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Abstract

Motivation: Modeling genetics of gene expression had been effective at highlighting cis-eQTLs, variants

that control nearby transcripts. Yet, incorporation of long-range effects has been hampered by unfavora-

ble statistical considerations. On the other end, expression alone has been modeled across tissues by

decomposition into contributing factors, without any connection to genetics.

Results: We develop MIxed-Layer Analysis of Genetics and Expression (MILAGE), a model that combines

direct effects of cis-SNPs on nearby transcripts with trans-effects that control global factors of expression

in a tissue-specific pattern. We develop judicious initialization of the model, followed by gradient descent

learning. We present GPU-based implementation of the learner to enable computational feasibility in this

otherwise intractably-large parameter space. We show the model to explain > 59% of test-set variation in

GTEx data. The inferred genetically-regulated factors are consistent with expected tissue similarity.
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1 Introduction

Efforts to study genetic association have largely failed to find large effects

of common genetic variants on clinical human traits. In contrast, many

such variants had been effectively discovered as modulating gene expres-

sion (Brem et al. (2002); Rockman and Kruglyak (2006); Cookson et al.

(2009)). Such expression Quantitative Trait Loci (eQTLs) have been well

characterized and shown to most obviously include large effects in cis,

that are often shared across multiple tissues (Michaelson et al. (2009)).

Large scale efforts to characterize eQTLs across tissues, and most pro-

minently the Genotype-Tissue Expression Project (GTEx, Lonsdale et al.

(2013)) had cataloged both cis-SNPs (Ardlie et al. (2015); Aguet et al.

(2016)) as well as trans-effects of variants (Jo et al. (2016)). More elabo-

rate models for gene expression (Gao et al. (2013); Gao et al. (2016); Zhao

et al. (2016)) utilize the correlation structure in transcriptional patterns to

model and predict expression.

Yet, current studies and methods suffer from notable limitations. First,

analysis of variants in trans seeks effects of a single variant on a single

gene, rather than seeking pervasive genomewide effects. Secondly, only

linear trans-effects are considered. Moreover, cis- and trans-effects are

considered only separately. Finally, methods struggle to scale up to the

whole genome, and are forced to rely on preprocessing/pruning to resolve

the computational constraints, especially for trans analysis.

In this work, we build MIxed-Layer Analysis of Genetics and

Expression (MILAGE) to tackle the problem. We show our modeling

details to be effective in describing expression within the tensor of data

across tissues times individuals times genes.

2 Methods

2.1 Modeling

We introduce and evaluate predictive graphical models (Fig. 1) of three

types: a straightforward multiple linear model (ML), a nonlinear neural

network model (NN), and a tensor-decomposition linear predictive model

(TM). NN extends ML by allowing non-linear effects in genetic regulation

of gene expression. TM is linear, like ML, but improves model complexity

by more agressively assuming low rank across gene co-expression factors.

© The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 1
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Fig. 1. MIxed-Layer Analysis of Genetics and Expression (MILAGE) to model expression tensors along with genetics across individuals and tissues. Gene expression is explained by

cis-SNPs of each gene in a tissue-specific fashion (different purple pages), combined with genome-wide trans-effects through cellular hidden factors which has linear or nonlinear activation

pattern. Cellular hidden factors perform regulation to gene expression in a tissue-specific fashion (different green pages), or in a tensor fashion where its tensor product with gene factor

matrix and tissue factor matrix (the two extra green pages) constructs the factor effects for gene expression.

2.1.1 Linear and nonlinear factor modeling

We introduce notations to specify indices across the multiple dimensions

of this problem as follows. The four dimensions that involve the input

data include individuals indexed by i = 1, . . . , I , genes indexed by j =

1, . . . , J , tissues indexed by k = 1, . . . ,K and SNPs indexed by s =

1, . . . , S. The input data includes the observed variables X = [Xis],

which is the genotype matrix across individuals and SNPs, and Y =[
Yijk

]
, which is the expression phenotype tensor across individuals, genes

and tissues. Both inputs may have missing datapoints, and while X is in

practice close to complete, Y is typically missing datapoints at the same

scale as having them. Furthermore,Y typically has structured missingness,

with vectors along the gene axis being either near-complete or completely

missing for a particular individual-tissue pair (i, k), and such pairs being

further structured by tissues with correlated missingness patterns across

individuals. This is due to some tissues being syatematically inaccessible

for some recruited individuals, e.g. brain from living individuals.

