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Abstract

Motivation: Modeling genetics of gene expression had been effective at highlighting cis-eQTLs, variants
that control nearby transcripts. Yet, incorporation of long-range effects has been hampered by unfavora-
ble statistical considerations. On the other end, expression alone has been modeled across tissues by
decomposition into contributing factors, without any connection to genetics.

Results: We develop Mixed-Layer Analysis of Genetics and Expression (MILAGE), a model that combines
direct effects of cis-SNPs on nearby transcripts with trans-effects that control global factors of expression
in a tissue-specific pattern. We develop judicious initialization of the model, followed by gradient descent
learning. We present GPU-based implementation of the learner to enable computational feasibility in this
otherwise intractably-large parameter space. We show the model to explain > 59% of test-set variation in
GTEXx data. The inferred genetically-regulated factors are consistent with expected tissue similarity.

Key words: frans-eQTLs, factor analysis, neural network, tensor decomposition, deep learning
Availability: The source code is available at https://github.com/morrisyoung/eQTL_MILAGE

Contact: itsik@cs.columbia.edu

1 Introduction

Efforts to study genetic association have largely failed to find large effects
of common genetic variants on clinical human traits. In contrast, many
such variants had been effectively discovered as modulating gene expres-
sion (Brem et al. (2002); Rockman and Kruglyak (2006); Cookson et al.
(2009)). Such expression Quantitative Trait Loci (eQTLs) have been well
characterized and shown to most obviously include large effects in cis,
that are often shared across multiple tissues (Michaelson et al. (2009)).
Large scale efforts to characterize eQTLs across tissues, and most pro-
minently the Genotype-Tissue Expression Project (GTEx, Lonsdale et al.
(2013)) had cataloged both cis-SNPs (Ardlie et al. (2015); Aguet et al.
(2016)) as well as trans-effects of variants (Jo et al. (2016)). More elabo-
rate models for gene expression (Gao et al. (2013); Gao et al. (2016); Zhao
et al. (2016)) utilize the correlation structure in transcriptional patterns to
model and predict expression.

Yet, current studies and methods suffer from notable limitations. First,
analysis of variants in frans seeks effects of a single variant on a single

gene, rather than seeking pervasive genomewide effects. Secondly, only
linear trans-effects are considered. Moreover, cis- and trans-effects are
considered only separately. Finally, methods struggle to scale up to the
whole genome, and are forced to rely on preprocessing/pruning to resolve
the computational constraints, especially for trans analysis.

In this work, we build MIxed-Layer Analysis of Genetics and
Expression (MILAGE) to tackle the problem. We show our modeling
details to be effective in describing expression within the tensor of data
across tissues times individuals times genes.

2 Methods
2.1 Modeling

We introduce and evaluate predictive graphical models (Fig. 1) of three
types: a straightforward multiple linear model (ML), a nonlinear neural
network model (NN), and a tensor-decomposition linear predictive model
(TM). NN extends ML by allowing non-linear effects in genetic regulation
of gene expression. TM is linear, like ML, but improves model complexity
by more agressively assuming low rank across gene co-expression factors.
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Fig. 1. MIxed-Layer Analysis of Genetics and Expression (MILAGE) to model expression tensors along with genetics across individuals and tissues. Gene expression is explained by

cis-SNPs of each gene in a tissue-specific fashion (different purple pages), combined with genome-wide trans-effects through cellular hidden factors which has linear or nonlinear activation

pattern. Cellular hidden factors perform regulation to gene expression in a tissue-specific fashion (different green pages), or in a tensor fashion where its tensor product with gene factor

matrix and tissue factor matrix (the two extra green pages) constructs the factor effects for gene expression.

2.1.1 Linear and nonlinear factor modeling
We introduce notations to specify indices across the multiple dimensions
of this problem as follows. The four dimensions that involve the input
data include individuals indexed by ¢ = 1,..., I, genes indexed by j =
1,...,J, tissues indexed by £k = 1,..., K and SNPs indexed by s =
1,...,S. The input data includes the observed variables X = [X;],
which is the genotype matrix across individuals and SNPs, and Y =
[YZ- i k] , which is the expression phenotype tensor across individuals, genes
and tissues. Both inputs may have missing datapoints, and while X is in
practice close to complete, Y is typically missing datapoints at the same
scale as having them. Furthermore, Y typically has structured missingness,
with vectors along the gene axis being either near-complete or completely
missing for a particular individual-tissue pair (, k), and such pairs being
further structured by tissues with correlated missingness patterns across
individuals. This is due to some tissues being syatematically inaccessible
for some recruited individuals, e.g. brain from living individuals.

