Vol. 00 no. 00 2017
Pages 1-6

2-Way k-Means as a Model for Microbiome Samples

Weston J. Jackson '*, Ipsita Agarwal ? and ltsik Pe’er!

!Department of Computer Science, Columbia University, New York, NY 10027 2Department of
Biological Sciences, Columbia University, New York, NY 10027

ABSTRACT

Motivation: Microbiome sequencing allows defining clusters of
samples with shared composition. However, this paradigm poorly
accounts for samples whose composition is a mixture of cluster-
characterizing ones, and therefore lie in-between them in cluster
space. This paper addresses unsupervised learning of 2-way
clusters. It defines a mixture model that allows 2-way cluster
assignment and describes a variant of generalized k-means for
learning such a model. We demonstrate applicability to microbial 16S
rDNA sequencing data from the Human Vaginal Microbiome Project.
Contact: wjj2106@columbia.edu

1 INTRODUCTION

Microbiome analysis [1] by sequencing of ubiquitous genes, most
commonly 16S rRNA, had become a standard, cost-effective way
to characterize the composition of a microbial sample. Standard
analysis tools facilitate quantifying the fraction of sequence reads
from each bacterial species in a sample [2]. Interpretation of
composition vectors across a collection of samples typically relies
on dimensionality reduction followed by clustering in the lower-
dimensionality space [3]. This allows identification of functionally-
meaningful subsets of samples with characteristic microbiota. The
Human Microbiome Project [4] and derivatives such as The Human
Vaginal Microbiome Project [5] have collected and thus analyzed
large numbers of samples towards elucidating the structure and
composition of microbiota across physiological and pathological
states.

Similar to variation in microbial genomes across different
human individuals, variants along the nuclear genomes have been
summarized by a small number of dimensions [6]. However, in
contrast to analyses of microbiome samples, those of inherited
genetic variation standardly assume and observe samples to be
spread across a continuum in the reduced space, rather than
be clustered [7]. Samples in between clusters are interpreted as
originating from intermediate locales along a geographic cline [8],
or as representing different levels of a mixture between cluster-
specific populations.

In this paper, we formally tackle the problem of clustering while
allowing elements to belong to two clusters. Specifically, we will
describe in detail a model for clustering in R%. We construct model
that generalizes k-means clustering by allowing data points to be
assigned to a point in the space along the line between two assigned
clusters [9]. Each cluster is still modeled as a Gaussian with
uniform, spherical covariances, the key difference is the presence
of a parameter u € [0, 1] for each 2-way-assigned data point z;,
which determines the proportional assignment of z; between its

two cluster representatives. We first describe the 2-way model’s
inputs, parameters, and outputs. We will then give the objective
function, an algorithmic description, and a series of performance
metrics. Then, we will evaluate the performance on simulated data,
describing benchmarks for optimal performance. Finally, we apply
it to real data of 16S rDNA sequencing from 1500 mid-vaginal
bacterial samples by the Vaginal Human Microbiome Project.

2 METHODS
2-Way k-means

The model characterizes a mixture where points are each sampled either
from a k-mixture of uniform, spherical gaussian distributions, or from
pairwise weighted averages of these Gaussians.

Formally, we describe a generative model for a set X of data points
{z:}7 € R<. The model involves k& € Z* clusters. The j-th cluster is
parametrized by its mean p; € R?. To draw z; the model first chooses a
pair of cluster indices 7, j' along with a weighting u; € [0, 1]. x; is drawn
from a Gaussian distribution whose parameters are u;-weighted averages
of two representative clusters. Specifically, x; ~ N (z;; fi;;;, %) such that
fijjr = uiptg +(1—u;)pj and X € R@*d is the given uniform, spherical
covariance matrix.

The inference problem involves the inputs of data X and number of
clusters k, seeking output of the generative model parameters, i.e. the vectors
of assignments C' = (c1,...,cn) and weights U = (u1, ..., un).

Generalized k-Means

Given input z1...z,, € R? and cardinality & € N, k-means traditionally
provides us with the following objective:

n
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where c1...c; are the cluster representatives. The k-means objective can
be generalized as the following:

. L N2
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where ® = [¢1|¢2]...|¢pn] € {0,1}*X" are the cluster assignments and
C = [e1]ea|...|ex] € {0, 1}9%F are the cluster representatives.

