whereas [BVY15] and other information theoretic results have a

(1- 52)0(’”) type behavior which is weaker than fortification when m « e~1.



substrategy is given by (f,g) where f : X x A —[0,1],¢:Y x B— [0, 1] satisfy

VxeX, f(x):= Y f(xa) <1,  VyeY,g(y):=) gb) <l
a b

We call (f,g) a “complete strategy” (sometimes simply strategy) if equality holds in all above inequal-
ities, i.e. f(x)=g(v) =1 for all x,y.

Definition 2.2. Given a substrategy (f,g), the value of G with respect to (f,g) is given by

VAL(G:f,g):=(x£~” D, V(abxy)f(xa)-g,b). (5)
g acA,beB

The classical value of G is
VaL(G) :=sup VaL(G, f,g), (6)
/g

where the supremum is taken over all complete strategies f,g.

We note that the definition given by (6) can be easily seen to be equivalent to the more tradi-
tional definition of the classical value, i.e.

VarL(G):= max [E V(p(x),q(v), x7v), (7)
Pi’;—“g (x%9)~p
4:Y—

because any strategy f : X x A — [0,1],¢: Y x B— [0,1] can be written as convex combination of
a collection of strategies of {0,1} valued strategies; on the other hand, taking supremum over f, g
which are {0,1} valued is precisely equivalent to (7).

Next, we extend the above notions to the quantum setting.

Definition 2.3 (Quantum substrategies). Let G = (X x Y,A x B,, V) be a two-player game. A
quantum (or entangled) substrategy for G is a tuple (i), {A;},{BZ}) defined by an integer d € IN,

a unit vector i) € C™ gnd sets of positive semi-definite matrices {Aﬁ}xex,aeA;{Bg}er,beB over C%
satisfying
Vxe X, Ay =Y A} <Id,  VyeY,B,:=) B)<Id. (8)
a b

If Ay = B, = 1d for every x,y the quantum substrategy is called a “complete strategy” (sometimes
simply strategy).
Definition 2.4. Given a quantum substrategy (|i), {A%}, {BZ}), the value of G with respect to (|i), {A%}, {Bg})
is given by
VAL'(G[9) (AL} BJY) = E S IV(abxy)WlAL@ Bl
s a,b
The entangled value of G is defined as

VaL' (G)= sup VaL (G,|¢), {A%}, {BZ}), (9)
), {A%},{B%}

where the supremum is taken over all complete strategies (i), {A%}, {BZ})



2.2 Concatenated games

Let G=(XxY,Ax B,u, V) be a game, and M and P two bipartite graphs over vertex sets (X', X)
and (Y',Y) respectively. For each x € X or ' € X’ let N(x) € X’ and N(x’) € X denote the set of
neighbors of x and x/, respectively (similarly for any y,7’). Recall the definition of Concatenated
Games from the introduction.

Definition (Definition 1.1 restated). In the concatenated game G' = (M o G o P), the referee selects
questions (x,vy) according to u, and independently selects a random neighbor x' for x using M, and y'
for y using P. The players receive questions x" and y" and respond by assignments a’ : N(x') — A and
b': N(y') — Brespectively. The players win if V(a'(x),b'(v),x,v) =

For a concatenated game G' = (M o Go P), we refer to G’ as the outer game and to G as the inner
game.

Let G' = (M oGoP) be a concatenated game. Let dy = maxcx: [N (x')], dy: = maxyep [N (y')]-
Then, the alphabet of the concatenated game is given by A’ = A%, B’ = B%'. Similarly, it is easy

lven | Lfen)

to see that the distribution ' of questions in G’ is given by y/'(x’,y") = E(y y)~y NGBRLOE

Definition 2.5. Let G’ = (M o Go P) be a concatenated game. To any pair of substrategies (f,g) for G’
we associate the induced substrategy’

flxa): Z fx a),  gyb): > fy b') (10)

/o I~
x N( N(y b ()=

Similarly, given an entangled substrategy (|1, {A% 3, {Bbl})for G', we define the induced substrategy

as
a b._ b’
Al = NN(x Z A%, By. Z B, (11)
a’'(x)= b/(l’

Intuitively, an induced strategy is a strategy for the inner game in which the players proceed
as follows: given question x € X, y € Y and a strategy (f,g) for the outer game, the players select
two random neighbors of their questions x’ € N(x),y’ € N(y) independently, and play according
to the labeling of x,v suggested by (f,¢) at x’ and ¢’.

The following simple proposition will play an important role throughout the paper.

Proposition 2.6. Let G’ = (MoGoP) be a concatenated game. The value of any classical strategy (f,g)
(resp. quantum strategy (|ip), {A% ), {Bb 1)) in the outer game G’ is equal to the value of the induced
strategy in the inner game G:

VaL(Gf,g) = VaL(G,f,g)  and VAL (G[), {A% ), {BL}) = Var (G, 9, (A%}, {BY}). (12)

As a consequence,
VaL(G') < VaL(G), and Var'(G') < VaL'(G). (13)

Furthermore,
VAL(G') = VaL(G). (14)

"Note the slight (but convenient) abuse of notation due to the use of the same letter to represent a substrategy
and the corresponding induced substrategy. The more accurate but more cumbersome way of denoting the induced
strategies in in [DS14]’s language would have been M f and Pg.

10



Proof. The first equality in (12) follows from linearity of expectation and the definition of induced
strategies as

VaL G/, , = E E E Vv a/ X ,b/ , X, x/,a/ . /’ b/
(G.f.9) (Xr?)NI‘X'NN(x)?’NN(?)a/eA%;/eB, (d'(x), V' (v), %) f () - g (v, 1)

= B > V(abxy)f(xa) g(yb)
(o) ~p acA,beB

=VaL(G, f,9).

The second equality is proved similarly. The two inequalities (13) follow directly from (12). To
show (14) it remains to show that VAL(G’) = VaL(G). Consider an optimal deterministic strategy
for Ggivenbyp: X - Aandq:Y — B. Forany x’ € X/, 9’ € Y/ define @’ : N(x') — A according to p
and b’ : N(y') — B according to g. It is easy to see that this achieves the same value in G as (p,q)
did in G. O

As mentioned in the introduction, the quantum analogue of (14) does not hold in general. For
example, consider the case that M and P are complete bipartite graphs. In this case, the players
playing G’ = (M o G o P) need to provide a labeling to all vertices in X and Y simultaneously.
But this is essentially just a classical strategy as the labelings for X,Y are now fixed. Hence,
VaL'(G’) = VAL(G), the classical value, which in many cases could be much smaller than Var'(G).

2.3 Biregularization

As in [Mos14, BSVV15] we prove our fortification theorems for the special class of biregular games.

Definition 2.7. A two-prover game G = (X x Y, A x B,u, V) is called biregular if the marginals of y on
X and Y are both uniform.

The following lemma justifies that for our purposes we may always assume a game is biregular.

Lemma 2.8 (Biregularization lemma). Let G = (X xY,Ax B, u, V) be a two-prover game and t € (0,1)
a fixed constant. There exists an efficient algorithm that given G produces a biregular game Gj,; with
question sets Xj,; and Yj,; of cardinality at most

8|X|2|Y 8| XY |?
X < Ly < BXIVE (15)
the same answer alphabet size as G, and value satisfying
VAL(G) < VAL(Gjy) < VAL(G) + 7, VAL (G) < VAL (Gip) < VAL (G) + . (16)

Note that (16) implies that applying the Biregularization Lemma to a game never decreases its
value, and hence the procedure is completeness preserving.