The hidden variables in the model to be learned include parameters of
five types:

O = [wijs, Oits, at, Brjt bij]

w is the tensor of association signals between cis-SNPs and genes,
which is tissue-specific. Proximity of a cis-SNP to its target transcript
is modeled by each gene j having a restricted subset of SNPs, S; C
{1,..., 8}, for which wy; is allowed to be nonzero, i.e. Vs & S;
wgjs = 0. For convenience, SNPs are indexed by their order along
the chromosome, so the set of allowed cis-SNPs is an interval S; =
{Slow(j), . Shi(j)}- « is the matrix of association signals between
genome-wide SNPs and cellular hidden factors indexed by ¢, and these
factors are individual specific without imposed tissue specificity, so may
be relevant at any suset of the tisues. a is the vector of mean factor effects
beyond SNPs effects. 3 is the matrix of association signasl between cel-
lular factors and genes, independently across various tissue types. b is the
vector of mean tissue effects beyond factor effects.

This gives rise to the following formulation for the gene expression:

hi(5) T
Yijk = Y whjs Xis+ Y Brjt - Fit + by + noise
s=low(j) t=1

For the ML model F;; = > a¢s - X5 + a¢ implicitly encodes pathw-
ays activated by SNPs for a particular individual. In contrast, for the NN
model Fy; = sigmoid(}_, a¢s - Xys + a¢), making the full structure
a mixed model of linear regression and one-hidden-layer neural network
with the logistic function as the activation function (Fig. 1).

We define the least-square error:

L'(X,Y,0) = % DSOS Vigk = Yijn)?

Thus the objective function (loss function) to be minimized by L1-
regularizing the inferred hidden variables:

L(X7Y7®) = L/(X7Y7®) + A1 Zzzlwkjsl
k g s
FA2 YD s+ A3 D D> > Byl
t s k J t

The L1 regularization terms with penalty strength parameters A(; o 3} in
the loss function sparsifies the model parameters, eliminating small noise
and false positive signals.

2.1.2 Tensor predictive modeling

The idea of tensor decomposition is not new to genetic studies (Hore ez al.
(2016)), but to our knowledge, our work the first to propose a uniform fra-
mework connecting genetics and gene expression profiles through factors
in a joint decomposition. Also, our work goes an extra modeling step by
explicitly incorporating the cis-regulation into the joint decomposition.
This element of our models makes the eQTLs more interpretable on the
one hand, while on the other allows the network modeling part to be more
focused on genome-wide trans-effects.
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Here we first introduce the genetic effects beyond cis-regulation in our
tensor predictive modeling. Specifically, tensor predictive model assumes
the expression tensor decomposable into factors, each of which reflects per-
individual contributions [F};], per-gene contributions [V;¢], and per-tissue
contributions [Wp;]. To give some extra degree of freedom for modeling
gene dimension, we allow bias for gene factor matrix through parameter
dj. Tensor predictive model further assumes the individual component
[Fy¢] is directly imputed by genetic information of these individuals, with
coefficient o+ s and mean effect a;.

Overall, the hidden variables to be learned include:

Ohidden = lauts, at, Vjt, dj, W]

Combining the cis-regulation (using the same indexing as above), we
have the following formulation for the gene expression:

S T
Yijk = wkjs - Xis + > Fit - Vji - Wi + d; + noise
s t

where Fyy = Y as - Xis + aq is the imputation of individual factors
from SNPs (Fig. 1).
We define the least-square error:

L'(X,Y,0) = %ZZZ(YQM — Yijr)?
i 5k

Thus the objective function (loss function) to be minimized by L1-
regularizing the inferred hidden variables:

L(X,Y,0)=L'(X,Y,0) + A1 > > > |wpysl
k J s
Fx2 D D Vil + A3 D (Wil
j ot kot
+>\4ZZ|C’%S|
t s

The L1 regularization terms with penalty strength parameters A¢y 2 3 4}
in the loss function have the same effects as before.

2.2 Inference and implementation

‘We have two stages in terms of development of these models. In the first
stage, we derived the solvers of these models and implemented them on
GPU to scale up. In the second stage, we utilized the increasingly popular
machine learning library — TensorFlow', which has both great scalabi-
lity and great flexibility, and is derivation-free for gradient descent based
solvers. TensorFlow helped us a lot in running our models on real data,
but here we’ll still discuss our early-stage efforts, since they involve some
very basic principles and useful techniques for solving models and scaling
them up with GPU, which might be interesting to a very broad audience.
We’ll discuss in details how we solve the neural network model, as the
other two are analogous to this and more straightforward.

