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Abstract—The Liquid State Machine (LSM) is a promising
model of recurrent spiking neural networks. It consists of a
fixed recurrent network, or the reservoir, which projects to a
readout layer through plastic readout synapses. The classification
performance is highly dependent on the training of readout
synapses which tend to be very dense and contribute signifi-
cantly to the overall network complexity. We present a unifying
biologically inspired calcium-modulated supervised spike-timing-
dependent plasticity (STDP) approach to training and sparsifi-
cation of readout synapses, where supervised temporal learning
is modulated by the post-synaptic firing level characterized by
the post-synaptic calcium concentration. The proposed approach
prevents synaptic weight saturation, boosts learning performance,
and sparsifies the connectivity between the reservoir and readout
layer. Using the recognition rate of spoken English letters adopted
from the TI46 speech corpus as a measure of performance, we
demonstrate that the proposed approach outperforms a baseline
supervised STDP mechanism by up to 25%, and a competitive
non-STDP spike-dependent training algorithm by up to 2.7%.
Furthermore, it can prune out up to 30% of readout synapses
without causing significant performance degradation.

I. INTRODUCTION

Reservoir computing, a biologically plausible computational

paradigm that exploits complex recurrent spiking neural net-

works [1], has attracted a great deal of interest recently.

The liquid state machine (LSM), one specific form of reser-

voir computing, has recently emerged in theoretical neuro-

science [2]. As shown in Fig. 1, the LSM consists of a fixed

“reservoir”, a randomly connected recurrent spiking neural

network (SNN) resembling biological cortical microcircuitry

in the brain, and a layer of readout neurons that make

classification decisions by processing the firing activities of the

reservoir. Via its nonlinear dynamics, the reservoir projects the

input spike trains into a high-dimensional space of the network

transient state, and memorizes the inputs received in the past.

In the standard LSM model, only the feed-forward synapses

projecting from the reservoir to the readout layer are plastic,

which shall be trained properly to ensure good classification

performance [3]–[5].

The liquid state machine also provides an appealing

paradigm for realizing energy-efficient VLSI learning pro-

cessors. General-purpose processor architectures may be fa-

cilitated by utilizing a shared common reservoir for pro-

cessing multiple tasks [6]. The inherent resilience of the

LSM computational model can be leveraged for error and

process variation tolerance in highly-scaled modern CMOS
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Fig. 1. The model of the liquid state machine.

technologies. Recently, VLSI LSM processors and accelerators

have been demonstrated [6]–[9].

Training general spiking neural networks is a long-standing

challenge. [10] proposes the SpikeProp algorithm that trains

feed-forward SNNs by propagating error back in time. While

being of a theoretical interest, numerically computing the

derivatives of the error function with respect to synap-

tic weights in terms of spike times is extremely involved.

SpikeProp-like algorithms are far from being mature and have

yet to be demonstrated for meaningful real-world applications.

To this end, the liquid state machine offers a good tradeoff

between training feasibility and computational power. The

standard LSM model has a fixed recurrent reservoir and deals

with a much simpler training problem: only the feed-forward

synapses projecting from the reservoir to the readout layer

(referred to as readout synapses) need to be trained, which is

referred to as readout training in this paper. 1

Instead of using numerical techniques that involve matrix

factorizations, the recent work of [5] introduces a biologically-

inspired spike-dependent readout training approach with the

advantages being local and amenable to VLSI implementation.

However, the key limitation of this approach is that good

performance is typically guaranteed only with full connectivity

between the reservoir and readout, which contributes signif-

icantly to the overall network complexity and is also costly

from a hardware point of view.

1Note that there exist attempts to train a plastic reservoir, cf. [9].



The above challenges motivate us to seek an alterative for

readout training. To this end, spike-timing-dependent plasticity

(STDP) [11], [12], a well-known unsupervised learning mech-

anism, is able to locally tune spiking neural networks accord-

ing to temporal spike correlations and produce interesting self-

organizing behaviors. Towards supervised learning which we

target in this paper, ideas of combining supervision and STDP

have been explored for precisely timed spike reproduction and

decision making [13]–[15], however, without demonstrating

success for real-world tasks.
For the first time, we target the following objectives under

the context of the liquid state machine:

• Objective-1: develop supervised STDP mechanisms for

readout training with improved learning performance for

real-life applications;

• Objective-2: develop supervised STDP based techniques

for sparsifying readout synapses so as to reduce network

complexity and enable efficient hardware realization.