A widely used class of games in applications are so-called graphical games, for which we can
get an improved biregularization result that does not require any approximation factor 7.

Definition 2.9. A graphical game G is a game where the questions are given by choosing an edge of
a bipartite graph uniformly at random (i.e. E € X x Y and p(x,v) = ﬁ if (x,y) € E and p(x,y) =0
otherwise). The predicate and the answers do not have any restrictions.

11



Lemma 2.10 (Biregularization lemma, graphical case). Suppose G is two-prover graphical game with
E edges between (X,Y). There exists an efficient algorithm that given G produces a biregular game Gy,
with question sets Xj,; and Y;,; bounded by

| Xintl < |E[-IXI < [XPIY] [Yiul < |E]- Y] < [X]Y]%, (17)
the same answer alphabet size as G, and the value satisfying
VAL(G) = VAL(Gj,;) VAL (G) = VAL (Gipy). (18)

Remark 2.11. In the above, we can allow for multiple edges across vertices of G. In this case E
must be taken as a multi-set and the bound |E| < |X||Y| used in (17) must be suitably modified.

Interestingly, our technique for proving the biregularization lemmas is concatenation itself!
This is done in Appendix A.

2.4 Expanders

The method used in [Mos14, BSVV15] for fortifying a game is concatenation with sufficient pseu-
dorandom bipartite graphs. This is done using extractors in [Mos14]| whereas expanders are em-
ployed in [BSVV15].% Here we follow the latter approach and use expanders.

Let M = (X’ x X, E) be a bipartite graph. For x € X let N(x) € X’ denote the set of neighbors

of x and similarly for x’ € X’. We shall work with graphs that are X-regular, i.e. d = |[N(x)| for all
x € X. Define distributions y and i’ on X and X’ via

for all x € X and x’ € X’. Note that y/(x’) is the probability of obtaining x’ by sampling x ~ u
and taking a random neighbor of (according M) x . Let M be the following normalized adjacency
matrix of M

M(x,x'):{ - ;fg}) if x" € N(x)

0 otherwise

We usually view M as an operator from ¢,(X’) to €,(X). Note that when M is a biregular expander

we get the simpler definition M(x,x") = & % for x' € N(x), and 0 otherwise.

Definition 2.12. A bipartite graph M is called a A-spectral expander if the second-largest singular
value of M is at most A.

A simple useful proposition for us is the following:

Proposition 2.13. Let M = (X' x X, E) be a bipartite A-spectral expander. For f : X' — Rand x € X
let f(x) =By N f(X), and f =By f(X') =Exry, f(x). Then

E (f(x)=f)?<A® E (f(x')~ )% (19)

X~u xlwyl

8The two approaches however lead to essentially to similar parameters (e.g. A = O(e+/3) to get (e, &)-fortified graph
where A is the second largest singular value of normalized adjacency matrix of the concatenating graph.); moreover, in
the classical setting the approaches are in fact are more or less equivalent. See [BSVV15] for more.
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Proof. Let p, € IRX,p”/ e RX' to unit vectors defined as pu(x) := /p(x) and py(x') 1= /p(x)).
Letgx (x) := \/p(x) f (%), gx/ (") := /p(¥') f (x).

First, observe that Mp,, = p, and M'p,, = p,. Tt follows that (p,,p,/) form a pair of singular
vectors of M. Moreover, it is easy to see’ that these are top singular vectors which shows that
|M[op = 1. Now notice that

E (f()=f)? =2/ nO)f (&) = o/ n(x))? = lax: = fpwls (20)

XIH}'{I

Second, observe

Max = qx. (21)
As such, (19) precisely corresponds to
lax = fpulz = [M(ax = F p)l3 < A% -lax: = f pwl. (22)
The claim follows by noting the orthogonality property
{axr — fp;z’rp;z’> = Zl‘(x/)f(xl) _f =0. (23)
xl
O

3 Fortification Framework

This section introduces the fortification framework. We define the notion of analytically fortified
games and recall our main parallel repetition and fortification theorems. We end by a discussion
of the parameters of the resulting gap amplification results.

3.1 Analytical fortification

We distinguish between two variants of the notion of fortified games which we call weakly fortified
games and strongly fortified games. Although the difference between the two may seem minor, this
difference is in fact quite important in the quantum case.

Definition 3.1 (Fortified games). Let €,0 € [0,1]. A concatenated game G' = (M o G o P) is called
weakly (&,0)- fortified against classical substragies if for any substrategy f,g we have

VaL(G, f,g) < (VAL(G) +¢) - (x,}])])iwf(x)g(y) + 0. (24)

Similarly, we define G’ to be weakly (&, 6)-fortified against entangled substrategies if for any substrategy
{Aiﬁ}, {BZ/,} we have

VaL' (G {A% ), {BY}) < (VaL'(G) + ¢) - . }I)I;ZN”<¢\AX ® B,y +6. (25)

If furthermore VAL(G) (resp. VaL (G)) can be replaced by VaL(G'), (resp. VAL (G')) in the above then
the game is called “strongly fortified” against classical (resp. quantum) substrategies.

9e.g. by appealing to the Perron-Frobenius theorem.

13



Note that our main results, Theorems 1.2 and 1.3, show how any game can be (weakly) fortified
by concatenating it with good-enough spectral expanders.

Two remarks regarding the above definition are in order:

* Using (13), we see that strong fortification implies weak fortification, as expected from the
terminaology.

* From (14) it follows that the two notions in fact coincide in the case of classical fortification,
but this is no longer the case for quantum fortification.

Our notion of fortified games and that of [Mos14, BSVV15] are closely related. Essentially, in
Definition 3.1 we have replaced the the condition for all 6-large rectangles in (1) with a smoother
condition. In terms of a precise relation, we can show the following.

Claim 3.2. Every (¢, €0) strongly fortified game is also (2¢,0) combinatorially fortified.

Proof. Consider a subgame given by S € X,T < Y in G. To every strategy (p,q) for Gg.r, i.e.,
p:S— A, q: T — B, we can associate a natural substrategy (f, g) by

1 ifxeS Ap(x)=a, 1 ifyeT Aq(y) =0,
a) = , b) = . (26
flxa) { 0 otherwise 8(:b) { 0 otherwise (26)

Then one can easily see
VaL(G, f,8) = VAL(Gsx1,p,q) - (S x T).1° (27)

Now assuming that rectangle S x T is o-large, i.e. (S x T) = 9, and since G is fortified against
classical substrategies, we have

VaL(G, f,g)

IE(x,y)~;4 f(x)g(y) o€
< (V. : 2
(VAL(G) +¢) WS <T) +”(SxT) (29)
< VaL(G) + 2¢ (30)
where in the second inequality we used p(S x T) = B ), f (x)g(9)- O

We note that in Lemma 3.2, the reverse implication does not hold and the notion of analytically
fortified game is strictly stronger. In what follows, in the rare occasion when we call a game
fortified (without specifying weak or strong) we mean strongly fortified.