The straightforward algorithm to solve this model is gradient descent
(GD). Since the trans-part of our model is just a one-hidden-layer neural
network, we use backpropogation to calculate the gradient of relevant
parameters, which is « (with intercept a). For the least-squares part of the
loss function (L), we can compute partial derivatives with respect to the
three types of model parameters as follows:

N,
5L’ 1 &~
Swijs NZZ, ¥y 4 e
N,
5L/ 1 <&~
- — E (Yijgk — Yijr) - Fut
6Bkjt N - ] 17 K3

S 1 ik -
5o - N E E @is - Fig - (1 — Fit) E (Yijr — Yijk) - Brjt
Cts ki j

where IV}, is the number of data points from tissue k£ and N is the total
number of data points in this incomplete expression tensor.

The L1 penalty term in our model is not formally differentiable when
the relevant parameter is zero. We standardly abuse notation by defining
the derivative to be zero at that point.

The scale of our model is very large, since we need to consider the
whole-genome genetic effects of eQTLs. This increases the number of
candidate cis-SNPs that need to be considered across all genes. It further
increases the size of the linear system of genome-wide association to the
given number of latent factors. Thus solving the GD requires special care
to the implementation. We resolve the computational issue by General Pur-
pose GPU computing (GPGPU). The difference between traditional CPU
architecture and that of a GPU is that a GPU could utilize many cores to
perform massively parallel computing. GPUs have recurrently benefited
recent rapid developments in deep learning research (Oh and Jung (2004);
Chellapilla et al. (2006); Raina et al. (2009); Ciresan et al. (2010)), as well
as more general purpose scientific computing across various areas (Coco-
ccioni et al. (2011); Alerstam et al. (2008); Manavski and Valle (2008);
Boyer and Baz (2013)). We thus took advantage of the computing power of
GPUs to make our previously infeasible inference procedure practical. In
practice, we use Compute Unified Device Architecture (CUDA) C/C++,
which is a parallel computing platform and application programming inter-
face (API) model for GPU programming. Our code and tested software is
publicly available?.

2.3 Initialization

2.3.1 Linear and nonlinear factor modeling

Initialization is very critical in our modeling, due to the strong biological
context, and scarcity of data compared to the complexity of our model. We
need to initialize wisely in order to avoid overfitting and make the learned
results more biologically meaningful and relevant. Here we propose the
following strategy to achieve that. We will discuss in details on how to
initialize the neural network model, since the multiple linear model uses
the same strategy but a relatively simpler version, which we will discuss
later.

1. Initialize the association signals w of cis-SNPs to all genes by solving
linear systems through regularized regression, or more specifically
group-LASSO (Yuan and Lin (2006)) in a multiple-tissue context, to
encourage both sparsity and tissue similarity for cis-regulation.

2. Subtract the inferred cis-effects of our initialized cis-model part out
from the expression profiles to get the residuals.

3. Spread the 3D expression tensor (here the residual tensor) into a 2D
Sample x Gene matrix, ignoring the tissue label and individual label
of each sample.

! https://www.tensorflow.org/

2 https://github.com/morrisyoung/eQTL_MILAGE
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Fig. 2. We tested the performance of multiple linear model (ml) and neural network model (nn) on data with different nature with simulations. We simulated the data with ml and solved it
with ml and nn (left two), and also simulated with nn (right two) and solved it with the two models. For each setting, we simulated the data with real sample size and 10X sample size, but
fixing the feature dimensions (number of SNPs and number of genes) as 10th of the real data. All experiments were done only for the trans- factor part, without simulating and solving the

cis- part.

4. Perform principal component analysis (PCA) on the Sample x Gene
matrix.

5. Compute average sample factors from PCA for each individual across
all tissues, to average out tissue effects and get tissue-unaware
individual factors.

6. Scale individual factors into range [0.1,0.9]. This step is needed
because these values are the output of a sigmoid function, which
needs to be in range (0, 1), and scaling it to a narrower range around
0.5 avoids saturation of the logistic function.

7. Initialize association signals 8 between factors and genes by solving
linear systems between the initialized, scaled factors and tissue-
specific expression profiles with group-LASSO, to encourage both
sparsity and tissue similarity for factor regulation.

8. Compute input factors for all individuals by passing the scaled
individual factors through an inverse sigmoid function.

9. Initialize the association signals v between genome-wide SNPs with
these input factors by solving a linear system with LASSO.