The hidden variables in the model to be learned include parameters of

five types:

Θ = [ωkjs, αts, at, βkjt, bkj ]

ω is the tensor of association signals between cis-SNPs and genes,

which is tissue-specific. Proximity of a cis-SNP to its target transcript

is modeled by each gene j having a restricted subset of SNPs, Sj ⊂

{1, ..., S}, for which ωkjs is allowed to be nonzero, i.e. ∀s 6∈ Sj :

ωkjs = 0. For convenience, SNPs are indexed by their order along

the chromosome, so the set of allowed cis-SNPs is an interval Sj =

{Slow(j), ..., Shi(j)}. α is the matrix of association signals between

genome-wide SNPs and cellular hidden factors indexed by t, and these

factors are individual specific without imposed tissue specificity, so may

be relevant at any suset of the tisues. a is the vector of mean factor effects

beyond SNPs effects. β is the matrix of association signasl between cel-

lular factors and genes, independently across various tissue types. b is the

vector of mean tissue effects beyond factor effects.

This gives rise to the following formulation for the gene expression:

Ỹijk =

hi(j)∑

s=low(j)

ωkjs ·Xis +
T∑

t=1

βkjt · Fit + bkj + noise

For the ML model Fit =
∑

s αts ·Xis + at implicitly encodes pathw-

ays activated by SNPs for a particular individual. In contrast, for the NN

model Fit = sigmoid(
∑

s αts ·Xis + at), making the full structure

a mixed model of linear regression and one-hidden-layer neural network

with the logistic function as the activation function (Fig. 1).

We define the least-square error:

L′(X,Y,Θ) =
1

2

∑

i

∑

j

∑

k

(Ỹijk − Yijk)
2

Thus the objective function (loss function) to be minimized by L1-

regularizing the inferred hidden variables:

L(X,Y,Θ) = L′(X,Y,Θ) + λ1

∑

k

∑

j

∑

s

|ωkjs|

+ λ2

∑

t

∑

s

|αts|+ λ3

∑

k

∑

j

∑

t

|βkjt|

The L1 regularization terms with penalty strength parameters λ{1,2,3} in

the loss function sparsifies the model parameters, eliminating small noise

and false positive signals.

2.1.2 Tensor predictive modeling

The idea of tensor decomposition is not new to genetic studies (Hore et al.

(2016)), but to our knowledge, our work the first to propose a uniform fra-

mework connecting genetics and gene expression profiles through factors

in a joint decomposition. Also, our work goes an extra modeling step by

explicitly incorporating the cis-regulation into the joint decomposition.

This element of our models makes the eQTLs more interpretable on the

one hand, while on the other allows the network modeling part to be more

focused on genome-wide trans-effects.
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Here we first introduce the genetic effects beyond cis-regulation in our

tensor predictive modeling. Specifically, tensor predictive model assumes

the expression tensor decomposable into factors, each of which reflects per-

individual contributions [Fit], per-gene contributions [Vjt], and per-tissue

contributions [Wkt]. To give some extra degree of freedom for modeling

gene dimension, we allow bias for gene factor matrix through parameter

dj . Tensor predictive model further assumes the individual component

[Fit] is directly imputed by genetic information of these individuals, with

coefficient αts and mean effect at.

Overall, the hidden variables to be learned include:

Θhidden = [αts, at, Vjt, dj ,Wkt]

Combining the cis-regulation (using the same indexing as above), we

have the following formulation for the gene expression:

Ỹijk =

Sj∑

s

ωkjs ·Xis +
T∑

t

Fit · Vjt ·Wkt + dj + noise

where Fit =
∑

s αts ·Xis + at is the imputation of individual factors

from SNPs (Fig. 1).

We define the least-square error:

L′(X,Y,Θ) =
1

2

∑

i

∑

j

∑

k

(Ỹijk − Yijk)
2

Thus the objective function (loss function) to be minimized by L1-

regularizing the inferred hidden variables:

L(X,Y,Θ) = L′(X,Y,Θ) + λ1

∑

k

∑

j

∑

s

|ωkjs|

+ λ2

∑

j

∑

t

|Vjt|+ λ3

∑

k

∑

t

|Wkt|

+ λ4

∑

t

∑

s

|αts|

The L1 regularization terms with penalty strength parameters λ{1,2,3,4}

in the loss function have the same effects as before.