10The term pu(S x T) = ]E(x,y)Nyf(x)g(y) is a natural scaling parameter playing an important role in our discussion
as a measure of the “largeness” of a subgame or a substrategy.
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3.2 Parallel repetition of fortified games

Using the definition of fortified games, it is straightforward to prove the following parallel repe-
tition theorem.

Theorem 3.3 (Basic parallel repetition). Let G be a (¢,6)-fortified game against classical substrate-
gies. Then for any game G/ we have

VAL(G] ® G5) < (VAL(G)) +¢€) - VAL(G]) + 6+ Xal, (31)
where X/ is the total answer alphabet size (i.e. the product of Alice and Bob’s alphabets) of G}

We prove this theorem in Section 4 by adapting the proof of the analogous theorems in [Mos14,
BSVV15] to the analytic setting. Unfortunately, while this theorem exemplifies the main idea
behind our results, it is not directly useful for applications. The reason for this is that the
fortification procedure G — G’ via concatenation induces a large blow-up in the alphabet size,

IXo| ~ |E¢|P, where D = EL is the degree of the expander graph chosen. As one iterates the rep-

Vo
etition procedure m times, the blow-up due to the additive term in (31) will be of order §|Zq/ |~

But typically [Zq/|" ! » = g|(m=D/Ve, leading to a term larger than 1 and rendering the theorem
useless.

We resolve this problem by proving an improved repetition theorem which exploits the fact
that G’ takes the form of a concatenated game, whose inner game G has a much smaller alphabet.

Theorem 3.4. Let G’ be a concatenated game, with inner game G, that is (&, 0)-weakly fortified against
classical substrategies. If & - (m—1)-|Xg|" " < 1 then

VaL(G'®™) < (VAL(G) + €)™ + 1. (32)

Similarly, if G' is (¢,6) weakly-fortified against entangled substrategies and 6 - (m —1)-|Zg|" ! < n
then
VaL' (G"®") < (VAL' (G) + €)™ + 1. (33)

The main advantage of Theorem 3.4 compared to Theorem 3.3 is in the additive error, which
is now is in terms || rather than |Xs/|. What is important here is that the size of |X| is indepen-
dent of the fortification parameters (&, 6) whereas |X /| grows exponentially as 6 decreases. Let us
also note that Theorem 3.4 is quite general, and in particular applies to the multiplayer case.

3.3 Gap amplification

Having stated our main parallel repetition, fortification, and biregularization theorems, all the
main components of gap amplification are finally in place. Indeed, using VAL(G) = VAL(G’) The-
orem 3.4 implies our final gap amplification for the classical value. This matches the parameters
of main results of [Mos14, BSVV15] and extends it to more general settings.

Since quantumly we could have VaL'(G’) < VaL'(G), from (33) we cannot obtain
VaL (G®™) < (VAL (G') + &)™ + 1. (34)

However, Theorem 1.3 and Theorem 3.4 are still sufficient to prove a gap amplification theorem
for the case where the completeness holds against classical players and the soundness against the
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quantum ones.!! To obtain a fully quantum gap amplification however, we need to appeal to the
notion of ordered fortification which, as we discussed, is a entangled-value preserving variant of
the ordinary fortification.

Theorem (Theorem 1.5 restated). Let G be a game and M and P be two bipartite graphs as above. Let
Gpp be constructed from G and G' = (M o G o P) as in Definition 1.4. Then, we have

VaL' (Gjp) = VAL (G).
Furthermore if M and P are A-spectral expanders and A < %, then Gy is also (&,0) weakly fortified.

We stress that G}y, constructed above is itself a concatenated game with the inner game G%/,
disjoint union of | = poly(%) copies of G. This means the inner alphabet size of G, is precisely
the same as G’s, and therefore there is fortunately no issue in terms of alphabet blow-up for
applying Theorem 3.4 to Gy;. So using G instead of G’ in Theorem 3.4, we can finally prove

the analogue of (34) for Gp..

Parameters of gap amplification. We can now discuss the parameters of the gap amplification
corollaries. As in [Mos14, BSVV15], the parameters are typically very good in terms of question
sizes but much worse in terms of alphabet size. Here, we mostly focus our discussion to gap
amplification in the classical setting as the calculations in the quantum setting are similar.

To understand the parameters, we need to only consider the soundness case. Suppose we are
given a game G with guarantee VAL(G) < 1 — t and a target soundness value . We choose ¢ = t/2

and m such that (VAL(G) + €)™ < B/2. Hence, we have m = 101?1(3/5)2) < 2l°g£2/ﬁ). We want

VAL(G'®"™) < (VAL(G) + &)™ + 6 - (m— 1)|Zg|" ! < B. (35)

Hence, we just need to ensure 6 - |[£5|"~! < /2. So we have 6 = W
So what does the above mean in terms of the size of the final output of gap amplification
G'®™. The question size is |X|" and |Y|™ (since we have |X’| = |X| and |Y'| = |Y|). Note that m is
essentially as small as we can hope for because even given a perfect parallel repetition theorem,

we had to take m ~ M. Hence, the construction is essentially optimal in terms of question
sizes.
29
For the alphabet size, the situation is much worse. We have || = |£5|P where D = O(W).

"12|EG|W171

This means (up to dominant factors) that |[Xgen| =|Xg|” #  which means that the alphabet is
exponentially worse than basic parallel repetition which results in |[5|™. Note that however in
typical settings where |~/ is constant and p a small constant (or inverse logarithmic in size of G),
this exponentially worse behavior of alphabet size does not cause a significant problem.

Next, let us consider the setting where the completeness holds for classical players and sound-
ness against entangled players. In this case, we can just use Theorem 1.3 instead of Theorem 1.2,
and hence all the calculations are precisely the same with ¢ and ¢ replaced with their squares.

Lastly, in the fully quantum case we need to use Theorem 1.5. In this case, m,¢,0 are chosen
in precisely the same way. Alphabet size is also exactly the same as G, has the same alphabet

I1E o as was the case in [IV12, Vid13].
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size as G'. The only difference is that the question sizes in Gy, are slightly larger than G’: we have
IX'| =|X]|- poly(p:g| )and |Y'| = |Y]-poly( ‘E? ). This is however arguably a minor blow-up since

we typically expect that |[X|/B to be much smaller than size(G) = |X|-|Y]|.

4 Parallel Repetition Theorems

In this section we prove our main parallel repetition theorem.

Theorem (Theorem 3.4 restated). Let G’ be a concatenated game (¢,6)-weakly fortified against classi-
cal substrategies with inner game G. If & - (m—1) - |Xg|" = <1 then

VAL(G™®™) < (VAL(G) + €)™ + 1. (36)

Similarly, if G' is (¢,8) weakly-fortified against entangled substrategies and 6 - (m —1)-|Zq|" ! <7
then
VaL' (G"®™) < (VAL (G) + &)™ + 1. (37)

The proof follows directly from the following proposition.