There are several critical components to elaborate here:

First of all, the biological content of this modeling problem needs
significant sparsity for the model. We thus always use regularized regres-
sion model, LASSO (or group-LASSO), as a solver for linear systems to
encourage sparsity. Secondly, the reason we initialize cis part first and use
residuals to initialize trans part is that, cis-eQTLs have been well studied to
contain more known signals for gene expression regulation. Thirdly, when
initializing w and $3 using group-LASSO with an incomplete tensor Y in
Step 1 and Step 7 above, we first need to impute the expression profiles
to make the tensor complete. This is required by the group-LASSO solver
setting, which only supports complete datasets. In practice, we fill in mis-
sing values across the incomplete Y using the mean value of all available
samples of Y. Finally, for initializing the o matrix, we only use the cis-
SNPs of active genes (non-zero 8 parameters) in each factor to initialize
the parameter of SNPs within that factor, again with LASSO. Through-
out our inference, we restrict analysis to variants previously implicated as
significant eQTLs of all genes (Aguet et al. (2016) and Jo et al. (2016)).

The matrix o of SNP association with factors is supposed to be very
sparse. This is encouraged twofold. First, the gene factors S are already
sparsified through previous group-LASSO initialization, so there should
be only limited number of genes within each factor thus limited number of
cis-SNPs that might affect the entire factor. Secondly, the LASSO solver

will further sparsify these candidate SNPs to leave only some of them
to actually have an effect. We apply this inference layer by layer, first
initializing 3, then initializing o based on the underlying assumption of
our network mode, which is that frans-eQTL signals can be summarized
by a small number of factors. We require each SNP to have a local cis-
effect on some gene in order to have distant trans-effects for other genes.
This assumption might be too constrained for general deep models of
phenotypes, but biologically it is reasonable to assume that even a trans
signal across a factor is due to a cis-effect on one of its genes. Furthermore,
considering a small number of candidate SNPs for « ensures sparsity.

For the ML model, we don’t need to do the above Step 6 and Step 8,
since the direct linear pathway from SNPs to genes through factors has no
logistic activation function and the range of pre- and post-activation is not
a numerical concern.

In all our initialization, PCA, LASSO and group-LASSO solvers are
from scikit-learn' Python library.

2.3.2 Tensor predictive modeling

For initializing the TM model, we use the same idea to sparsify the model
parameters. However, approximating the expression 3D tensor with low-
rank matrices needs to be taken care of specially. Here we show the steps:

1. Do the cis-regression and substraction as in previous section, and get
the spread expression residual tensor with shape Sample x Gene.

2. Perform PCA on this expression residual matrix, and refold the sample
factor loading matrix into a smaller incomplete 3D tensor with shape
Tissue X Individual X Factor, as Yx} (:},{t}-

3. Apply incomplete PCA (Stacklies ez al. (2007)) with a single principal
component for each Yy (53 ¢ and for all of them across all factors,
to get tissue factor matrix Wy (4} and individual factor matrix
Fliy ey

4. Use the corresponding individual factor and tissue factor for each
sample in expression matrix to construct the linear system between
them (Hadamard product, F; (43 0Wp, (1) and the expression sample
(Y3 k{51, and solve the linear system by LASSO to construct sparse
gene expression factor matrix Vi3 ¢43.

5. Solve the linear system between SNPs and individual factors, with the
same sparsity strategy utilized in previous section.

! http://scikit-learn.org/stable/
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Fig. 3. We simulate data and benchmark the speed of GPU (CUDA C/C++) implementation
and Python (Numpy) implementation. The left panel shows how the speed scales with the
size of the dataset (.S and J), when the number of factors (T") is fixed to 40. The right panel
shows how the speed scales with the number of factors, with the size of dataset fixed as 10%
of real data scale. Here we assume the real dataset has scale of S = 1, 000, 000, J =
20, 000, which has the same order of magnitude as the real data from GTEx in our following
real-data analysis.

The key difference here from the ML and NN model is that, we need
to approximate the individual factor matrix and tissue factor matrix with
multiple times of PCA approximations. The first time in Step 2 would allow
us to analyze their variance in the new factor dimension, and the second
time in Step 3 would further condense the variance of each factor from
individual aspect and tissue aspect into their own dimensions. The whole
process would allow us to keep the variance from the factors, and make
the followup linear system (between the compound individual factor and
tissue factor, with gene expression matrix) more aligned with the original
3D tensor decomposition (approximation). Also, we utilized incomplete
PCA here since this setting involves incomplete tensor to be approximated
by low-rank structures. We don’t pre-impute the incomplete tensor here as
we did for ML and NN, since the incomplete PCA method (Stacklies et al.
(2007)) has already provided us a feasible and reliable solution to handle
that.

3 Results
3.1 Simulation

We first conducted simulation analysis. We simulated the data treating
the model as a generative one, simulating all parameters from standard
normal distribution. While this simulation oversimplifies aspects of the
distribution of real data, its purpose is to investigate the scalability of our
models, and their capability of capturing signals on differently simulated
data.

