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Abstract—As a model of recurrent spiking neural networks,
the Liquid State Machine (LSM) offers a powerful brain-inspired
computing platform for pattern recognition and machine learn-
ing applications. While operated by processing neural spiking
activities, the LSM naturally lends itself to an efficient hardware
implementation via exploration of typical sparse firing patterns
emerged from the recurrent neural network and smart processing
of computational tasks that are orchestrated by different firing
events at runtime. We explore these opportunities by presenting
a LSM processor architecture with integrated on-chip learning
and its FPGA implementation. Our LSM processor leverage the
sparsity of firing activities to allow for efficient event-driven
processing and activity-dependent clock gating. Using the spoken
English letters adopted from the TI46 [1] speech recognition
corpus as a benchmark, we show that the proposed FPGA-based
neural processor system is up to 29% more energy efficient than
a baseline LSM processor with little extra hardware overhead.

I. INTRODUCTION

Microcircuits in the brain feature the generation of action
potentials, or spikes, and complex recurrent network topolo-
gies. The recently emerged concept of reservoir computing
has received increased attention as it provides a computa-
tional model for exploiting the power of recurrent neural
networks [2]. As a model of reservoir computing, the liquid
state machine (LSM) operates upon spiking neurons and is
especially competent for spatiotemporal pattern classification
such as speech recognition and bio-signal processing [3]–[5].
Structurally speaking, the LSM is composed of a reservoir
consisting of spiking neurons wired up to form a recurrent
network and a readout layer receiving inputs from the reservoir
as in Fig. 1. In the standard LSM model, the synaptic weights
of reservoir neurons are fixed to avoid the difficulty in training.
Via its nonlinear dynamics, the reservoir maps input patterns
to higher-dimensional transient responses, which are fed to
readout neurons for final classification through the plastic
synapses projecting from the reservoir to the readout layer.

This material is based upon work supported by the National Science Foun-
dation under Grant No. 1639995 and the Semiconductor Research Corporation
(SRC) under task # 2692.001.
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Fig. 1. The model of the liquid state machine.

Spiking neural networks (SNNs) in general have been tar-
geted for VLSI realization recently [6]–[8], however, without
on-chip learning capability. This may be explained by two
reasons. While holding a lot of promise due to their closer
resemblance to biological brains than older generations of
artificial neural networks, SNNs are difficult to train. In
general, the problem of training SNNs is not well understood
at this point. On the other hand, naive gradient-based learning
mechanisms do not work well for SNNs and their hardware
implementations can lead to high design complexity and
excessive hardware and energy overhead.

To this end, the LSM is envisioned as a good trade-off
between the ability in tapping the computational power of
recurrent spiking neural networks and readiness for training.
Recently, the unique architectural properties of the LSM
have been leveraged for cost-effective hardware implementa-
tions [9], [10]. As part of it, interesting bio-inspired spike-
dependent training algorithms for both the reservoir and
the output layer have emerged for LSM neural processors,
for example, a supervised probabilistic readout tuning algo-
rithm [5],a probabilistic spike-based rule with stopping learn-
ing [11], and a hardware-optimized spike-timing-dependent
plasticity (STDP) rule for self-organizing reservoir comput-
ing [12]. Energy efficiency of LSM processors has also been
examined via runtime programmable arithmetic precision and
data-dependent reconfiguration [10], runtime task-dependent
reconfiguration of the reservoir and readout synapse sparsifi-
cation [12].

The main objective of this paper is to further improve the
energy efficiency of LSM neural processors at runtime by978-1-5090-6023-8/17/$31.00 c©2017 IEEE



exploring: 1) sparsity of firing activities in the recurrent reser-

voir via event-driven processing, and 2) fine-grained activity-

dependent clock gating.

The first proposed technique is motivated by the fact that

while the recurrent reservoir is complex, as part of the overall

bio-inspired computation model, it inherently facilitates the

sparse firing activities, i.e. only a small percentage of reservoir

neurons fire at a given time. However, the specific sparse

firing structures are application dependent and are not known

a priori. As such, we explore it by the event-driven based pro-

cessing for updating membrane potentials of reservoir neurons

during runtime. This leads to reduced switching activities and

hence boosts energy efficiency. An important point to note is

that the benefit of event-driven execution is further amplified

by sparse and self-organizing reservoir tuning algorithms such

as the one in [12], which we adopt. The on-chip reservoir

tunability drives a large number of synaptic weights to zero

during the training phase, therefore further reduces synaptic

and neural activities.