Proposition 4.1. Let {G!}!_, be a collection of concatenated games with inner games {G;}:_,. Suppose
that Gy is (&,0) weakly fortified against classical substrategies. Then,

VAL(G] ® G, ®...® G;) < (VAL(G;) + €) - VAL(G] R GH®...QG;_{) + 6+ H|ZG,-|- (38)
Similarly, if G} is (&, ) weakly fortified against quantum substrategies, then
VAL (G] ® Gy ®...® G) < (VAL (Gy) + €) - VAL (G| ® Gh ®...Q G;_1) + 6 | [ X, |- (39)

The key to proving Proposition 4.1 is to work with the induced strategies. This allows us to
get an additive error depending just on the alphabet size of the inner game. In the proof, we use
the usual notation where a strategy missing an (answer) argument indicates summation over that
variable. For example,

fxpan,...x a0 1,%) = Zf(xllall"-lxt—llat—llxtlat)-

Proof. We only prove (38) as the proof of (39) follows the same structure. Also for simplicity, we
focus on the case of two-player games as the proof of the multiplayer case is a straightforward
extension.

Consider any strategies f : X] x A} x... x X; x A} — [0,1], g: Y{ x B} x... x Y/ x B; - [0,1]. To
clarify notation we will denote tuples (zy,...,z;_1) as z_,. With this notation, VAL(G| ®...®Gj, f,g)
is precisely

E E E H V(@ (x;), 0y (i), %0, 9i) f (X <pa’<r) - 8(Y < b <t), (40)

X
(X<py<t) X tY< b/, i=1
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where the expectations are according to (x;,9;) ~ p; and x. ~ N(x;) and y; ~ N(y;) for all i =
1,...,t. As usual let

f(xeracy,xpap) = E Z f(x'<pa’ <, x4, a). (41)

x' _,~N(x
<t ( <t) a;(xi)=a,v,i<t

Using this notation, we can rewrite (40) as

Z HV (ai,bi,xi,9:) S(X<t,Y<tra<r,boy), (42)

x<fY<f
a b i=1

where S(x_;,y-,a-;,b_;) is given by

(X]Ey)lf];ﬁ V(a ;(xt)’b;(yt)lxtfyt)f(x<t1a<t1x;la;) ‘g(Y<t;b<t:ZJ£: b;) (43)
v 7t) A Jt /b/

Consider the following substrategy G;: fix the first 2(+ — 1) arguments of f to (x_;a_;) and the
first 2(+—1) arguments of g to (y;,b_;). Then (43) is precisely the value of this substrategy in G;j.
Since G} is (¢,0) weakly fortified, it follows that

(43) < (VAL(Gy) +¢) '( E )f(x<t;a<t;xt) 8(y<t b, p) + 0. (44)

Xt:Yt
Plugging this expression back into (42), VAL(G| ®...® G}, f, ) is bounded by

t—1 t—1
(VAL(Gt)+€)( E > [[V@buxiy) f(xapacyx)-g(y<bapy) +0- [ [IZ6,

X<t¥<t . .
<v¥< a_,b_,i=1 i=1

To conclude we observe that

t—1
Z HV(aixbi;xi;yi)f(x<tla<t1xt) 'g(Y<tlb<tlyt) (45)

E
(xéf'YSt) a<t;b<f i=1

is at most VAL(G] ®...®G;_,), as for any fixed (x;,y;) the functions f(-,x;) : X] x A} x...x X]_| x
A, | —[0,1]and g(-,v;) : Y{ x B} x...xY/ | xB, | —[0,1] are valid strategies in G’1® ®Gt - O

Remark 4.2. Theorem 3.3 immediately follows from Proposition 4.1 by taking t = 2 and consid-
ering the trivial concatenation G} = Gy, G}, = G,.

Theorem 3.4 follows easily.
Proof of Theorem 3.4. We prove (36) as the proof of (37) is similar.
The proof is by induction on m. The case m =1 is clear. By the induction hypothesis we have
VAL(G®" D) < (VAL(G) + &)™ 1 4+ 5+ (m — 2)|Zg|" 2.

Note that we can assume VAL(G) + ¢ < 1 otherwise (36) holds trivially. Applying Proposition 4.1
we see that

Var(G"®™) < (VAL(G) + €) 'VAL(GI®(m_1)) +6- X"t
< (VAL(G) 4 &)™ + 6 - (VAL(G) + &) - (m — 2)|Zg|" 2 + 6 |X¢|" !
< (VAL(G) 4+ &)™ +6-(m—1)- |Xg|™ L.
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5 Classical Fortification

In this section we prove our main theorem regarding the fortification of classical games. Beside
providing a short and self-contained treatment of the main result of [Mos14, BSVV15], it serves
as preparation for the analysis of Section 7.

Theorem (Theorem 1.2 restated). Let G be a biregular game, M and P two bipartite A-spectral ex-

panders. If A < %\/é, then the concatenated game G' = (M o G o P) is (¢,0) weakly fortified against
classical substrategies.

We note that it follows from [BSVV15, Appendix C] that the dependence A and 6 in Theorem
1.2 is up to constant factors optimal. On the other hand, the tightness of dependence of ¢ and o
does not seem to follow from [BSVV15] lower bound (however, ¢ is by far the more significant of
the two parameters).

5.1 Proof of Theorem 1.2
We start with a simple claim whose proof we will defer to the end of the subsection.

Claim 5.1. Let M = (X’ x X,E) and N = (Y' x Y,F) be two biregular bipartite graphs that are A-
spectral expanders. Let y be a distribution on X x Y such that both marginals of p are uniform. Let
f:X —>Rand g:Y' — R be any functions, and denote f : X — R and g : Y — R the functions

fix—= By Nw f(x), §:9 = Eyny) &(y) respectively. Then

E|fa)sw)— B flos)| <2var(E FOP) (B lsw)?)

(xpy1)~p (x2,92)~p X'~ v~y

and

56)P)"

B fsn)] < 202 B 1R) (B

E_f(x) yllﬁyg(yl) - B S

.Xl’\'X (

We prove a slightly stronger statement which implies Theorem 1.2. Let f, g be any substrate-
gies for G, and let y = E(y ), f (x)g(y). We claim that

VaL(G', f,g) < VAL(G)y + 2V2 A\/y + 4 )%, (46)

To deduce the bound claimed in Theorem 1.2 from (46) we distinguish two cases. Either y <9, in
which case using the trivial estimate VAL(G/, f,¢) < ¥ the bound immediately follows. Or y > 9,
in which case

(VAL(G) + 2v21671/2) + 42

(VAL(G) +¢€) + 0

VAL(G)y +2V2A/y + 412 <y
SY
given the relation between ¢, and A expressed in the theorem.

It remains to prove (46). Fix substrategies f and g. We have

VaL(G,f,.g)= E > f(xa)-g(Db)

()~ V(a,bx,y)=1

i flxa) gb)
_(x,;l)l;~ﬂf<X)g<y)v(a,ly,Zx;y)=l flx) g’
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where we adopt the convention that 0/0 = 0. Using the triangle inequality,

(G f(x,a) g(v,b) N
v, (G,f;g)éy(xﬁyv(agwﬂ 0 g0 T eE, G~

<yVAL(G)+( E |f(x)g®) -7 (47)
XY)~p

where the second inequality follows since (x,a) — f(x,a)/f(x) and (y,b) — g(v,b)/g(y) form a
valid pair of strategies for G. It remains to estimate the second term above. Applying the first
inequality in Claim 5.1,

, 1/2 , 1/2
B <20 ) (56

<2V B ) B g6)

y’~Y’
< 2V2M0/y +2A2

< 2V2A(V7 +V2A)
= 2V207 + 412,

where in the second inequality we used 0 < f(x'),g(y') < 1 for all x/,y’ and the third uses the
second inequality in Claim 5.1. Together with (47) this proves (46).