3.1.1 Benchmarking of CUDA implementation

Simulation allowed benchmarking on our computing platform, the Depar-
tment of Systems Biology Information Technology (DSBIT) computing
cluster at Columbia University, in which Nvidia Tesla M2090 GPUs and
sufficient CPU memory (~100GB per node) are available. In addition
to our GPU implementation, we further benchmarked a highly optimi-
zed Python (Numpy') implementation, in which both multi-threading and
deeply-optimized CPU libraries for linear algebra are integrated. The com-
parison between the platforms in Figure 3 demonstrates the superiority of
our GPU implementation when the dataset is very large.

! http://www.numpy.org/
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3.1.2 Linear and nonlinear generative models

‘We simulated data from linear model (multiple linear) and nonlinear model
(neural network) as generative models, and solved them in both linear and
nonlinear ways. We intended to see how linear and nonlinear models could
capture the signal in data with the same or different natures, when different
sample availability were presented (Fig. 2). From the results we can see,
when the data has a straight linear nature, the linear solver could always
achieve a better likelihood value on both training set and testing set with a
large margin to the nonlinear neural network opponents. The nonlinearly
simulated data could be solved well by nonlinear solver under different
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gene set (size) overlap log log
FDR
(ratio) pval | gval
Brain - Cerebellum, factor No.2
synapse (754) 53(0.0703) | -52.3 |-48.1
synapse_part (610) 45 (0.0738) [ -45.0 |-41.1
neuron_part (1265) 56 (0.0443) | -44.6 | -40.6
MODULE_11 (540) 40 (0.0741) | -39.9 |-364
MODULE_100 (544) 39 (0.0717) | -38.3 | -34.7
Testis, factor No.4
sexual_reproduction (730) 31 (0.0425) | -26.3 | -22.2
GNF2_CCNA1 (66) 16 (0.2424) | -26.2 | -22.2
GNF2_MLF1 (87) 17 (0.1954) | -26.0 | -22.2
multi_organism_reproductive_process (891) | 31 (0.0348) | -23.7 | -20.1
male_gamete_generation (486) 24 (0.0494) | -21.8 | -18.7
Adrenal Gland, factor No.15
small_molecule_metabolic _process (1767) |48 (0.0272) | -27.9 | =23.7
sterol_metabolic_process (123) 19 (0.1545) | -25.0 | -21.1
steroid_metabolic_process (237) 20 (0.0844) | -20.9 | -17.2
metabolism_of_lipids_lipoproteins (478) 24 (0.0502) | -19.7 | -16.1
WEST_ADRENOCORTICAL 25(0.0458) [ -19.5 | =16.0
_TUMOR_DN (546)

Table 1. We input the top 200 genes from each tissue’s most activated factor,
and compute overlap with MSigDB gene sets of all categories. The above
table shows the top 5 enriched (or overlapped) gene sets returned by GSEA
web interface. We can see these tissues in their representative factors all have
very consistent functional gene sets overlapped with them, which indicates the
effectiveness of these learned tissue-factors in terms of biological functions.

data availability, though the linear model could also approximate the data
well especially for the training set given sufficient rounds of training (that
is because we only have one hidden layer in our generative model, which
is not deep in terms of nonlinearity). This gives us some insights regarding
whether a linear or nonlinear model could better explain the data in our
followup real-data analysis.

3.2 Real data analysis

3.2.1 Dataset and preprocessing

MILAGE is built to handle datasets like GTEx (Lonsdale et al. (2013))
for modeling diversity of expression across individuals and tissues. This
imposes critical data size requirements. Specifically, GTEx data involves
dozens of tissues across hundreds of individuals. Yet, much of the GTEx
tensor is incomplete, making the actual size data more manageable that a
full tensor would have been. We consider eQTL tissues where the per-tissue
number of samples is >100 from GTEx. This leaves K = 28 tissues across
which I =;,¢41= 449 individuals have genotype data and expression data.
‘We curtail another dimension of the computation bykeeping only the J =
19, 425 autosomal transcripts expressed at RP K M > 0.1 across > 50%
of the samples. Finally, we address the longest dimension, which is genetic
information along the genome. We use GTEx (version phs000424.v6.p1)
genotypes for common SNPs (MAF> 0.01). We consider for the genotype
matrix X the imputed genotype data for each SNP and individual. This
data is available in dosage format, as real number in [0, 2] that reports the
expected number of non-reference alleles, rather than discrete genotype
{0, 1, 2}, which is unknown. This representation conveys the uncertainty
of imputation setting elements in X tox = 0- Py +1- P; +2- P>, where
Py,1,2 are respectively the posterior probabilities for genotype {0, 1,2}
ascribed by imputation. We further restrict analysis to all the significantly
associated cis- SNPs and frans- SNPs across all genes from recent GTEx