The second proposed technique addresses the memory inten-
sive nature of neural computation. Neural processors including

ones that are under consideration require a large amount of

storage for synaptic weights and internal neural states. These

memory elements heavily load the clock distribution network

whose switching activities burn a significant portion of the

total power. For this, we recognize that the proposed LSM

processor architecture consists of highly regular fabrics of

arrays of neural and synaptic elements, providing well-defined

boundaries within which storage elements reside. This allows

us to partition the on-chip storage into functionally-dependent

groups and activate a group only when its associated functions

are being processed. The regularity of our LSM processor

makes it possible to efficiently partition the individual neuron,

leading to fine-grained activity-based clock gating at the

granularity of memory elements inside each neuron.

While the presented techniques are generally applicable to

the implementation of LSM processors in digital CMOS, we

implement them on FPGAs for demonstration purposes. Using

the spoken English letters adopted from the TI46 [1] speech

corpus as a benchmark, we show that the proposed approaches

reduce the training and inference energy consumption of the

LSM processor by up to 29% on a Xilinx Virtex-6 FPGA.

II. BACKGROUND

We briefly introduce the LSM processor design from [12],

on top of which we explore the sparsity of firing activities and

fine-grained clock gating proposed in this paper.

A. Overall LSM Processor Architecture

The reservoir and the readout layer of Fig. 1 are realized

by a reservoir unit (RU) and a training unit (TU), respectively,

in the LSM architecture of Fig. 2. Each liquid (reservoir)

neuron is implemented with a liquid element (LE) and readout

(output) neuron with an output element (OE). External input

spikes are sent to their targeted LEs through a crossbar

interface. The spikes generated by LEs are registered and sent
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Fig. 2. Hardware implementation of the LSM.

to the TU. Meanwhile, these spikes are also fed back to other

LEs in the RU through another crossbar interface.

On-chip learning is executed in two separate phases. First,

during the reservoir training phase, the RU is trained by a

hardware-friendly spiking-timing dependent plasticity (STDP)

algorithm [12] until its synaptic weight distribution converges.

Then, a bio-plausible supervised spike-based algorithm [5] is

invoked to train the TU, which is responsible for the main

classification function. In the second phase, the RU maintains

its synaptic weights while producing inputs to the TU.

As in Fig. 2, each LE or OE contains three modules: a

synaptic input processing module that processes the second-

order synaptic responses from any presynaptic neuron, an

action potential (spike) generation module that updates the

membrane potential and generates spikes based on the widely

used leaky integrate-and-fire (LIF) model, and a learning

module that tunes the afferent presynaptic weights of the

associated neuron. LEs and OEs differ in terms of the learning

rule, arithmetic resolutions employed for digital realization and

weight storage. A block memory (BRAM on FPGAs) is used

inside each OE to store all its presynaptic weights. LEs, on the

other hand, make use of registers because of the lower synaptic

bit resolution and the sparser connection in the reservoir.

B. Spike-Timing Dependent Plasticity Reservoir Tuning

The LSM processor targeted in this paper integrates on-chip

STDP-based reservoir tuning. STDP is an unsupervised Heb-

bian learning mechanism realizing synaptic plasticity based on

the relative timing of pre- and postsynaptic spike pairs [13]:

Δw+ = A+(w) · e−
|Δt|
τ+ if Δt > 0

Δw− = A−(w) · e−
|Δt|
τ− if Δt < 0, (1)

where Δw+ and Δw− represent the weight modification

induced by long-term potentiation (LTP) and long-term depres-

sion (LTD), and A±(w) determines the strength of LTP/LTD.



A straightforward hardware realization of STDP in high

bit resolution produces good learning performance but at the

cost of large area/power overhead. On the other hand, simply

employing low bit resolution in representing synaptic weights

and realizing the STDP learning curve leads to an immediate

performance loss. To address this challenge, we adopt the

hardware-optimized STDP realization with low bit resolution

based on a data-driven approach [12]. This leads to a look-

up table based implementation with the minimal aggregated

discretization error and simple logic.

III. PROPOSED EVENT-DRIVEN PROCESSING

We propose an event-driven approach for processing the

synaptic activities in the recurrent portion of the LSM, i.e.

the reservoir. This is based on the observation that the firing

activities in the reservoir are typically sparse. That is, at a

given moment, only a fraction of the liquid neurons fire, which

in turn activates only a subset of the liquid neurons at the

subsequent time point. This observed sparsity can be jointly

attributed to the basic properties of the LSM as a brain-inspired

model and typical sparse encoding used for spike inputs [14].