Finally, we prove Claim 5.1.

Proof of Claim 5.1. For the first inequality, write

E |f(x1)gw1)— B f(x2)g(2)]
(x1,91)~p (x2,92)~p

< E (If (1) = f)lIg ()l + If (x2)llg (v1) — 8 (2)1)

(x1,91),(x2,92)~p

<( B s - fe)P) (B lewoP)

xl,x2~X

1/2

(B r@R) (B et -g)P)

<AL E - feR) (R Ishl)

! ! ! ’ ’
1Xo~X n~Y

ea( B I@R) (B Is6h)-g6nR)

viy~Y!

/
X2~

where the last inequality uses Proposition 2.13. Now note that Ey x| f (x])—f(x}) 12 < 2B x |f(X)]%
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Applying a similar bound for g gives us the first inequality. For the second, write

| E_ f(2)8(2) B f(x) E g(n)

(x2,92)~p
o E )= fE)gn) ~g(2)

<((E (e £@2) (L E (s -sw?)

xp,X~X y1Y2~Y

< E (en-fe?) (B eeh-g6h)?)

/ / / / / ’
x5~ X Yy ~Y

<2 B re)P) (B, let?) "

X'~ X/ Y’

5.2 A simple multiplayer fortification

The following is a simple fortification theorem for k-player games. Since Theorem 3.4 applies
equally well to the multiplayer setting, we get a hardness amplification result for classical multi-
player games.

Theorem 5.2. Let G be a k-player game. Suppose G’ is given by composing each of the k sides of G by a
A-spectral expander where A < 26/k. Then G’ is a (0,0) fortified game.'?

Proof. Consider a classical substrategy for G’ given by f; : X{ x A" - R* fori =1,2,...,k. As usual,
denote f; : X; x A; = R™ the projection of f; to the inner game G. By definition,

VALGASYZ) = (B DL Vi@ x)  fi(xnan) - felea ) filxk o).

We can rewrite the above as

k
™ o hGua) - fi(xo,a2). - fie (g ax)
B L iy (e Iy ey oy

1seeer s

Let y = E(x,,..x) Hle fi(x;). Applying the triangle inequality,

k
VAL(G {fi)f_) <y -Var(G)+ B (][ filxi) vl

(erexe) 37

12 Although there is no ¢ dependence in the above, when applied to 2-player games the theorem is still weaker than
Theorem 1.2 because of the worse dependence on 0 — which is the more crucial parameter than e.
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To conclude it will suffice to show the second term above is at most 6. Let f; = E,. f(x;). Then

k k k k
E (x)—y|< E (xi)—| ||+ E fi-
(X1 X)) Hfl( l) 4 X1y Xk Hfl( l) i—1 ' (X1 5eeerXg) Hfl u
k ko k k
=B [0 -T1F [ [F- E [[f)
2 izl i1 Mk
k k
<2- E Hfi(xi)_n i
(xl'xk)zzl i=1

k
<2 ZIEVi(xi) —fil,
i=1"

where the first equality is by definition of y, the second inequality by convexity of ||, and the last
follows from

k |e—1 k ¢ k k
AG)fo()- filba) = Afoe il < DL TG TTA-T1AGa)- 11 fil < Z 3|fi(xi)
0=11i=1 i=C i=1 i=0+1 i=1
Hence,
1/2 k o\ 2
22( ﬁ)) <21) (15(ﬁ(x;)—ﬁ)2> < 2Ak.
i=1 i=1 i
The desired result follows. O

6 Reducing Strong to Weak Fortification for Entangled Games

In this section, we start working toward the problem of fortifying games in the entangled case. In
particular, we show how Theorem 1.5 follows from Theorem 1.3. Let G= (X x Y,Ax B,u,V) be a
two-player game.

Definition 6.1. For a game G and integer | € IN let G®' denote the disjoint union of I copies of G.

Suppose that M and P are regular bipartite graphs over X’ x X and Y’ x Y, respectively. Suppose
further that M and P are balanced, i.e. |X’| = |[X| and |Y’| =|Y|. Let d); and dy denote the degree
of vertices M and P, respectively. (Note that since the graphs are balanced and regular, the left
and right degrees are the same.)

Following [BSVV15], we assume that M and P are explicit bipartite almost-Ramanujan ex-
panders, as provided e.g. by [BL06], for which the second-largest singular values A,; and Ap of
Ay and Ap (the normalized adjacency matrices) respectively satisfy

1y =0 (poly(long)> -0 (poly\(/l;dp)> _ (48)
p

Note that if dy;,dp = ﬁ(%) then Theorem 1.3 implies that G’ = (M o Go P) is (&,0) weakly-
fortified. Next we recall the definition of GbF from the introduction.
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Ordered fortification. Let G, M, P and G’ = (M o G o P) be as above. let | = max{d,,dp}. In GbF,
(or simply G(,p where | = max{dy,dp}) the referee samples questions (x,v) as in G and selects two
random neighbors x" € X’ and y’ € Y’ of x and p in M and P respectively. Then the referee selects
two random injective maps r : N(x') — [[] and s, : N(y) — [I] under the condition r/(x) = s,/(y).
Alice’s question then is the pair (x',7,/) and Bob’s is the pair (3',s,/). Alice outputs an answer tuple
a' :N(x') - Aand Bob V' : N(y') — B. The players win if V(d'(x),b'(v),x,v) = 1.

Remark 6.2. Note that G, has exactly the same answer alphabet size as G’, the question sizes
|Xpp| and |Y( | are larger than in G'. This blow-up can be mitigated as follows. It turns out that
in Definition 6.3 the use of the complete set S¢; ) is unnecessary. More precisely, from the proof
of the main claim of this section, Claim 6.6 below, it will be clear that the only condition required
is that the permutations be chosen from a pairwise independent subset of S(4,). Selecting the
smallest possible such subset lets us reduce the blow-up in the size of the question sets from a
multiplicative D! down to poly(D) = poly( %) We omit the details.

Although it may not be immediately apparent, it is possible to view G, as a concatenated
game. Let G®' be as in Definition 6.1. Note that G®' has exactly the same classical and entangled
value as G. Let S(4,, ) denote the set of all injective maps from [dy;] — [/]. Fix maps u, : N(x') —
[dy] and vy 0 N(y') — [dy] ordering the neighborhoods of each x/,7" in an arbitrary way.

Definition 6.3. Let M be a regular bipartite graph over X' x X as above . We define M asa bipartite
graph over X5y := X' x S(g,, 1y and Xop := X x [I] where

(x', 1) ~y1 (x,1) — 7 (up(x)) = 1.
We define P from P in a similar way.

Note that here 7t o u,, exactly corresponds to r : N(x') — [I] map from the original definition
of G- Hence, we obtain the following alternative characterization of Gy, .

Proposition 6.4. The game G, constructed above is a concatenated game given by
Gop = (Mo G% o D).

Next, we show that ordered fortification preserves the entangled value (the classical value is
also preserved but that is not important here).

Proposition 6.5. We have VAL (G}y) = VAL (G).