analytical efforts (see Aguet et al. (2016) and Jo et al. (2016)) as our pre-
analyzed candidate SNPs. This still leaves us S = 2,445,192 sites for
analysis. This total number of SNPs is distributed across genes so they
have average count of 2817 (range [0, 31873]) candidate cis-SNPs within
1 million base pairs up- and down- stream of transcription start site. We
use candidates for the respective gene in the cis part of our model.

For the gene expression data, we randomly draw 75% of individuals
(Itrain = 336) with their 4270 cross-tissue samples as the training set,
and use the left (Ites¢ = 113 individuals, 1424 samples) as the testing set,
and we then stick with these sets during the whole evaluation process. We
normalize the gene expression RPKM values across the training set using
Z-statistics among all tissue samples. We further map expression profiles
of the testing set into Z values using the same moments from the training
set.This means there is now leakage of information from test samples into
the model, while keeping the normalized expression values close to their
Z-score interpretation.

‘We manually set the number of factors to be 7" = 400. This is con-
sistent with the number of factors used by Gao et al. (2016) in a less
expressive model. We thus expect fewer factors to be required, and thus
hope for the learning algorithm to identify many of the factors as redun-
dant. We rely on the regularized initialization of the factor tensor 3 to zero
out the effects of such tensors, thus removing them from consideration
also post-initialization.

3.2.2 Variance explained through different models

We evaluate the ability of MILAGE to explain variance in real data in
four ways — cis pathway alone, and the other three variants of MILAGE
(Fig. 4). We first consider only the cis part of our model, as cis-eQTLs
were well studied for over a decade and have observable signals regula-
ting gene expressions. Our results show that upon initialization the linear
regression model for cis-SNPs could only explain 45.1% of the training
set variance and 42.6% of that of the testing set. Moreover, neither of
these benchmarks could be more than negligibly improved by further trai-
ning with GD. This is consistent with known qualities of the regularized
regression model (LASSO solver). Secondly, we consider the combined
cis- and trans-model, with the three variants of MILAGE — ML, NN and
TM. Since the cis part does not improve by learning, we keep it as it is,
and use it to extract residuals of the expression tensor Y that still need to
be explained. We train the trans part of these models on these residuals,
and evaluate the total variance explained by both parts. The combined
model performs significantly better than cis part of our model, despite
much overlap in the variance eQTL-SNPs explain through both parts of
the model. We observe that for all three models, a stronger penalty to the
initialization of the model (for the wide linear connection of genetics and
factors) brings a worse training set final result, while a better testing set
result. This both shows the consistency with our understanding on regula-
rization (better generalization on test set), and the insight that for a better
overall likelihood less priority should be given to specific set of candidate
SNPs in terms of their joint genetic effects to a factor. We further obse-
rve that the ML model performs very similar to the NN model, in both
the trend of convergence and the final variance explained, while the TM
model seems very sensitive to the initialization, and a worse initialization
could even make the starting variance explained on test set worse than the
cis part of the model. Combined with the simulation analysis conducted
above (Section 3.1.2, Fig. 2), we conclude here straight linear effects are
not the best interpretation of the genome-wide genetic effects for regula-
ting gene expression, since we don’t have significant better performance
of linear model compared to the nonlinear model as we observed in simu-
lation (Fig. 2). We also conclude that there are some nonlinearity since
the model training of NN indeed further improves the model, however
this nonlinearity is not as simple as what we simulated (Fig. 2) but rather
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mean factor effects of different factors on various tissues
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Fig. 9. The mean activation value for tissues of first 50 factors . The SNP associations are very sparse, and only limited number of SNPs has non-zero effects. In practice, we use e as the

threshold for non-zero SNPs, since there are some noisy effects among the SNPs. We saw when e = 0.000001 it would be able to eliminate all these small noise, while smaller values will

quickly increase the total number of effective 3 several magnitude larger.

complicated among all the SNPs interacted with each other. For the TM
model, it turns out with a good initialization (here it’s a strong penalty for
the wide linear system of genetics to factors to pick up or prioritize no
SNPs), the model could achieve test set variance explained as good as its
direct opponent ML model.