A common generalization of k-means is to permit each ¢; to have s non-
zero entries (in our case, we set s = 2). An algorithm for this generalized
objective is simply to hold C' fixed while performing sparse regression on @,
then hold @ fixed and use Ordinary Least Squares (OLS) to find C.

In our case, because we only allow points z; to lie in uniformly between
two cluster representatives, the two non-zero entries in a given ¢; are
restricted to some u; € [0,1] and 1 — u; € [0, 1]. Our problem is instead
the following:
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2-Way k-Means Algorithm

Our goal is to find a non-negative 2-sparse solution for each ¢;. To do so,
we can minimize over all (g) cluster representative possibilities. This 2-
sparse solution gives us indices (j, j’) which correspond with the two cluster
representatives. This corresponds with the following objective:

min I a:,;—(uic]-—kui(l—cj/)) H%

u; €R,c5,c;€C
subject to: u; € [0, 1]
For a given ¢; and ¢/, minimizing with respect to u
minimum at:

i/ reveals a global

(Cj/ — Cj)T(Cj/ — CEz)

lejr—ci 3

After minimizing with respect u,;;, we project u; ; to the region [0, 1].
We set u;;;» = 0 if the minimizer is less than 0, and set u;;;» = 1 if the
minimizer is greater than 1. This allows us to achieve the minimum value of
u; over the domain [0, 1] for x;.

After minimizing the assignment ®, we then use O LS to pick optimal C
as specified before. Formally, O LS produces a vector ciT that minimizes the

squared residual error between an input matrix ¢ and vector xlT

: T T (12
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i

Taking the gradient and setting equal to zero yields the following formula:
I = (@oT) 1oy,
T

Thus, we perform OLS for all vectors c; at once with matrix

multiplication:
cT = (@aT) lax
Thus, this gives us representatives c1 ...cy that minimize the residual error
between the cluster representatives and data points subject to ®. We then
alternate this process for  rounds until convergence.

Performance Metrics

We use the 2-way k-means objective as a performance metric in measuring
the accuracy of model in unsupervised examples.

n
obj (X, k,r) = réugzl | 2 — Cos ||2 2)
=

Where @ has at most two non-zero entries with values u; € [0, 1] and
1—u; €10,1].

Additionally, we also use four different error-rates to measure the
accuracy of 2-Way k-means on test cases. Let cf,,u;f, and u;‘jj, be
the ground truth instance parameters i.e., respectively, true 2-way cluster
assignment of x;, center of cluster j, and 2-way weighting for z; between
clusters (7, /).

€erT g (z): Defines the 0-1 Error rate for 2-way cluster assignment:

Dy Lejzer
i) =

erry: Defines the squared deviation from optimal p*:

errp =Y |l g — 5 ll2
Vi

erry: Defines the squared deviation from optimal u;.*jj,. WLOG, we

assume u;;;» = maz(u, 1 — ), where u is the variable drawn from [0, 1]:

Z?:l H u;{jj/

= Ugj47 HQ

3 RESULTS
Example Run for 2-Way k-Means

We find it illuminating to demonstrate the performance of 2-way
k-means vs vanilla k-means on a cartoon example.
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Fig. 1. n=500 simulated data points. The black triangles are cluster centers
for three simulated clusters (red cluster bottom left, green cluster top, blue
cluster bottom right). Points are colored as a linear combination of the
clusters they lie between (according to ).
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Fig. 2. n=500 simulated data points after k-means. The black triangles are
cluster centers for three simulated clusters (red cluster bottom left, green
cluster top, blue cluster bottom right). Black circles are cluster centers
determined by k-means. Colors are u values determined by k-means.