Proof. In one direction we have VaL (Gj) < VaL' (G®) = VaL"(G) where we used Propositions
2.6 and 6.4. For the other direction, consider any entangled strategy (|¢), {A%}, {B;}) for G. We
construct a strategy for Gg, that achieves the same value. The provers share I copies of the state
|t)), and each copy is assigned a unique label i € [I]. Alice and Bob receive questions (x/,7,/) and
(¥',s,/), respectively. For each x € N (x'), Alice applies {A{} to the r/(x)-th copy of [i)). Bob applies
a similar strategy.

Since by construction the “true questions” x* and y* are given the same label, the distribution
of answers obtained for x* and y* is identical to the distribution of answers obtained while playing
G using (|¢), {A%}, {B;}), hence achieving the same winning probability. O
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The main technical step in reducing Theorem 1.5 to Theorem 1.3 is an analysis of the singular
values of M, N in terms of the singular values of M and N. We prove the following.

Claim 6.6. Let M be a bipartite graph over X' x X as above and let Ay denote the second largest singular
value of M. Let M be as in Definition 6.3. Then,

Ay <max<{ A !
M = M,\/d]\/ji_l .

Since in our case Ay; = O(poly(logdy)/dy), Claim 6.6 implies that Ay; satisfies the same
bound. Also note that a similar statement of course applies to P and 1. So we see that Theorem
1.3, Propositions 6.5 and 6.4, and Claim 6.6 together imply Theorem 1.5; it remains to prove the
latter.

Proof of Claim 6.6. Recall that by assumption M is a regular balanced bipartite graph. Let d := d),
the degree of vertices in M. The normalized adjacency matrix of M is given by

A (', m0), (x,1)) = {%' e (49)

0 (x,10) =51 (x,1)

We relate the second largest singular value Aj; of Ap; and the second largest singular value Ay
of M by relating the eigenvalues of B = A}, Ay and C = A;ZAM. We can explicitly compute the
entries of B and C. For B,

{x e X' : {x1,%} € N(x')}

B(Xl,X2) = d2 )

(50)

and in particular B(x,x) = % for all x € X. To compute entries of C, first note that when x; # x;
and i # j we have
X e X i {x, 0} e N} -(I—-d)! (1-2)!  B(xy,x2)

2(1—1)! i—ay - 1-1 - OV

C((x1, 1), (x2,1))
Finally, observe the following special cases:

« C(x,i),(x,1)) =4
b C((Xl,i), (Xz,i)) =0if X1 #* X).

* C((x,i),(x,j)) =0when i #j.

Let B=B— %Id and C = C— %Id. Let ] = ﬁ(]—ld) be the [ x [ matrix that is (I —1)~! in the
off-diagonal entries, and 0 along the diagonal. Then it is easy to see that

C=B®]J. (52)
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The matrix J has a single eigenvalue equal to 1 and [ — 1 eigenvalues equal to —ﬁ, and B has a
single eigenvalue equal to 1 — 1/d and the remaining are in the range [—%, /\12\4 — %] It follows that
the top eigenvalue of C = C+ %Id is 1 (as expected) and the next one satisfies

1 1
/\Mémax{/\M, m"‘g};

which is bounded by max {/\M, \/%} sincel >d. O

7 Weak Fortification of Entangled Games

Our goal in this section is to prove the following.

Theorem (Theorem 1.3 restated). Let G’ = (M o G o P) be a concatenated game obtained by concate-

nating two sides of a game G with some A-spectral expanders M and P. If A < %, then G is (&,0)

weakly-fortified against entangled substrategies.
We need some basic matrix analytic facts.
7.1 Basic lemmas

Choi-Jamiolkowski isomorphism. We make use of the correspondence between bipartite states
|) € H; ® H, and linear operators L : H5 — H; given by the Choi-Jamiolkowski isomorphism.
Explicitly, let [p) € C? ® C? be a quantum state and consider a Schmidt basis for i) so we have

) = Zle A/ Ailid]iy where A; € RZ?, up to a local change of basis. Set

d
pi= > AiliXil. (53)
i=1

Proposition 7.1. Let Z, W be two linear operators acting on C* and let 1) and p be as above. Then,
WIZOWIp) =Te(Zp!2WTp!/2).

Proof. Both expressions evaluate to Z?I,]’:l AidjZij - Wij. O

For a density matrix p and a matrix A for convenience we sometimes denote Tr(Ap) by Tr,(A).

Matrix norms and inequalities. The Frobenius norm of a matrix A € C"*™ is defined as |A|f =
\/Tr(AAT). The trace norm is defined as |A|;, = TrvVAAT. The following analogue of Proposi-
tion 2.13 will be used repeatedly in our argument.

Claim 7.2. Let M be a bipartite A-spectral expander on vertex set X' v X. Let {Ay}yex and p be

positive semidefinite matrices. For all x € X, define Ay = By N (x) Ay and define A=TE,_, Ay. Then

E Tr,((Ac —A)?) <20 E Tr,(A2). (54)

X~p XINM/
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Proof. Define S, = pl/zAx/, S, = pl/zAx, and S = [E, S, = pl/zA. Using that M is a bipartite
A-spectral expander, for any fixed entry (i, j)

E|(Sx)ij — Sijl> < A? '15|(Sx’)ij —S8;iI* <2A% E |(Sw)ijl? (55)
Summing over all entries,

G2 = _ g2 2 N2 =92 12
B 1(52)ij = Sijl* =[Sy = S[[F < 2A7E ) [(Syp )y = 2 B[S - (56)
i,j ij
Observing that Tr, ((A, — A)?) =Sy —S|% and |Sy||% = Tr, (A2)), we obtain the desired result. [
If A has singular value decomposition A = UJVT its pseudo-inverse is A~! = VJ~1U", where

J~!is obtained from J by taking the reciprocal of non-zero diagonal entries. A simple consequence
of the singular value decomposition is the following:

Fact 7.3. Let A be an n x n matrix. Then there exists a unitary matrix U such that UA is positive
semi-definite.

Proof. Write the SVD as A = UJ VT, and choose Y = VUT. g

We make frequent use of the matrix Cauchy-Schwarz inequality.

Proposition 7.4. For any two matrices S, T we have
Tr(ST) < Tr(SSNY2 - Tr(TTNY2 = [S[£|T| .

If S and T are Hermitian,
Tr(STST) < Tr(S*T?).

Finally, we need a variant of Powers-Stormer inequality due to Kittaneh [Kit86]. This also
played a role in the analysis of [DSV14].

Lemma 7.5 ([Kit86]). Let X,Y be positive semidefinite matrices. Then

Tr ((X - Y)4) <Tr((X2—Y2)2).

7.2 Proof of Theorem 1.3

At a high level, the proof of Theorem 1.3 follows the same outline as the classical proof of Sec-
tion 5.