In Figure 4, we also show more details regarding the fine-tuned ini-
tializations of different models. Since we realized that solving the wide
linear model from genetics to factors with LASSO was sensitive to the
final convergence and overall likelihood of our learned model, we tried
different LASSO penalty parameters to see how the training process vary
accordingly. Since the candidates for this wide linear model are some
heuristic SNPs to each factor (cis-SNPs of genes in that factor), this essen-
tially tested how such heuristics would affect our finally learned model. It
turns out that when no heuristics are inserted (strongest LASSO penalty
to pick up no candidate SNPs), all the three models could explain the data
better (better generalization on testing set). This clearly shows the ubi-
quity and complexity of the whole-genome trans-effects to co-expressed
genes that any SNP could have some weak signal towards factors, and our
inappropriate assumption that trans-eQTL must have effects through gene-
gene interactions and a trans-eQTL must be a cis-eQTL of some genes.
Through a series experiments here, our best result is from NN model, with
no candidate SNPs prioritized in the initialization, which achieves a 59.5%
variance explained on test set.

3.2.3 Tissue specific regulations reveal functional similarity

We applied hierarchical clustering for the tissue-specific regulation of gene
expression profiles from factors in neural network model. We explored
multiple hierarchical clustering methods, observing highly similar results
(not shown). We use Weighted Pair Group Method with Arithmetic Mean
(WPGMA) in our analysis (Fig. 5). Related tissues are similar in terms of
their SNP-affected expression factors: the triplet artery tissues, the triplet of
adipose/mammary tissues, as well as the pairs of heart and skin tissues are

each clustered together. This indicates the closer relationship of functional
regulations of these tissues. It is important to distinguish this results from
just expression patterns being similar within these clusters, as these factors
are the target of SNP regulation rather than just added contributions to
tissue-expression of all individuals. Finally, from the clustering, we can
identify three very significant outlier tissues — testis, cerebellum and EB V-
transformed lymphocytes. Testis in particular is an extreme outlier.

Based on above observation, high dimensional hierarchical relation-
ship of tissues is consistent with prior biological knowledge. We further
applied Multidimensional Scaling (MDS) to examine whether this type of
distance relationship could be preserved in a low-dimension space with
nonlinear mapping. Figure 6 highlights the outlier tissues as dominating
MDS of all tissues. When these are removed, similarities between related
tissues are better visible.

In the TM model, tissue activation pattern of factors also indicates
tissue similarity well. We demonstrate how the tissue activation pattern
of factors from TM look like in Figure 7. We did the same hierarchical
clustering and MDS on the parameter matrix, showed in Figure 8. Note
that, the activation pattern in the tensor predictive model is not the same
as the regulation parameters from multiple linear model or neural network
model. It provides another layer of hierarchy representing how each tissue
loads the common co-expression factors, rather than what the specific
co-expression factors are in each tissue. This difference comes from the
natural difference between tensor modeling and multiple linear modeling
or its nonlinear version.

3.2.4 Factor and enrichment analysis
We further studied factors and their functional enrichment in neural
network model.

We considered the mean 3 across all genes for each tissues and factor,
= 2 Brjt
Brt = =5

= 5 (Fig. 9). Interestingly, we find factor#3, factor#4 and
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transmission_of _nerve_impulse .844(.064| .841( .304
RORIE_TARGETS_OF_EWSRI1_FLIl .8411.081 NS
factor#5 are all strongly activated for testis, and factor#1 is strongly de- _FUSION_DN
activated for the same tissue. This explains well the significant ourlier positive_regulation_of_calcium_ion -837].098| .877.025
effect of this tissue seen in Figure 5. The more significant factors have —_dependent_exocytosis
uneven B across tissues, each highlighting their top tissues (Fig. 10). exocytic_vesicle_membrane -834].116 .863 | .061
To investigate factors play a role in balancing the functional signals cerebellar_cortex_ formation -828.156 NS
for specific tissues, we considered gene set enrichment analysis based on calcium_ion_regulated_exocytosis -825|.181) .845|.239
the By, weights these factors ascribe to particular genes for k = testis excitatory_postsynaptic_potential .825(.188] .863 [ .061
and t = 1,3,4,5. We observe the top genes for these testis-associated presynaptic_process_involved_in_synaptic | .821| .231 NS
factors (from 200 to 1000, decreasing-order for factor #3, #4 and #5, _transmission
and increasing-order for factor #1) all have significant enrichment for synaptic_transmission_glutamatergic .819(.255 NS
some sexual-function gene sets (e.g., GO_SEXUAL_REPRODUCTION, neurotransmitter_transport .818|.263 NS
GO_MALE_GAMETE_GENERATION). Furthermore, direct compari- sodium_channel_activity .814 | .331 NS
son of the most negatively weighted genes for ¢ = 1 and the most positively regulation_of_neurotransmitter_receptor NS 8691 .039
weighted genes fort = 4 showed 105/200 or 868/1000 of them to intersect. _activity
Next, we considered the learned o matrix which associates all SNPs insulin_synthesis_and_processing NS 865 | .049
with the specified factors. We find that each factor is only associa- walking_behavior NS 8631 .06
ted with limited number of significant causal SNPs in our model, as adult_walking_behavior NS 8631 .06
listed in Figure 9. This indicates the very sparse nature of the SNP synaptic_vesicle_recycling NS 363 1.065
factor associations, or more generally the limited amount of signal from synaptic_vesicle_cycle NS 8491 169
tmns.-effects, . . . . postsynaptic_membrane_organization NS .8411.297
Finally, we conduct enrichment analysis of top genes in these tissues BIOCARTA_NOSI_PATHWAY NS 37| 354

