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ABSTRACT

Motivation: Microbiome sequencing allows defining clusters of

samples with shared composition. However, this paradigm poorly

accounts for samples whose composition is a mixture of cluster-

characterizing ones, and therefore lie in-between them in cluster

space. This paper addresses unsupervised learning of 2-way

clusters. It defines a mixture model that allows 2-way cluster

assignment and describes a variant of generalized k-means for

learning such a model. We demonstrate applicability to microbial 16S

rDNA sequencing data from the Human Vaginal Microbiome Project.

Contact: wjj2106@columbia.edu

1 INTRODUCTION

Microbiome analysis [1] by sequencing of ubiquitous genes, most

commonly 16S rRNA, had become a standard, cost-effective way

to characterize the composition of a microbial sample. Standard

analysis tools facilitate quantifying the fraction of sequence reads

from each bacterial species in a sample [2]. Interpretation of

composition vectors across a collection of samples typically relies

on dimensionality reduction followed by clustering in the lower-

dimensionality space [3]. This allows identification of functionally-

meaningful subsets of samples with characteristic microbiota. The

Human Microbiome Project [4] and derivatives such as The Human

Vaginal Microbiome Project [5] have collected and thus analyzed

large numbers of samples towards elucidating the structure and

composition of microbiota across physiological and pathological

states.

Similar to variation in microbial genomes across different

human individuals, variants along the nuclear genomes have been

summarized by a small number of dimensions [6]. However, in

contrast to analyses of microbiome samples, those of inherited

genetic variation standardly assume and observe samples to be

spread across a continuum in the reduced space, rather than

be clustered [7]. Samples in between clusters are interpreted as

originating from intermediate locales along a geographic cline [8],

or as representing different levels of a mixture between cluster-

specific populations.

In this paper, we formally tackle the problem of clustering while

allowing elements to belong to two clusters. Specifically, we will

describe in detail a model for clustering in R
d. We construct model

that generalizes k-means clustering by allowing data points to be

assigned to a point in the space along the line between two assigned

clusters [9]. Each cluster is still modeled as a Gaussian with

uniform, spherical covariances, the key difference is the presence

of a parameter u ∈ [0, 1] for each 2-way-assigned data point xi,

which determines the proportional assignment of xi between its

two cluster representatives. We first describe the 2-way model’s

inputs, parameters, and outputs. We will then give the objective

function, an algorithmic description, and a series of performance

metrics. Then, we will evaluate the performance on simulated data,

describing benchmarks for optimal performance. Finally, we apply

it to real data of 16S rDNA sequencing from 1500 mid-vaginal

bacterial samples by the Vaginal Human Microbiome Project.

2 METHODS

2-Way k-means

The model characterizes a mixture where points are each sampled either

from a k-mixture of uniform, spherical gaussian distributions, or from

pairwise weighted averages of these Gaussians.

Formally, we describe a generative model for a set X of data points

{xi}
n
1 ∈ R

d. The model involves k ∈ Z
+ clusters. The j-th cluster is

parametrized by its mean µj ∈ R
d. To draw xi the model first chooses a

pair of cluster indices j, j′ along with a weighting ui ∈ [0, 1]. xi is drawn

from a Gaussian distribution whose parameters are ui-weighted averages

of two representative clusters. Specifically, xi ∼ N(xi; µ̃ijj′ ,Σ) such that

µ̃ijj′ = uiµj+(1−ui)µj′ and Σ ∈ R
d×d is the given uniform, spherical

covariance matrix.

The inference problem involves the inputs of data X and number of

clusters k, seeking output of the generative model parameters, i.e. the vectors

of assignments C = (c1, . . . , cn) and weights U = (u1, . . . , un).

Generalized k-Means

Given input x1...xn ∈ R
d and cardinality k ∈ N, k-means traditionally

provides us with the following objective:

n∑

i=1

min
j∈[k]

‖ xj − cj ‖22

where c1...cj are the cluster representatives. The k-means objective can

be generalized as the following:

min
C,Φ

n∑

i=1

‖ xi − Cφi ‖
2
2 (1)

where Φ = [φ1|φ2|...|φn] ∈ {0, 1}k×n are the cluster assignments and

C = [c1|c2|...|ck] ∈ {0, 1}d×k are the cluster representatives.

A common generalization of k-means is to permit each φi to have s non-

zero entries (in our case, we set s = 2). An algorithm for this generalized

objective is simply to hold C fixed while performing sparse regression on Φ,

then hold Φ fixed and use Ordinary Least Squares (OLS) to find C.

In our case, because we only allow points xi to lie in uniformly between

two cluster representatives, the two non-zero entries in a given φi are

restricted to some ui ∈ [0, 1] and 1 − ui ∈ [0, 1]. Our problem is instead

the following:
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Table 1. Most abundant OTU per cluster