Consider a substrategy {AZ:}(x/,al)eX/XA/, {BZ;}(},/,b/)eyle/ for G'. Define A, = E,_n(xv)Ay and

By, = E,.n(y)By."> Define A = E,_, A, and B = E,_,, B,. To prove Theorem 1.3 we must

X~px Y~Hpy

131n what follows, we assume without loss of generality that all A,» and By are invertible. Note that proving Theorem
1.3 for this subset of substrategies suffices. This follows by a limiting argument because of the continuity of (25) in A,
and B,/.
y
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analyze the following expression:

Var' (G, {A%}, {BY}) =B e 2 V(@ (x), b (9), %) - Tr(AL p' 2B, p'/?)
a’b’

Z V(a,b,x,p)- Tr(Aprl/ngpl/z)
b

Tr(Agp'/Byp'/?)
Tr(Ap'/2B,p!/2)’

= E Tr(Ayp'?Byp'?). >
(ey)~p V(a,bxy)=1

where A% and BZ are defined as in (11), and we use the convention that 0/0 = 0. Our analysis splits
into two cases. First let us consider the small case. This is handled by the following proposition.

Proposition 7.6. Suppose Tr(p'/2Ap'/?B) < 6/2. Then Var™ (G, {AZ: | {BZ?}) <.
Proof. First of all we have

VaL' (G {AL}, {BY}) = E D T(A;pl/Zngl/Z)<£Tr(Axp1/2Byp1/2).
V(a,bxy)=1 ’

Subtracting Tr(Ap'/?Bp'/?),

ETr(Avp!*Byp!%) —Tr(4p'2Bp' %) = E Tr((Ac — A)p!/ (B, — B)p'/2).

Xy
By applying Cauchy-Schwarz to the latter expression and using Claim 7.2 it follows that
VaL' (G {AL}{BY}) < 6/2+ A%
this is smaller than o by the choice of A. O

The large case. In this case, the hypothesis of Proposition 7.6 is not satisfied and without loss of
generality we assume that

min { Tr,(A), Tr,(B)} > Tr(Ap'/?Bp'/%) = 5/2. (57)
Let
vi=, ENFTr(Axpl/ZBypl/z). (58)

By the triangle inequality,

Tr(A%p'/?Bhp'/?)
Tr(A.p!/?Byp!/?)

VAL (G, Ay, By) < E |Tr(Ap'?Byp'?)—y|+y- E >

(59)
(x9)~p EI~H (0, hey)

To bound the first term, we use the triangle inequality to get

I Tr(Awp'?Byp" /%) — y| < | Tr(Acp'/?Byp'/? — Ap'2Bp! /)| + | Tr(Ap'/?Bp'/2) — | (60)
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The first term on the right-hand side of (60) can be bounded as
E |Tr(Ayp'2B,p'/? — Ap!/2Bp!/2)|

(xy)~p
< E_ITe(Acp! (B, = Bp!/”)] + E|Tr((4x — A)p'*Bp'/?)
241/2  m2y1)2 2\1/2 \2\1/2
< E [Trp(Ax) Tr, (B, — B)?) ]+1§[Trp<3 )2 Tr ) (Ag — A)2) ]
1/2 1/2 1/2
< (]ETrp(A,%)) : <15Trp((3y —B)2)> +Tr, (B?)!/?. (]ETrp((Ax —A)2)>

where the first inequality is the triangle inequality, the next two follow from Cauchy-Schwarz,
and the last from Claim 7.2 and the trivial bounds Tr,, (A,%),Trp(Bz) < Tr(p) = 1. To bound the
second term on the right-hand side of (60) we note that

I Tr(4p'Bp' %)~y =| E_Tr((A4:—A)p'/(B, ~ B)p'”)

< (IETIP[(AX _A)Z])l/Z . (IETrP[(By _ B)Z])I/Z,

and the latter is again bounded by 2 by Claim 7.2. In total we have

( IE | Tr(Awp'/?Byp!/?) — y| <41 +2A% <9, (62)
XY)~p

which provides an upper bound on the first term in the right-hand side of (59).

To bound the second term term in the right-hand side of (59) we use a strategy inspired in part
by the parallel repetition theorem of [DSV14]. Let U,,V,, U,V be a family of unitaries such that
the operators

A= Un/Aplh A= UVAPH, 1=V, [Bp T =Vt (63)

are all positive semidefinite, which is possible by Fact 7.3. Note that this in particular implies that
A, = AL and hence

A= AL, = 0 VA UIU gl = oA (64

and similarly A? = p'/4Ap'/4, T2 = p!/4Bp!/4 and so on.

Define “rescaled” strategies by

A= UeA P aca ol B) = v, BB, ), (65)

where Ay, B;l s are the pseudo-inverses of Ay, B,. Note that the operators (65) satisfy ;l; = Za;\z,
E; =D Bf, <Id as required. Let

- UxAi/zpl/zB;ﬁVJ . UA!/2p1/2B12y
Xy » - .
\/Tr(Ap! /2B, p1/2) \/Tr(4p! 2Bp! )
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By definition of Ax,Fy,X, Y we see that the above is equivalent to

AT, AT
s K= —nu— (67)

. 1/Tr(A£ry2)’ VTr(AZT?)

Now note the following identity

K

Tr(Afp'?Byp'?)
_ a bt
Tl B pTE) Tr(AK,, BYKL,). (68)
So to finish the argument it suffices to estimate
E Y Tr(A%K,,BK],). (69)

()~ V(a,b,x,y)=1

To this end note that since Tr(KKT) = 1 it follows from the definition of VaL'(G) that
E > Tr(KAK'BY) < Va'(G). (70)
(xp)~p V(a,b,x,y)=1
To conclude we use the following proposition.

Proposition 7.7. Let K, and K be as above. Then

121

E Hny _KHIZS < T (71)

(oy)~p
Before proving the proposition let us see how it implies the desired bound on the second term
of (59).
| Tr(Ky, AZK], BE) — Tr(KAZK'B)|
< | Te((Kyyy — K)AZK], B)| + | Tr(KAZ (K], — KT)BD)|
< Tr((Key — K)AZ(Kyy — K)'BE)12 - Tr(K, ALK, BL) /2
 Tr((Kyy — K)AL(Kyy — K)TBY)Y2  Tr(K ALK BY) /2, (72)
Averaging with E(y ), >y

abxy)—1 and applying Cauchy-Schwarz we see that (72) is bounded by

Y —~ q1)2 ~ T n
[(X’IE 3 Tr((ny—K)Ag(ny—K)TBg)] -[( E ) Tr(K,AiK,BY)Y

MY (4 hry)=1 D~y (4 b my)=1

+( E D Tr(KZ;KTEE))”Z. (73)
(xy)~p V(a,b,x,y)=1 ]

We claim that the second term in brackets is at most 2. To see this note that replacing the sum from
2V(abxy)—1 t0 a2, only increase the term, and the claim follows from Tr(nyK;y) =Tr(KK") =
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1. To bound the first term in (73), we again relax the summation from ZV(a,b,x,y)=1 to >, This

is valid because all the operators of the form (K, — K);\?C(ny - K)T, B, > 0 and hence all the
additional terms introduced in the sum are nonnegative. The desired result follows because

Tr( Ky KU?sIETK-KK—KT:IEK—KZ, 74
~p% r ( ) y) (op) i r(( X, ) XY ") X’yH X, Iz (74)

which is bounded by Proposition 7.7. Combining all bounds, from (72) we get
Tr(A%p'/2BYp!/?)