To see how such sparsity can be explored for advantage in

energy efficiency, we recall that the leaky integrate-and-fire

(LIF) model can be discretized in time to keep track of the

membrane potential of a spiking neuron:

Vmem(n+ 1) = Vmem(n)− Vmem(n)

τm
+

n∑

i=1

Ri, (2)

where Vmem(n+ 1) (Vmem(n)) is the membrane potential at

the (n+1)th (nth) biological time step, τm is the time constant

of the cell membrane, and Ri is the second-order response due

to the i-th presynaptic input as described in [5].

Since each presynaptic response is transient and the mem-

brane potential decays exponentially when no synaptic input

arrives, conceptually, it is only necessary to check for possible

generation of action potential after updating the membrane

potential upon receiving at least one input spike. Exploring

this sparsity, we opportunistically skip the updating process

of membrane potential during the biological time steps when

no synaptic input is presented to reduce energy dissipation.

Assuming that the number of time steps that are skipped is M ,

we update the membrane potential in an event-driven fashion

according to:

Vmem(n+M) = Vmem(n)−M · Vmem(n)

τm
+

n∑

i=1

Ri. (3)

To implement the event-driven processing in our processor,

we monitor the arrival of presynaptic spikes of each liquid

neuron (LE) using a bitwise OR gate at each time step. If there

is no presynaptic spike at the present time step, a skipping-

time counter used to track M in (3) would increment by 1

and membrane potential update is skipped. At any subsequent

time step when at least one presynaptic spike arrives, the

membrane potential update process is triggered according to

(3) and the counter is reset to 1. We configure the DSP

multiplier IP available on the Xilinx Virtex-6 FPGA to perform

8-bit multiplications according to (3) within one clock cycle

while minimizing power dissipation. The same event-driven

approach can be applied to the readout neuron (OE). However,

due to the full connectivity between the reservoir and the

output layer, there is little opportunity for an OE to receive

no synaptic input at each time step. As a result, event-driven

execution is not pursued for OEs.

IV. ACTIVITY-DEPENDENT CLOCK GATING

Neural processors including ones that are under considera-

tion typically require a large amount of storage for synaptic

weights and internal neural states. From a power point of view,

these memory elements heavily load the clock distribution

network and their clock-induced switching activities can lead

to a significant amount of power dissipation. We propose a

fine-grained activity dependent clock gating strategy to address

the power dissipation incurred by the memory intensive nature

of the targeted LSM processors.

A. Opportunities for Activity-dependent Clock Gating
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Fig. 3. Flow diagram of reservoir and readout training. (SIP: Synaptic Input
Processing, APG: Action Potential (Spike) Generation)

The presented LSM processor architecture consists of highly

regular fabrics of arrays of neural and synaptic elements and

its operations span across several well-defined steps controlled

by the corresponding states of the processor-level global finite

state machine (FSM). In our design, there exist global FSMs

inside the RU and the TU respectively to parallelize the

processing steps of all neurons. Corresponding to the three

modules inside a neuron element as shown in Fig. 2, the

processing flow for each neuron can be divided into three

stages, during each of which only the corresponding module

is active. The flow diagram of reservoir and readout training

is shown in Fig. 3.

To process each of these steps for a given neuron, a number

of memory elements are needed to store the membrane voltage,

synaptic weights, and internal neural states. On the FPGA

platform, for example, we extensively use registers and block

RAMs (BRAMs), latter of which store the weights of the

readout synapses. With a global clock driving all registers

and BRAMs through a dedicated clock tree on the FPGA,

more than 60% of the total processor dynamic power would

be dissipated by the clock tree and toggling of the registers

and BRAMs.



TABLE I
NUMBERS OF FSM STATES, MEMORY ELEMENT BITS AND CYCLE OCCUPANCIES INSIDE NEURONS.

Neuron Type # of States # of Memory Bits Stage Clock Cycles Active Bits

LE 10 87
Synaptic Input Processing 49 40
Action Potential Generation 3 11
Learning 32 36

OE 10 1,166
Synaptic Input Processing 271 64
Action Potential Generation 2 13
Learning 405 1,089

To this end, we recognize that the regularity of the LSM

processor architecture and processing flows provides well-

defined boundaries within which storage elements reside. As

shown in Table I, the three processing stages consume a

varying number of clock cycles and involve different subsets

of the registers and BRAMs. This fact allows us to partition

the on-chip storage for each neuron into different groups, one

for each processing stage, leading to a fine-grained activity-

based clocking at the granularity of memory elements inside

each neuron.

B. Fine-grained Activity-dependent Clock Gating Realization

Since in this work we chose the FPGA as our demonstration

platform, for the sake of discussion, we first describe the real-

ization of the proposed fine-grained activity-dependent clock

gating on the FPGA. Later, we will also discuss additional

opportunities for ASIC-based implementations.