We simulated n = 500 data points in R? from three clusters,
with respective means p1 = [0,0], u2 = [1,1],u3 = [2,0] and
covariances matrices X = 0.001]. Data points are drawn into
pairwise clusters by choosing two cluster representatives without
replacement from the following prior probabilities:

P(c1) =0.2
P(c2) =0.5
P(Cs) =0.3

We initialize the cluster representatives with vanilla k-means.
Vanilla k-means achieves the results in Figure 2. Statistics for
vanilla k-means is given below:

obj : 80.5795
erry(z : 0.406
erry : 0.3677
erry : 0.2422

k-means predicts the cluster assignments of ~ 40% points
incorrectly (assuming many belong to just one cluster), and also
skews cluster means toward the middle of the graph. 2-way k-
means, however, avoids these problems. After 10 rounds of 2-way
k-means, we achieve the results in Figure 3.
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Fig. 3. n=500 simulated data points after 10 rounds of 2-way k-means.
Black circles are cluster centers determined by 2-way k-means (10 rounds).
Colors are u values determined by 2-way k-means (10 rounds).

obj : 13.237
errf(z) :0.038
erry : 0.04335
err, : 0.2031

For every statistic, the results are clearly an improvement on
standard k-means. The 3% error-rate on cluster assignment still
exists because 2-way k-means still allows some points behind
cluster representatives to belong to one cluster.
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Fig. 4. Error rates when n = o500, and cluster priors and centers are fixed.
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Fig. 5. Error rates as a function of the euclidean distances of 1, where 11 =
al0,0], p2 = a1, 1], uz = a[2,0]
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Fig. 6. Error rates as a function of cluster variance ¥, where ¥ =
«[[0, 0.0001], [0, 0.001]]
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Sparsity (Avg. of 10 trials, 10 rounds each)

Our sparsity test was conducted by keeping cluster prior
probabilities and cluster centers j constant while varying the
number of data points (ratio of a means n = 500«). From Figure 4,
we see that the algorithm performs consistently well under a variety
of conditions, but too few data points can hurt performance to an
extent.

Cluster Separation (Avg. of 10 trials, 10 rounds each)

We test the error rate as a function of the euclidean distances of 1
(ratio of o means p1 = a0, 0], u2 = «[1,1], s = «[2,0]). From
the results in Figure 5, we can see that a certain threshold is required
for proper performance of the algorithm. This makes sense, as when
a = 0.01, the clusters are almost on top of each other, and difficult
to distinguish. Additionally, as the cluster centers are moved farther
apart, the /2 norm between the cluster representative determined by
the algorithm and the actual cluster representative increases (but this
is to be expected).

Variance (Avg. of 10 trials, 10 rounds each)

We increase the variance of the clusters while fixing cluster prior
probabilities, data points, and cluster centers (ratio of o means
¥ = a[[0,0.0001], [0, 0.001]]). From the results in Figure 6, we can
see that large variance hurts proper performance of the algorithm.
Analogous to with cluster separation, as when oo = 100, the clusters
are too close to distinguish.

Real Data

Publicly available sequence data for the Human Microbiome Project
(HMP) study SRP002461, described as Metagenomic sequencing
of 16S rDNA from vaginal and related samples from clinical and
twin subjects, was downloaded from the NCBI SRA database
[10]. There were two submissions associated with these samples:
SRA169809 (1608 samples) with run dates from August 2012 to
April 2013, and SRA273234 (133 samples) with run dates from
May 2014 to August 2014.
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Fig. 7. 1500 data points graphed after PCoA (top left) and after removing
300 outliers (right), along with results after 5 iterations of 2-way k-means
initialized by k-means and all ¥ = 0.0017

The dissimilarities between the samples were calculated using the
Clayton-Yue dissimilarity measure and the mothur [11] software
package. We subsampled 5000 sequences per sample (this step
results in dropping out 136 samples that had less than 5000 reads

in total) 500 times to produce the distance file, which was used to
calculate principle coordinates. Figure 7 shows the graph of ~1500
data points after PCoA. After implementing the 2-Way k-means
algorithm [12], we initialized with k-means with £k = 5 and ran
it for 5 rounds on the data.

Fig. 8. ~1500 data points after 5 rounds of 2-Way k-means. The red points
are closer to cluster centers while the blue ones are viewed as between cluster
centers. The cluster representatives are the red points which are slightly
outside the clusters (compensating for the slightly non-linear arches between
clusters).