E B Y Te(AIK,BIKL,)
128 _,1/2 yIye
(vt o oyt THARP2Byp12) ey,

< E S Tr(ASKBIKT)
(xy)~p V(abx,y)=1
+ | Tr(K,, A%K}, BY) — Tr(KAZK'BY)|
1/2
E |K —K2>
o Ky = Kl

127
5

<VaL' (G)+2- <

< VaL'(G) +2
The latter is bounded by ¢ by the choice of A. It only remains to prove Proposition 7.7.

Proof of Proposition 7.7. We have

AT

H\/Tr AT2)  /Tr(AD2) | 73)

—K
s < H \/Tr A2F2) \/Tr A2F2
For the first term,

AT, AL, P

2) \/Tr(AZTZ) F

= [E

1 2
(xy)~p 21“2 <\/T A 1“2) \/Tr(A2r2)>

(A2r2 <\/Tr (AZLD) -/ Tr(A%T2) )

1
<——— E |Tr(A’[?) — Tr(A*T?
Te(AZT?) (X’ywl r(AxLy) —Tr( )l

< AT o E, TN = A+ [T (A v
1 B[ Tr((As - Az)z)]\l/z- E[Tr(T})] R

Te(A202) I3t B[ Tr(, (
+ﬁ x[Tr(<rV2_rz)z)]‘l/z.Tr<A4)l/2; (77)
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where the last step follows from two applications of Cauchy-Schwarz. Rewriting the above in
terms of Ay, B, and p using (64) and its analogues we see that the term in (76) equals

1/2

1
[Erre(s, 025,01 79)

Tr(Ap1/2Bp1/2)

1/2

E[Tr((4« — A)p"/(A, — A)p"/2)]

Bounding the last term Tr(Bypl/szpl/z) by 1 and the first term by 21 (which follows by applying
Fact 7.4 and Claim 7.2) and doing the same analysis for (77) we see that

2
ALy B ALy - g (79)
(xy)~p \/Tr(AJZCr;) A/Tr(A2T2) |~ O
To bound the second term in (75) we argue as follows:
HAxry - AI‘HIZT <2 H (Ax - A)I},le: +2- H(ry - F)X"I%
=2-Tr(I} (Ax — A)?) + 2 Tr((T, = T)*X?) (80)
<2-Tr(TH'2 Tr((Ay — A)H'Z +2-Tr(AH2 - Te((T, - T)H) /2 (81)

<2 Tr(r;l)l/z CTe[(A2 = A2)2]V2 1 2. Tr(A%)/2 'Tr[(I“yZ —12)212, (82)

where in the last step we used Lemma 7.5. Using the same bound on the above terms as in the
above we see that

E AL, —AT[7 < 8A. (83)
(xy)~p
Since in the large case Tr(Ap!/?Bp!/?) > ¢ the result follows. O

8 Discussion and open problems

An obvious open problem is to extend our results to the case of multiplayer entangled games. This
is likely to be achievable by combining the ideas of Sections 5.2 and 7. However, some subtleties
arise with respect to the use of the Choi-Jamiolkowski isomorphism, and we leave this for future
work.

An important (and somewhat surprising) message of our work is that there is a modified form
of game concatenation with no adverse effect on the entangled value. This is notable because or-
dinary concatenation may appear to be not very well-behaved with respect to quantum strategies:
we typically do not expect that entangled players would be able to answer a number of questions
from a game G simultaneously, while preserving the same question/answer statistics as in G, as
players’ measurement operators associated with different questions generally do not commute.

The concatenation and composition of games play an important role in the classical setting in
the context of PCPs [AS98, Din07] and multiprover interactive proof systems [BFL90]. It remains
to be seen whether ideas related to our ordered fortification can be useful in lifting some of these
techniques to the quantum world.
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A Biregularization

In this section, we prove Lemmas 2.8 and 2.10. We start by the second lemma on the graphical
games and then derive the general case by reduction.

Graphical games. Suppose G is a graphical game: there is a set of edges E € X x Y such that

u(x,y) = ﬁ for all (x,y) € E. In this case we have

px) = % p) = % VxeX,yeY. (84)

Let d, := |N(x)| denote the degree of x, and set S, be the set {x} x [d,]. Define

Xint = U Sx-
x~X
Note that |X;,;| = |E| < |X]||Y|. Define M;,;((x,i),x) = dL forie{l,...,d.}, and 0 otherwise. Con-
struct Y;,; and P,,,; similarly.

Proposition A.1. Let G;,; = Mj,; 0 GoP;,;. Then marginal of p;,; induced on Xj,; and Y, is uniform.
Moreover, we have
VaL(G;ys) = VaL(G), VaL*(Gj,;) = VaL®*(G). (85)

Proof. It is easy to see that for all X;,, = (x,i) € X;,; we have pj(xips) = ﬁ and similarly for
all v;,; € Yi,y. The claims VAL(G;,;) = VAL(G) and VAL*(G;,;) < VAL*(G) are true for all concate-
nated games in general. The final claim VAL*(G;,;;) = VaL*(G) follows by considering the strategy
A(x,i) = Ay, B(y,j) = B, which achieves the same value as (A,, By) in G. O

General case. Although graphical games include many games considered in applications, it would
nevertheless still be nice to extend the above construction to all games. We do not know how to
do this exactly, but we can achieve an approximate variant.

The idea is essentially to approximate a general game by a graphical game. More formally, let
T €(0,1) be an error parameter and g an integer such that @ <q< @ We have

— < - < —. (86)

We would like to define a game G in which all probabilities in the underlying distribution
fi(x,v) are fractions with denominator q. Let X = X U {x,,;} and Y = Y U {9,,,;}. For every
(x,9) € X x Y set

_ - pX,
lx,y) = w (87)
Finally let fi(x,,;, vy,) such that ji is a proper probability distribution (i.e. by transferring the

excess probabilities to (x,,;,7,,1)) and put an arbitrary winnable predicate on (x,,7, Vyu1)-
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Proposition A.2. The game G is a graphical game with q (possibly parallel) edges. Moreover, we have
VaL(G) < VAL(G) < VAL(G) + 1,  VaL*(G) < VaL*(G) < Var*(G) + . (88)

A few remarks are in order: firstly, since the previous construction for graphical games applies
equally well in the presence of multiples edges, we can combine it with the above preprocessing
to prove Lemma 2.8. Secondly, note that the operation G — G is value-increasing and hence
preserves perfect completeness. Thirdly, note that the right scale for the error parameter 7 is <*
where ¢ — s is the completeness-soundness gap.

Proof. By construction all ji(x,y) are integer multiples of +. This ensures that the same is true for
X,

Z
A(Xpu1s Vuur)- Since u(x,v) = ji(x,y) for all (x,v), for any strategy (f,g) for G we have

1-VaL(G,f,8)= B > f(xa)-g(yb)>1-Va(G f,g),
(xp)~p V(a,b,x,v)=0

which shows that VAL(G) < VAL(G). For the other direction, consider an optimal strategy (f,g)
for G (which necessarily always wins on (x,,,7, Vu1))- We have,

1—Var(G) <1 —VaL(G,f,g) = . ZIJI;ZN” Y f(xa)g.b)
Dty

a,b,x,9)=0
<y D) flra)gmb)+ Y (pxy) - fixy))
XY V(a,b,x,v)=0 (x,p)€E
<1-Var(G)+1
The quantum case is similar. O
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