The mapped clock distribution for the LSM processor

design is illustrated in Fig 4, where the leaf nodes of the clock

tree drive the storage elements inside each neuron. On FPGAs,

dedicated routing resources are typically used to ensure the

low-skew clock signal delivery across a fairly large design.

Under this circumstance, directly gating the clock signal is

not a good practice since it involves the use of unconstrained

reconfigurable logic and incurs additional clock signal routing.

As a result, doing so jeopardizes the low-skew performance

ensured by dedicated resources for clock distribution.

With above FPGA design constraints in mind, instead, we

lower the power dissipation by utilizing the clock enable signal

to reduce the clock-triggered switching activities within the

memory elements. In the proposed activity-dependent clock
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Fig. 4. Clock distribution of the LSM processor.

enabling scheme, in each neuron, the memory elements of the

same module, which corresponds to a particular processing

stage, share a common clock enable signal. If the memory

elements are implemented as registers, this clock enable signal

will be connected to the corresponding local CE inputs of each

slice, which is the basic building block of an FPGA. For the

BRAM inside each OE, the clock enable signal is directly

enable or disable the memory clock input. For both the RU

and the TU, the current state of the global FSM is encoded

to produce the clock enable signal for each module using

combinational logic as depicted in Fig 5. When the neural

processor operates in a given stage, only the corresponding

clock enable signal would be asserted to activate memory

elements inside this module while the memories associated

with other modules are deactivated to save power.
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Fig. 5. The implementation of clock enabling.

Although clock enabling/disabling each module indepen-

dently of other two modules takes the maximal clock gat-

ing opportunities across different processing stages, doing

so incurs maximal extra logic and power overhead for the

implementation. As one example, our experimental data has

shown that having three independent clock enabling signals in

the LE does not significantly reduce the power of the RU since

the power overhead incurred for implementing clock enabling

largely offsets its benefit.
By analyzing Table I, we note that the action potential

generation stage of the LE only takes 3.5% clock cycles in

each biological time step during the reservoir training phase.

Moreover, only a small percentage of registers are accessed

during this stage. These observations suggest that we may

use a shared clock enable signal for both the synaptic input

processing and the action potential generation module. Alter-

natively, we do not choose to combine the clock enable signals

of the action potential generation module with the learning



module. This is because during the readout training and the
final classification phase, the learning module can be fully
disabled to get a large energy benefit. During the two phases,
however, the action potential generation module must be active
for updating the membrane voltage. The same observation can
be made for OEs. Therefore, similarly, a shared clock enable
signal is implemented to control the synaptic input processing
and the action potential generation module in an OE.

The partition of the on-chip storage inside each neuron
is based on the unique characteristics of the proposed LSM
processor architecture and largely independent of the specific
implementation platform. Therefore, the proposed activity-
dependent clock gating approach can be implemented to an
LSM processor in general and similar benefits would be
expected across different platforms. Moreover, the above clock
enabling approach does not reduce the power dissipated by the
clock tree itself on the FPGA platform. Since ASIC implemen-
tations are not restricted by the aforementioned FPGA clock
routing constraints, direct clock gating may be added on top
of the proposed activity-dependent clock enabling approach to
further reduce power dissipation.

V. EXPERIMENTAL RESULTS

The proposed LSM neural processor is built on a Xilinx
Virtex-6 FPGA platform with 135 reservoir neurons and 26
readout neurons and simulated for the application of speech
recognition. Activity-based power analysis is carried out to
measure the energy dissipation. The adopted speech bench-
mark consists of a subset samples from the TI46 corpus [1],
which includes 260 speech samples of 10 utterances of each
English letter from ”A” to ”Z” recorded from a single speaker.
Each speech sample is pre-processed into 78 channels of
spike trains with approximate 680 time steps in length on
average. The proposed neural processor can achieve a 93.1%
classification performance with the adopted benchmarks.
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Fig. 6. The reservoir spike raster with the letter “H” presented as the input.

To demonstrate the sparsity of firing activities that we
explore, in Fig. 6, we show a typical spike raster plot for
the reservoir after reservoir training when the letter “H” is
presented as the input. The spike raster has a high sparsity
level of 1.75%.