It is important to note that one challenge associated with

Objective-1 and Objective-2 is that they are competing objec-

tives in the sense that sparsity in readout synapses can easily

degrade learning performance. In this paper, both objectives

are achieved under a unifying biologically motivated calcium-

modulated supervised STDP approach.
Towards the first objective, we propose a new calcium-

modulated learning algorithm based on supervised STDP,

dubbed CaL-S2TDP , and demonstrate its improved per-

formance for readout training. One important limitation of

the earlier work on supervised STDP is that the issue of

synaptic weight saturation has not been addressed. Without

a carefully-chosen stop-learning mechanism, continuous on-

going weight modifications may quickly saturate a synaptic

weight, overwhelming the synapse by the past experience

and preventing it from responding to new stimuli [16]. This

can result in bad utilization of memory that is presented in

the network and poor learning performance. The problem of

weight saturation exacerbates on digital hardware where each

synaptic weight is realized using a limited number of bits

and tuning range. Furthermore, standard STDP rules conduct

continuous weight updates and may trigger many small-valued

weight updates, resulting in bad hardware memory access

efficiency.
In CaL-S2TDP , supervision is realized by the combined

use of a classification teacher (CT) signal and a new depressive
STDP rule. For a given input class, the CT promotes the

firing activity of targeted the readout neurons by injecting

a positive current which serves as the supervision. It also

addresses the robustness limitation of standard STDP mech-

anisms by making it possible to initiate the STDP-based

temporal learning process regardless of initial weight values.

Motivated by a large variety of STDP mechanisms discovered

in the brain [17], we engine the depressive STDP to provide

supervision to readout neurons that are desired to have low

firing activity for the given input class.
To improve learning performance and address the challenge

of weight saturation, we employ probabilistic weight updates

and a stop-learning mechanism. Stop learning is trigged by

monitoring the calcium concentration of the post-synaptic

neuron, which is modeled by low-pass filtering the post-

synaptic spike train. Our calcium-modulated supervised STDP

approach, for the first time, combines STDP-based temporal

learning with modulation provided by the averaged firing

level. Using the spoken English letters from the TI46 Speech

Corpus [18] as a real-world speech recognition benchmark,

we demonstrate that CaL-S2TDP significantly improves the

recognition rate by up to 25% over a reference supervised

STDP rule. Compared to the competitive non-STDP spike-

based learning rule in [5], CaL-S2TDP improves the recog-

nition rate by up to 2.7%.

Towards the second objective, we propose a new calcium-

modulated sparsification algorithm based on supervised STDP,

dubbed CaS-S2TDP , for readout synapse sparsification and

demonstrate that it can produce a high-degree of sparsity

without significant degradation of learning performance. In

the liquid state machine, readout synapses play a significant

role in classification decision making. A high-degree of con-

nectivity, often full connectivity, between the reservoir and

readout layer must be realized with high-resolution synapses

for good learning performance. Consequently, the readout

synapses contribute greatly to the overall network complexity,

and also to the silicon overhead and energy dissipation of

hardware-based LSM processors. To date, the question of

how to simultaneously achieve good learning and sparsity in

readout synapses remains to be answered.

We achieve the two competing objectives by employing

a two-step methodology: sparsificaiton by CaS-S2TDP fol-

lowed by readout training by CaL-S2TDP . Essentially, CaS-

S2TDP exploits the automatic competition among afferent

synapses of each readout neuron mediated by a typical unsu-

pervised STDP mechanism [19] to produce a bimodal weight

distribution with desired sparsity. Under the framework of

calcium-modulated supervised STDP, CaS-S2TDP adds a

teacher signal, called sparsity teacher, and a relaxed stop-

learning rule, to robustly sparsify the readout synapses while

responding to the spatio-temporal structures of the presented

training inputs. The sparsity discovered by CaS-S2TDP is

carried over to the second full-blown training phase based on

CaL-S2TDP . The seamless integration of the two proposed

algorithms can prune out up to 30% of readout synapses

without causing significant performance degradation.