Unfortunately, the non-linear arches between the clusters, pushed
the cluster representatives slightly outside the clusters. Nonetheless,
the algorithm was still an improvement over k-means. We note that
after k-means, the 2-way objective had a value of 108.0 while our
2-way k-means algorithm converged on an objective of ~ 51.0 after
5 rounds. Additionally, the algorithm gives us a characterization of
the samples lying between two clusters. The results can be seen in
the Figure 8.

Discussion

We first get the most abundant operational taxonomic unit (OTU)
in each sample (down to the genus level), and the closest cluster
assignment for each sample. We use this to observe which OTUs
are most common to each cluster. We can find the closest sample
to each data point by simply taking the argmaz(u) for each data
point z;.

From Table 1, we see that four of the five clusters have a
unique most abundant OTU, while cluster c3 has a variety of
abundant types. Aside from the top four OTUs, separating the data
into discrete clusters obscures how the rest of the OTUs can be
characterized.

By using each data point’s cluster-pair assignment, we further
separate the data into k* — k clusters. Let c;; designate the data
points that are between clusters j and j’, but are nearer to cluster j
than cluster j'. We take the most abundant OTUs in each sample,
and the cluster pair for each sample. We can then find the most
abundant OTUs for each cluster pair.

Table 2 shows the structure of the most abundant OTU types for
each 2-way cluster c;;/ defined before. Once again, we that clusters
c1j, C25, caj, and cs; are all dominated by the same single OTU
from before. Yet observing clusters cs;» provides us with a more
in-depth understanding of the diverse cluster cs.

Interestingly, we see that the makeups of cszi, c32, c34,
and c35 are remarkably different. We immediately see that
the top four OTUs are all predominantly contained in cluster
pairs that includes their single main cluster. In addition, we