Fig 7 illustrates the sparsification of reservoir connectiv-
ity introduced by the self-organizing reservoir tuning algo-
rithm [12]. Fig. 7(a) plots the initial randomly generated
reservoir synaptic weights. The dark-gray vertical bar of each
neuron stacks multiple squares, each representing a synapse
with non-zero initial weight. The height of the bar indicates
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Fig. 7. Sparser reservoir connectivity introduced by the self-organizing
reservoir tuning.

the number of presynaptic connections, which is set to 16 at
a maximum per neuron. The application of reservoir tuning
zeros out about 42% of synapses, indicated by white squares
in Fig. 7(b), which further reduces the activity level in the
reservoir.
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To shed some light on the potential benefit brought by the
proposed activity-based clock gating, we report the percentage
of clock cycles during which each processing stage is activated
and the percentage of the memory used in each stage. The
data are shown in Fig. 8 for training of liquid and output
neurons, respectively. As expected from the figure, it is clear
that the storage elements and the processing of liquid neurons
are split between two relatively balanced major components:
the combined synaptic input processing and action potential
generation module and the learning module. For output neu-
rons, the learning module is dominant in terms of storage and
contributes to the major part of the neuron processing time.
Hence, the proposed clock gating technique is expected to
noticeably reduce energy dissipation.

For comparison purposes, we use a “baseline” LSM pro-
cessor which does not incorporate the two proposed energy
reduction techniques as a reference. First, we compare the
resource utilization of the baseline with the proposed LSM in
terms of slice flip-flops (FFs) and slice LUTs as well as their
percentages of usage with respect to the available resources of
the FPGA board in Table II. It is evident that implementing
the proposed techniques incurs low hardware overhead.



TABLE II
COMPARISON ON HARDWARE RESOURCE UTILIZATIONS.

FFs (%
of total)

LUTs (%
of total)

Normal-
ized FFs

Normal-
ized LUTs

Baseline 14510
(4.8%)

56808
(37.8%)

1.00 1.00

Proposed 14914
(4.9%)

58962
(39.1%)

1.03 1.04

We are aware that the Xilinx design tools offer a standard
intelligent clock gating in general [15] by preventing logic
not used in a given clock cycle from toggling. To better
illustrate the energy efficiency of the proposed design, we have
another reference when comparing the power consumption,
which is called the “tool gating” LSM that implements the
standard clock gating provided by the Xilinx ISE on top of
the baseline design. Based on FPGA activity-based simulation
data, the dynamic powers of the three LSM processors clocked
at 100MHz are given in Table III.

TABLE III
COMPARISON ON AVERAGE POWER DISSIPATIONS.

Reservoir
Training
Power (W)

Readout
Training
Power (W)

Classification
Power (W)

Baseline 0.472 0.389 0.398
Tool Gating 0.400 0.367 0.373
Proposed 0.320 0.279 0.281

Using the power data from Table III, we compare the three
designs in terms of the energies consumed for training and
classifying a representative speech sample in Table IV. To
get good learning performance, here 25 epochs of reservoir
training and 250 epochs of readout training are conducted
for the speech sample. The training energy accounts for the
energies consumed for both reservoir and readout training.

TABLE IV
COMPARISON ON THE ENERGIES CONSUMED FOR TRAINING AND

CLASSIFYING A SPEECH SAMPLE.

Training
(mJ)

Classify
(mJ)

Normalized
Training

Normalized
Classify

Baseline 452 0.87 1.00 1.00
Tool Gating 426 0.82 0.94 0.94
Proposed 324 0.62 0.72 0.71

The results show that the proposed event-driven processing
and fine-grained clock gating can give rise to a considerable
amount of energy reduction. As a result, the proposed recurrent
spiking neural processor is 28% more energy efficient for
training and 29% more energy efficient for inference than
the baseline while incurring little extra hardware resource.
It is also demonstrated that the proposed LSM processor is
more energy efficient than the tool-gated design with standard
clock gating. It is reported that the clock gating implemented
by the tool only apply clock enable signals to the weight
storage elements (i.e. weight registers in LEs and BRAMs
in OEs), which may indicate that the unique regularities of
the LSM architecture are not fully aware. In comparison,
the proposed clock gating method takes full advantage of
the unique architectural and functional properties of the LSM
processor and implement fine-grained clock enable signals on
all storage elements in each neuron.

VI. CONCLUSIONS AND FUTURE WORKS

We improve the energy efficiency of the LSM based re-
current spiking neural processors by proposing event-driven
processing and fine-grained activity-dependent clock gating.
These two techniques naturally explore the architectural prop-
erties and runtime characteristic of the LSM architecture. The
efficacy of the proposed approaches has been verified via an
FPGA prototype which leads to significant energy reduction
for speech recognition.

As one of the most profound real-world applications used
in most reservoir computing works, the speech recognition is
chosen to benchmark our LSM processor for the purpose of
demonstrating the effectiveness of the proposed event-driven
processing and fine-grained activity-dependent clock gating
approaches. In the future, various other applications with large
size dataset will be examined on the LSM processor to further
illustrate its energy efficiency.
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