Family;Genus c1 c2 c3 c4 c5

Lactobacillaceae;Lactobacillus1 5 534 17 0 1

Lactobacillaceae;Lactobacillus2 0 0 3 269 0

Bifidobacteriaceae;Gardenerella 227 0 13 0 1

Lachnospiraceae;Unclassified1 0 0 4 0 150

Lactobacillaceae;Lactobacillus3 2 0 44 2 0

Lactobacillaceae;Lactobacillus4 2 4 32 1 1

Leptotrichiaceae;Sneathia1 8 0 33 0 0

Prevotellaceae;Prevotella1 2 0 30 0 0

Prevotellaceae;Prevotella2 3 0 16 0 1

Unclassified;Unclassified2 2 1 15 0 2

Prevotellaceae;Prevotella3 0 0 4 0 1

Leptotrichiaceae;Sneathia2 1 0 2 0 1

Lachnospiraceae;Unclassified3 0 0 1 0 3

Streptococcaceae;Streptococcus1 0 0 18 0 0

Veillonellaceae;Unclassified4 0 0 0 0 0

Streptococcaceae;Streptococcus2 0 1 15 0 0

Mycoplasmataceae;Mycoplasma 0 1 7 0 0

Bifidobacteriaceae;Bifodobacterium 0 0 9 0 0

Fusobacteriaceae;Fusobacterium 0 0 7 0 0

Enterobacteriaceae;Unclassified5 0 0 8 0 0

Table 2. Most abundant OTUs per cluster-pair

Genus c12 c13 c14 c15 c21 c23 c24 c25 c31 c32 c34 c35 c41 c42 c43 c45 c51 c52 c53 c54

Lactobacillus1 5 0 0 0 113 69 57 295 0 15 2 0 0 0 0 0 0 1 0 0

Lactobacillus2 0 0 0 0 0 0 0 0 0 0 3 0 14 60 27 168 0 0 0 0

Gardenerella 75 32 95 25 0 0 0 0 10 0 3 0 0 0 0 0 1 0 0 0

Unclassified1 0 0 0 0 0 0 0 0 0 0 1 3 0 0 0 0 54 23 23 50

Lactobacillus3 0 2 0 0 0 0 0 0 6 7 31 0 0 0 2 0 0 0 0 0

Lactobacillus4 1 1 0 0 0 4 0 0 4 4 23 1 0 1 0 0 1 0 0 0

Sneathia1 0 8 0 0 0 0 0 0 22 2 4 5 0 0 0 0 0 0 0 0

Prevotella1 0 2 0 0 0 0 0 0 9 4 17 0 0 0 0 0 0 0 0 0

Prevotella2 0 0 0 3 0 0 0 0 15 0 0 1 0 0 0 0 0 0 1 0

Unclassified2 2 0 0 0 0 1 0 0 8 6 0 1 0 0 0 0 1 0 1 0

Prevotella3 0 0 0 0 0 0 0 0 3 0 0 1 0 0 0 0 1 0 0 0

Sneathia2 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 0

Unclassified3 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 1 0

Streptococcus2 0 0 0 0 0 0 0 0 2 2 14 0 0 0 0 0 0 0 0 0

Unclassified4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Streptococcus2 0 0 0 0 0 1 0 0 2 2 11 0 0 0 0 0 0 0 0 0

Mycoplasma 0 0 0 0 1 0 0 0 5 2 0 0 0 0 0 0 0 0 0 0

Bifodobacterium 0 0 0 0 0 0 0 0 1 1 7 0 0 0 0 0 0 0 0 0

Fusobacterium 0 0 0 0 0 0 0 0 1 2 4 0 0 0 0 0 0 0 0 0

Unclassified5 0 0 0 0 0 0 0 0 0 2 5 1 0 0 0 0 0 0 0 0

notice that the samples with abundant Sneathia1, Prevotella2,

and Unclassified types are predominantly contained in c31.

c32 contains samples with a variety of abundant OTUs.

Lactobacillus3, Lactobacillus4, Prevotella1, Streptococcus1,

Streptococcus2, and Bifodobacterium are abundant in samples

that are predominantly contained in c34. Finally, almost no samples

are in cluster pair c35, aside from a few Sneathia1 types.

In this way, 2-way k-means also opens up a wealth of information

on the relationships between samples. In particular, it now makes

more sense to characterize the samples as being in 6 different

clusters: c1, c2, c31, c34, c5. We also see that certain clusters have
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mixed relationships, while others have almost no interaction.

Without 2-way k-means this would not be immediately obvious.

4 CONCLUSION

The complexity of microbial populations is unfolding as

microbiome data becomes increasingly available. Yet, standard

methodologies oversimplify microbial compositions by pigeonholing

them into discrete clusters. This paper further refines the models for

microbial abundance across groups of samples. We allow samples

to be presented as a weighted average of two clusters, rather than

belonging to only one. This may be motivated biologically, as the

sample often reflects a mixture of two sources of microbiota, each

well represented by a cluster. An alternative explanation is that the

averaged sample represents an intermediate, potentially temporary

state of the microbial composition, between the more stable ones

represented by the clusters themselves.

Technically, we formalize this model as a generalization of k-

means. We derive a simple algorithm to infer such a structure, and

validate its benchmarks on simulated data.

Applying our algorithm to real data from the Human Vaginal

Microbiome Project provides empirical support to the 2-way model.

We show that while most of the samples lie in six clusters: four well-

defined clusters and two subclusters. Furthermore, while previously,

a sizable fraction of samples in-between clusters were ignored,

the 2-way model characterizes the entire distribution. Using 2-

way k-means, we can tell that a large portion of the previously

unclustered samples, which lie in-between two clusters, contain

shared properties. In addition, we see that certain clusters have

mixed relationships, while others have almost no interaction.

5 FURTHER RESEARCH

In addition, this paper leaves several open questions and

opportunities for further research:

• How can we efficiently characterize a 2-way distribution with

non-spherical covariance matrices?

• How can we efficiently characterize a k-way distribution?

• How can we efficiently characterize a 2-way distribution with

non-linear paths between cluster representatives?

Addressing these questions will further help us understand the

composition of microbial populations.
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