2.2 Inference and implementation

We have two stages in terms of development of these models. In the first

stage, we derived the solvers of these models and implemented them on

GPU to scale up. In the second stage, we utilized the increasingly popular

machine learning library – TensorFlow1, which has both great scalabi-

lity and great flexibility, and is derivation-free for gradient descent based

solvers. TensorFlow helped us a lot in running our models on real data,

but here we’ll still discuss our early-stage efforts, since they involve some

very basic principles and useful techniques for solving models and scaling

them up with GPU, which might be interesting to a very broad audience.

We’ll discuss in details how we solve the neural network model, as the

other two are analogous to this and more straightforward.

The straightforward algorithm to solve this model is gradient descent

(GD). Since the trans-part of our model is just a one-hidden-layer neural

network, we use backpropogation to calculate the gradient of relevant

parameters, which is α (with intercept a). For the least-squares part of the

loss function (L′), we can compute partial derivatives with respect to the

three types of model parameters as follows:

1 https://www.tensorflow.org/

δL′

δωkjs

=
1

N

Nk∑

i

(Ỹijk − Yijk) · xis

δL′

δβkjt

=
1

N

Nk∑

i

(Ỹijk − Yijk) · Fit

δL′

δαts

=
1

N

∑

k

Nk∑

i

xis · Fit · (1− Fit)
∑

j

(Ỹijk − Yijk) · βkjt

where Nk is the number of data points from tissue k and N is the total

number of data points in this incomplete expression tensor.

The L1 penalty term in our model is not formally differentiable when

the relevant parameter is zero. We standardly abuse notation by defining

the derivative to be zero at that point.

The scale of our model is very large, since we need to consider the

whole-genome genetic effects of eQTLs. This increases the number of

candidate cis-SNPs that need to be considered across all genes. It further

increases the size of the linear system of genome-wide association to the

given number of latent factors. Thus solving the GD requires special care

to the implementation. We resolve the computational issue by General Pur-

pose GPU computing (GPGPU). The difference between traditional CPU

architecture and that of a GPU is that a GPU could utilize many cores to

perform massively parallel computing. GPUs have recurrently benefited

recent rapid developments in deep learning research (Oh and Jung (2004);

Chellapilla et al. (2006); Raina et al. (2009); Cireşan et al. (2010)), as well

as more general purpose scientific computing across various areas (Coco-

ccioni et al. (2011); Alerstam et al. (2008); Manavski and Valle (2008);

Boyer and Baz (2013)). We thus took advantage of the computing power of

GPUs to make our previously infeasible inference procedure practical. In

practice, we use Compute Unified Device Architecture (CUDA) C/C++,

which is a parallel computing platform and application programming inter-

face (API) model for GPU programming. Our code and tested software is

publicly available2.

2.3 Initialization

2.3.1 Linear and nonlinear factor modeling

Initialization is very critical in our modeling, due to the strong biological

context, and scarcity of data compared to the complexity of our model. We

need to initialize wisely in order to avoid overfitting and make the learned

results more biologically meaningful and relevant. Here we propose the

following strategy to achieve that. We will discuss in details on how to

initialize the neural network model, since the multiple linear model uses

the same strategy but a relatively simpler version, which we will discuss

later.

1. Initialize the association signals ω of cis-SNPs to all genes by solving

linear systems through regularized regression, or more specifically

group-LASSO (Yuan and Lin (2006)) in a multiple-tissue context, to

encourage both sparsity and tissue similarity for cis-regulation.

2. Subtract the inferred cis-effects of our initialized cis-model part out

from the expression profiles to get the residuals.

3. Spread the 3D expression tensor (here the residual tensor) into a 2D

Sample×Genematrix, ignoring the tissue label and individual label

of each sample.

2 https://github.com/morrisyoung/eQTL_MILAGE
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Fig. 2. We tested the performance of multiple linear model (ml) and neural network model (nn) on data with different nature with simulations. We simulated the data with ml and solved it

with ml and nn (left two), and also simulated with nn (right two) and solved it with the two models. For each setting, we simulated the data with real sample size and 10X sample size, but

fixing the feature dimensions (number of SNPs and number of genes) as 10th of the real data. All experiments were done only for the trans- factor part, without simulating and solving the

cis- part.