with respect to gene sets from the Molecular Signatures Database v5.2
(Subramanian et al. (2005)). We observe overlapping enrichment sets
between the tissues, associating such tissues with some relevant mole-
cular functions. We further identify the dominating functions of different
factors. See Table 1 for the results.

We further build Multi-Tissue Gene Set Enrichment Analysis tool!
(MTGSEA), a complementary tool to MILAGE. MTGSEA reports the
enrichment score (ES) of input gene sets for different factors in various
tissues, with the method used in GSEA (Subramanian et al. (2005)). Dif-
ferent from the original ES calculation method, here we input a list of
ordered genes (by the 3 values of these genes under the specified factor)
with their 8 values, rather than actual gene expression profiles with phe-
notypes as required by GSEA software. However this is consistent with
GSEA, as the 8 matrix is essentially used to characterize how each gene
associated with this factor, providing a similar metric as the correlation
number of gene with phenotype used in GSEA. In addition, we calculate
a p-value to quantify the null chances to observe the calculated ES among
the best ES calculated from all gene sets from different random shufflings.
This randomization procedure aims to eliminate the correlation effects of

! https://github.com/morrisyoung/eQTL_MILAGE

Table 2. ES enrichment analysis in factor activated in brain, and a factor de-
activated in brain showing similar enrichment patterns.xx:p < .001; NS:
FDR>0.1; small italics: GO annotation; small letters: Reactome annotation

different gene sets. Last but not least, in order to report only significan-
tly enriched gene sets for different factors and tissues, we set the False
Discover Rate (FDR) to 0.1 in our analysis. See Table 2 for the results.
Similarly to the above overlap enrichment analysis but in a different and
more systematic quantification fashion, we can identify some functionally
relevant gene sets for different tissues (here we show Brain - Cerebellum
factor #2 and #5, positive and negative enrichment respectively).

4 Discussion

Modeling eQTLs poses significant analytical challenges due to the dimen-
sions of the problem and the interconnectedness of its components. Yet, the
combination of genetic variation data and molecular level measurements
which they affect is a powerful one. In this work we showed how to jointly
model cis- and trans-effects of eQTLs in various ways, and how to scale
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up the model on whole-genome data. We show that our analysis reveals
not only lists of eQTLs, but rather enrichment of networks to functional
modules.

MILAGEFF opens the door and provides insights to various resea-
rch questions, in terms of both the inference process itself, as well as
the biology to be inferred. One key modelling decision to be made is
whether linear models are sufficient to describe such data, or whether non-
linear terms are essential. We’ve showed in our analysis that there are
indeed irreplaceable nonlinear effects for the factor-fashion trans-eQTLs,
and a nonlinear model performs better than its linear opponent. Another
such issue concerns the assumed independence of tissue parameters on
one another, as opposed to potentially assuming the existence of tissue-
independent factors (Hore et al. (2016)). We also showed in our real-data
analysis that, a tensor-decomposition fashion model assuming the exista-
nce of tissue-independent co-expression factors has less performance on
training set, while surprisingly it holds test set performance almost as good
as a factor model with tissue-dependent parameters. This indicates the
expressiveness of a simpler tensor-decomposition model, and on the other
hand supplements the analysis of such tensor modeling for co-expression
networks (Hore et al. (2016)) in terms of their tissue-dependency or tissue-
independency nature. In terms of the biology, there is strong rationale for
the incorporation of functional data, such as epigenetics, that might provide
informative priors regarding SNP involvement in regulation. We leave such
prior incorporation into our modeling to future investigations. Separately,
we would want to use the learned model to impute gene expression profiles
from an independent study, in order to assist further downstream biomedi-
cal analysis and evaluate performance with respect to other methods like
PrediXcan (Gamazon et al. (2015)).
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