II. EXISTING STDP RULES AND THEIR LIMITATIONS

The standard STDP is a local unsupervised Hebbian learn-

ing mechanism realizing synaptic plasticity based on the

relative firing timing orders of the presynaptic and postsynaptic

neurons [11], [12]. The long-term potentiation (LTP) of the

synapse wij occurs if the presynaptic neuron j fires before

the postsynaptic neuron i. A presynaptic spike that follows

postsynaptic spike produces long-term depression (LTD) of

the synapse. The amount of synaptic modification depends on



the temporal difference Δt = tpost − tpre between each pair

of pre- and postsynaptic spikes:

Δw+ = A+(w) · e−
|Δt|
τ+ if Δt > 0

Δw− = A−(w) · e−
|Δt|
τ− if Δt < 0, (1)

where Δw+ and Δw− represent the weight change induced

by LTP and LTD, τ± are the time constants, and A±(w)
determine the strength of LTP/LTD, respectively. A typical

STDP characteristics is plotted in Fig. 2.
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Fig. 2. A typical STDP characteristics.

While the standard unsupervised STDP can be relatively

straightforwardly applied to spiking neural networks, the lack

of supervision disqualifies it as a choice for readout training.

Although supervised STDP mechanisms such as [13]–[15]

have been explored, so far no success has been demonstrated

towards applying them to real-life applications. As discussed

in Section I, these approaches may also suffer from synaptic

weight saturation and inefficiency for hardware realization.

III. PROPOSED DETERMINISTIC SUPERVISED STDP

WITHOUT CALCIUM MODULATION

Working towards deriving the proposed CaL-S2TDP algo-

rithm, we first present a simpler STDP algorithm, dubbed D-

S2TDP . D-S2TDP performs deterministic weight updates,

has all essential components of CaL-S2TDP , but lacks

probabilistic weight updates and calcium modulation of CaL-

S2TDP . D-S2TDP also serves as a reference of comparison

for CaL-S2TDP in our experimental study.

A. Mathematical Interpretation for Supervised STDP

As a common practice, let us assume that the classification

decision is decoded by choosing the class label of the readout

neuron with the highest firing activity (frequency) in the

readout layer. Therefore, a supervised training algorithm shall:

1) maximize the firing rate of the readout neuron whose class

label corresponds to the presented input sample, referred to as

“desired neuron”; and 2) minimize the firing rates of all other

readout neurons, referred to as “undesired neurons”. We argue

that both 1) and 2) can be achieved by solving the following

optimization problem:

maximize
fi
j

N∑

i=1

(f i
c(i)(Xi,W )−

C∑

j �=c(i)

f i
j(Xi,W ))

subject to f i
j ≥ 0,

(2)

where N is total number of training samples, C is the number

of input classes, Xi is the ith input temporal sample, c(i) is

the class label for Xi, f i
j is the firing frequency of the jth

readout neuron under the ith input, and W is the vector of all

readout synaptic weights. Here, we maximize the difference

in summed firing rate between the desired neuron and all

undesired neurons so as to minimize the classification error

over the N training samples. However, solving (2) in a

mathematically exact manner is a formidable task.

B. Proposed D-S2TDP Algorithm

Instead, we take a more feasible biologically-inspired ap-

proach with respect to (2) as shown in Fig. 3 (a). The

proposed D-S2TDP algorithm forces the desired neuron to

fire at an elevated level via the positive current injected by a

classification teacher (CT) signal. Each afferent synapse of the

desired neuron is further mediated by a standard STDP rule.

To suppress undesired neurons, we employ a novel depressive

STDP rule for their afferent synapses.