4. Perform principal component analysis (PCA) on theSample×Gene

matrix.

5. Compute average sample factors from PCA for each individual across

all tissues, to average out tissue effects and get tissue-unaware

individual factors.

6. Scale individual factors into range [0.1, 0.9]. This step is needed

because these values are the output of a sigmoid function, which

needs to be in range (0, 1), and scaling it to a narrower range around

0.5 avoids saturation of the logistic function.

7. Initialize association signals β between factors and genes by solving

linear systems between the initialized, scaled factors and tissue-

specific expression profiles with group-LASSO, to encourage both

sparsity and tissue similarity for factor regulation.

8. Compute input factors for all individuals by passing the scaled

individual factors through an inverse sigmoid function.

9. Initialize the association signals α between genome-wide SNPs with

these input factors by solving a linear system with LASSO.

There are several critical components to elaborate here:

First of all, the biological content of this modeling problem needs

significant sparsity for the model. We thus always use regularized regres-

sion model, LASSO (or group-LASSO), as a solver for linear systems to

encourage sparsity. Secondly, the reason we initialize cis part first and use

residuals to initialize trans part is that, cis-eQTLs have been well studied to

contain more known signals for gene expression regulation. Thirdly, when

initializing ω and β using group-LASSO with an incomplete tensor Y in

Step 1 and Step 7 above, we first need to impute the expression profiles

to make the tensor complete. This is required by the group-LASSO solver

setting, which only supports complete datasets. In practice, we fill in mis-

sing values across the incomplete Y using the mean value of all available

samples of Y. Finally, for initializing the α matrix, we only use the cis-

SNPs of active genes (non-zero β parameters) in each factor to initialize

the parameter of SNPs within that factor, again with LASSO. Through-

out our inference, we restrict analysis to variants previously implicated as

significant eQTLs of all genes (Aguet et al. (2016) and Jo et al. (2016)).

The matrix α of SNP association with factors is supposed to be very

sparse. This is encouraged twofold. First, the gene factors β are already

sparsified through previous group-LASSO initialization, so there should

be only limited number of genes within each factor thus limited number of

cis-SNPs that might affect the entire factor. Secondly, the LASSO solver

will further sparsify these candidate SNPs to leave only some of them

to actually have an effect. We apply this inference layer by layer, first

initializing β, then initializing α based on the underlying assumption of

our network mode, which is that trans-eQTL signals can be summarized

by a small number of factors. We require each SNP to have a local cis-

effect on some gene in order to have distant trans-effects for other genes.

This assumption might be too constrained for general deep models of

phenotypes, but biologically it is reasonable to assume that even a trans

signal across a factor is due to a cis-effect on one of its genes. Furthermore,

considering a small number of candidate SNPs for α ensures sparsity.

For the ML model, we don’t need to do the above Step 6 and Step 8,

since the direct linear pathway from SNPs to genes through factors has no

logistic activation function and the range of pre- and post-activation is not

a numerical concern.

In all our initialization, PCA, LASSO and group-LASSO solvers are

from scikit-learn1 Python library.

2.3.2 Tensor predictive modeling

For initializing the TM model, we use the same idea to sparsify the model

parameters. However, approximating the expression 3D tensor with low-

rank matrices needs to be taken care of specially. Here we show the steps:

1. Do the cis-regression and substraction as in previous section, and get

the spread expression residual tensor with shape Sample×Gene.

2. Perform PCA on this expression residual matrix, and refold the sample

factor loading matrix into a smaller incomplete 3D tensor with shape

T issue× Individual × Factor, as Y{k},{i},{t}.

3. Apply incomplete PCA (Stacklies et al. (2007)) with a single principal

component for each Y{k},{i},t and for all of them across all factors,

to get tissue factor matrix W{k},{t} and individual factor matrix

F{i},{t}.

4. Use the corresponding individual factor and tissue factor for each

sample in expression matrix to construct the linear system between

them (Hadamard product,Fi,{t}◦Wk,{t}) and the expression sample

(Yi,k,{j}), and solve the linear system by LASSO to construct sparse

gene expression factor matrix V{j},{t}.

5. Solve the linear system between SNPs and individual factors, with the

same sparsity strategy utilized in previous section.