Table 1. Most abundant OTU per cluster

Family;Genus c1 co | e3 | es cs

Lactobacillaceae; Lactobacillus, 5 (534 (17| 0 1

Lactobacillaceae; Lactobacillusz 0 0 31209| O

Bifidobacteriaceae;Gardenerella 2271 0 |13 O 1

Lachnospiraceae;Unclassi fiedy 0 0 4 0 | 150

Lactobacillaceae; Lactobacilluss 2 0 |44 ]| 2 0

Lactobacillaceae; Lactobacillusa 2 4 132 1 1

Leptotrichiaceae;Sneathia 8 0 (33| O 0

Prevotellaceae; Prevotellay 2 0 30 0 0

Prevotellaceae; Prevotellas 3 0 16| 0 1

Unclassified;Unclassi fieda 2 1 151 0 2

Prevotellaceae; Prevotellas 0 0 4 0 1

Leptotrichiaceae;Sneathias 1 0 2 0 1

Lachnospiraceae;Unclassi fieds 0 0 1 0 3

Streptococcaceae;Streptococcusi 0 0 | 18] O 0

Veillonellaceae;Unclassi fieds 0 0101 0 0

Streptococcaceae;Streptococcuss 0 1 15 0 0

Mycoplasmataceae; M ycoplasma 0 1 7 0 0

Bifidobacteriaceae; Bi f odobacterium 0 0 9 0 0

Fusobacteriaceae; F'usobacterium 0 0 7 0 0

Enterobacteriaceae;Unclassi fieds 0 0 8 0 0

Table 2. Most abundant OTUs per cluster-pair

Genus Ci2 | €13 | C14a | Ci15 | C21 | C23 | Coa | C25 | €31 | C32 | C34 | C35 | Ca1 | Ca2 | Ca3 | Ca5 | C51 | C52 | C53 | Cs4
Lactobacillusi 5 0 0 0 [113]69 | 57 |295| 0 [ 15| 2 0 0 0 0 0 0 1 0 0
Lactobacillusz 0 0 0 0 0 0 0 0 0 0 3 0 |14 |60 |27 |168] O 0 0 0
Gardenerella 75132195125 0 0 0 0 10 0 3 0 0 0 0 0 1 0 0 0
Unclassified, 0 0 0 0 0 0 0 0 0 0 1 3 0 0 0 0 | 5423 |23 |50
Lactobacilluss 0 2 0 0 0 0 0 0 6 7 | 31 0 0 0 2 0 0 0 0 0
Lactobacillusa 1 1 0 0 0 4 0 0 4 4 [ 23| 1 0 1 0 0 1 0 0 0
Sneathiay 0 8 0 0 0 0 0 0 [22] 2 4 5 0 0 0 0 0 0 0 0
Prevotellay 0 2 0 0 0 0 0 0 9 4 117 0 0 0 0 0 0 0 0 0
Prevotellas 0 0 0 3 0 0 0 0 1510 0 1 0 0 0 0 0 0 1 0
Unclassifieda 2 0 0 0 0 1 0 0 8 6 0 1 0 0 0 0 1 0 1 0
Prevotellas 0 0 0 0 0 0 0 0 3 0 0 1 0 0 0 0 1 0 0 0
Sneathiaz 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 0
Unclassifieds 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 1 0
Streptococcusa 0 0 0 0 0 0 0 0 2 2 141 0 0 0 0 0 0 0 0 0
Unclassifiedy 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Streptococcusa 0 0 0 0 0 1 0 0 2 2 11 0 0 0 0 0 0 0 0 0
Mycoplasma 0 0 0 0 1 0 0 0 5 2 0 0 0 0 0 0 0 0 0 0
Bi fodobacterium 0 0 0 0 0 0 0 0 1 1 7 0 0 0 0 0 0 0 0 0
Fusobacterium 0 0 0 0 0 0 0 0 1 2 4 0 0 0 0 0 0 0 0 0
Unclassifieds 0 0 0 0 0 0 0 0 0 2 5 1 0 0 0 0 0 0 0 0

notice that the samples with abundant Sneathiai, Prevotellas,
and Unclassified types are predominantly contained in c3;.
c32 contains samples with a variety of abundant OTUs.
Lactobacilluss, Lactobacillusy, Prevotellay, Streptococcusi,
Streptococcussa, and Bi fodobacterium are abundant in samples

that are predominantly contained in c34. Finally, almost no samples
are in cluster pair c3s, aside from a few Sneathia, types.

In this way, 2-way k-means also opens up a wealth of information
on the relationships between samples. In particular, it now makes
more sense to characterize the samples as being in 6 different
clusters: c1, c2, €31, 34, c5. We also see that certain clusters have
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mixed relationships, while others have almost no interaction.
Without 2-way k-means this would not be immediately obvious.

4 CONCLUSION

The complexity of microbial populations is unfolding as
microbiome data becomes increasingly available. Yet, standard
methodologies oversimplify microbial compositions by pigeonholing
them into discrete clusters. This paper further refines the models for
microbial abundance across groups of samples. We allow samples
to be presented as a weighted average of two clusters, rather than
belonging to only one. This may be motivated biologically, as the
sample often reflects a mixture of two sources of microbiota, each
well represented by a cluster. An alternative explanation is that the
averaged sample represents an intermediate, potentially temporary
state of the microbial composition, between the more stable ones
represented by the clusters themselves.

Technically, we formalize this model as a generalization of k-
means. We derive a simple algorithm to infer such a structure, and
validate its benchmarks on simulated data.

Applying our algorithm to real data from the Human Vaginal
Microbiome Project provides empirical support to the 2-way model.
We show that while most of the samples lie in six clusters: four well-
defined clusters and two subclusters. Furthermore, while previously,
a sizable fraction of samples in-between clusters were ignored,
the 2-way model characterizes the entire distribution. Using 2-
way k-means, we can tell that a large portion of the previously
unclustered samples, which lie in-between two clusters, contain
shared properties. In addition, we see that certain clusters have
mixed relationships, while others have almost no interaction.

5 FURTHER RESEARCH

In addition, this paper leaves several open questions and
opportunities for further research:

e How can we efficiently characterize a 2-way distribution with
non-spherical covariance matrices?

e How can we efficiently characterize a k-way distribution?

e How can we efficiently characterize a 2-way distribution with
non-linear paths between cluster representatives?

Addressing these questions will further help us understand the
composition of microbial populations.
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