1 http://scikit-learn.org/stable/
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gene set (size) overlap log log

FDR

(ratio) pval qval

Brain - Cerebellum, factor No.2

synapse (754) 53 (0.0703) -52.3 -48.1

synapse_part (610) 45 (0.0738) -45.0 -41.1

neuron_part (1265) 56 (0.0443) -44.6 -40.6

MODULE_11 (540) 40 (0.0741) -39.9 -36.4

MODULE_100 (544) 39 (0.0717) -38.3 -34.7

Testis, factor No.4

sexual_reproduction (730) 31 (0.0425) -26.3 -22.2

GNF2_CCNA1 (66) 16 (0.2424) -26.2 -22.2

GNF2_MLF1 (87) 17 (0.1954) -26.0 -22.2

multi_organism_reproductive_process (891) 31 (0.0348) -23.7 -20.1

male_gamete_generation (486) 24 (0.0494) -21.8 -18.7

Adrenal Gland, factor No.15

small_molecule_metabolic _process (1767) 48 (0.0272) -27.9 =23.7

sterol_metabolic_process (123) 19 (0.1545) -25.0 -21.1

steroid_metabolic_process (237) 20 (0.0844) -20.9 -17.2

metabolism_of_lipids_lipoproteins (478) 24 (0.0502) -19.7 -16.1

WEST_ADRENOCORTICAL

_TUMOR_DN (546)

25 (0.0458) -19.5 =16.0

Table 1. We input the top 200 genes from each tissue’s most activated factor,

and compute overlap with MSigDB gene sets of all categories. The above

table shows the top 5 enriched (or overlapped) gene sets returned by GSEA

web interface. We can see these tissues in their representative factors all have

very consistent functional gene sets overlapped with them, which indicates the

effectiveness of these learned tissue-factors in terms of biological functions.

data availability, though the linear model could also approximate the data

well especially for the training set given sufficient rounds of training (that

is because we only have one hidden layer in our generative model, which

is not deep in terms of nonlinearity). This gives us some insights regarding

whether a linear or nonlinear model could better explain the data in our

followup real-data analysis.

3.2 Real data analysis

3.2.1 Dataset and preprocessing

MILAGE is built to handle datasets like GTEx (Lonsdale et al. (2013))

for modeling diversity of expression across individuals and tissues. This

imposes critical data size requirements. Specifically, GTEx data involves

dozens of tissues across hundreds of individuals. Yet, much of the GTEx

tensor is incomplete, making the actual size data more manageable that a

full tensor would have been. We consider eQTL tissues where the per-tissue

number of samples is≥100 from GTEx. This leavesK = 28 tissues across

which I =total= 449 individuals have genotype data and expression data.

We curtail another dimension of the computation bykeeping only the J =

19, 425 autosomal transcripts expressed atRPKM ≥ 0.1 across≥ 50%

of the samples. Finally, we address the longest dimension, which is genetic

information along the genome. We use GTEx (version phs000424.v6.p1)

genotypes for common SNPs (MAF≥ 0.01). We consider for the genotype

matrix X the imputed genotype data for each SNP and individual. This

data is available in dosage format, as real number in [0, 2] that reports the

expected number of non-reference alleles, rather than discrete genotype

{0, 1, 2}, which is unknown. This representation conveys the uncertainty

of imputation setting elements in X to x = 0 ·P0+1 ·P1+2 ·P2, where

P0,1,2 are respectively the posterior probabilities for genotype {0, 1, 2}

ascribed by imputation. We further restrict analysis to all the significantly

associated cis- SNPs and trans- SNPs across all genes from recent GTEx

analytical efforts (see Aguet et al. (2016) and Jo et al. (2016)) as our pre-

analyzed candidate SNPs. This still leaves us S = 2, 445, 192 sites for

analysis. This total number of SNPs is distributed across genes so they

have average count of 2817 (range [0, 31873]) candidate cis-SNPs within

1 million base pairs up- and down- stream of transcription start site. We

use candidates for the respective gene in the cis part of our model.

For the gene expression data, we randomly draw 75% of individuals

(Itrain = 336) with their 4270 cross-tissue samples as the training set,

and use the left (Itest = 113 individuals, 1424 samples) as the testing set,

and we then stick with these sets during the whole evaluation process. We

normalize the gene expression RPKM values across the training set using

Z-statistics among all tissue samples. We further map expression profiles

of the testing set into Z values using the same moments from the training

set.This means there is now leakage of information from test samples into

the model, while keeping the normalized expression values close to their

Z-score interpretation.

We manually set the number of factors to be T = 400. This is con-

sistent with the number of factors used by Gao et al. (2016) in a less

expressive model. We thus expect fewer factors to be required, and thus

hope for the learning algorithm to identify many of the factors as redun-

dant. We rely on the regularized initialization of the factor tensor β to zero

out the effects of such tensors, thus removing them from consideration

also post-initialization.

3.2.2 Variance explained through different models

We evaluate the ability of MILAGE to explain variance in real data in

four ways – cis pathway alone, and the other three variants of MILAGE

(Fig. 4). We first consider only the cis part of our model, as cis-eQTLs

were well studied for over a decade and have observable signals regula-

ting gene expressions. Our results show that upon initialization the linear

regression model for cis-SNPs could only explain 45.1% of the training

set variance and 42.6% of that of the testing set. Moreover, neither of

these benchmarks could be more than negligibly improved by further trai-

ning with GD. This is consistent with known qualities of the regularized

regression model (LASSO solver). Secondly, we consider the combined

cis- and trans-model, with the three variants of MILAGE – ML, NN and

TM. Since the cis part does not improve by learning, we keep it as it is,

and use it to extract residuals of the expression tensor Y that still need to

be explained. We train the trans part of these models on these residuals,

and evaluate the total variance explained by both parts. The combined

model performs significantly better than cis part of our model, despite

much overlap in the variance eQTL-SNPs explain through both parts of

the model. We observe that for all three models, a stronger penalty to the

initialization of the model (for the wide linear connection of genetics and

factors) brings a worse training set final result, while a better testing set

result. This both shows the consistency with our understanding on regula-

rization (better generalization on test set), and the insight that for a better

overall likelihood less priority should be given to specific set of candidate

SNPs in terms of their joint genetic effects to a factor. We further obse-

rve that the ML model performs very similar to the NN model, in both

the trend of convergence and the final variance explained, while the TM

model seems very sensitive to the initialization, and a worse initialization

could even make the starting variance explained on test set worse than the

cis part of the model. Combined with the simulation analysis conducted

above (Section 3.1.2, Fig. 2), we conclude here straight linear effects are

not the best interpretation of the genome-wide genetic effects for regula-

ting gene expression, since we don’t have significant better performance

of linear model compared to the nonlinear model as we observed in simu-

lation (Fig. 2). We also conclude that there are some nonlinearity since

the model training of NN indeed further improves the model, however

this nonlinearity is not as simple as what we simulated (Fig. 2) but rather
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up the model on whole-genome data. We show that our analysis reveals

not only lists of eQTLs, but rather enrichment of networks to functional

modules.

MILAGEFF opens the door and provides insights to various resea-

rch questions, in terms of both the inference process itself, as well as

the biology to be inferred. One key modelling decision to be made is

whether linear models are sufficient to describe such data, or whether non-

linear terms are essential. We’ve showed in our analysis that there are

indeed irreplaceable nonlinear effects for the factor-fashion trans-eQTLs,

and a nonlinear model performs better than its linear opponent. Another

such issue concerns the assumed independence of tissue parameters on

one another, as opposed to potentially assuming the existence of tissue-

independent factors (Hore et al. (2016)). We also showed in our real-data

analysis that, a tensor-decomposition fashion model assuming the exista-

nce of tissue-independent co-expression factors has less performance on

training set, while surprisingly it holds test set performance almost as good

as a factor model with tissue-dependent parameters. This indicates the

expressiveness of a simpler tensor-decomposition model, and on the other

hand supplements the analysis of such tensor modeling for co-expression

networks (Hore et al. (2016)) in terms of their tissue-dependency or tissue-

independency nature. In terms of the biology, there is strong rationale for

the incorporation of functional data, such as epigenetics, that might provide

informative priors regarding SNP involvement in regulation. We leave such

prior incorporation into our modeling to future investigations. Separately,

we would want to use the learned model to impute gene expression profiles

from an independent study, in order to assist further downstream biomedi-

cal analysis and evaluate performance with respect to other methods like

PrediXcan (Gamazon et al. (2015)).
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