To see how D-S2TDP serves the basic needs of this

work, we recall that the standard STDP rule used for afferent

synapses of the desired neuron conducts synaptic modification

locally and renders the postsynaptic (desired) neuron sensitive

to temporal presynaptic firing patterns. Since the causal order

(i.e., pre-before-post) of spike pairs leads to synaptic potentia-

tion, the STDP correlates the presynaptic firing events with the

modulated postsynaptic firing patterns in a way such that the

desired neuron is more likely to fire in presence of presynaptic

firing events. As illustrated in Fig. 3(b), when modulated by

the CT signal, the desired neuron i1 emits two spikes after a

presynaptic spike, resulting in potentiation of wi1 and making

itself more likely to respond to future firings of the presynaptic

neuron j. Therefore, we can maximize the firing frequency of

the desired neuron by potentiating the synapses that contribute

to its firing. The presence of CT also makes the above process

robust by initializing STDP-based LTP/LTD even with low

initial presynaptic weight values.

We depress plastic synapses that may evoke firing of un-

desired neurons. As depicted in Fig. 3(c) when the undesired

postsynaptic neuron i2 fires, the pre-before-post spike pattern

induces depression to wi2 as determined by the novel depres-

sive STDP rule. As such, we prevent the undesired neurons

from learning from training samples of a different input class.

Note also that for both desired and undesired neurons, the

depression invoked by the anti-causal (i.e., post-before-pre)

timing order enables competition among plastic synapses such

that a sparse structure can be learned [19].
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Fig. 3. (a) Proposed D-S2TDP algorithm. The neuron i1 is the desired neuron modulated by a classification teacher (CT) and the standard STDP. The
neuron i2 is an undesired one modulated by the depressive STDP for temporal “anti-learning”; (b) and (c) The pre-before-post timing order leads to LTP
(LTD) for afferent synapses of the desired (undesired) neuron. The post-before-pre timing order results in depression for both neurons.

IV. PROPOSED CaL-S2TDP TRAINING ALGORITHM

While D-S2TDP possesses several key ingredients towards

effective readout training, we address its limitations, i.e. poor

memory retention, synaptic weight saturation and poor weight

update efficiency for hardware implementation by extending

it to the proposed CaL-S2TDP algorithm.

Continuous rapid updates of synaptic weights of a limited

number of states (e.g. due to a finite synaptic resolution)

can result in bad memory retention. This manifests itself in

such a way that the most recent experiences are represented

and learned by the synapses better than the older ones [20],

[21]. We adopt the probabilistic weight update scheme in [22]

to slow down the learning process to better utilize network

memory capacity. Furthermore, probabilistic updates reduce

the committed number of weight updates, leading to improved

hardware execution efficiency.

Furthermore, synaptic memory saturation needs to be

addressed. Without any stop-learning mechanism, readout

synapses are tuned by supervised STDP while continuously

extracting temporal information out of the on-going reservoir

firing activities. Excessive training can render each readout

neuron unresponsive to new stimuli once most of its affer-

ent synapses are over-potentiated or over-depressed, i.e., the

synaptic weights are driven to the maximum/minimum value.

A. Postsynaptic Calcium Concentration

Ideally, we may deactivate potentiation of a synapse when

its postsynaptic neuron is very active, which suggests that this

synapse has been already over-potentiated. Similarly, we shall

deactivate synaptic depression when the postsynaptic neuron

becomes very inactive. Inspired by [16], we make use of the

internal calcium concentration of a postsynaptic neuron as an

indicator of its averaged firing level induced by new and old

inputs over a long timescale. The calcium concentration c(t)
is a function of the postsynaptic neuron activity and modeled

using a first-order dynamics:

dc(t)

dt
= −c(t)

τc
+
∑

i

δ(t− ti), (3)

where τc is the time constant and the summation is over all

postsynaptic spikes arriving at time ti.

B. Stop-learning for Desired Neuron

We now discuss how to implement a stop-learning mecha-

nism for the desired neuron. First, a threshold cθ of calcium

variable is defined to distinguish active neurons from inactive

ones. We then introduce a margin δ and allow potentiation

when c < cθ + δ. Analogously, depression is allowed when

c > cθ − δ. Following the principle of Hebbian learning, we

further impose a lower bound of c for activating potentiation

and an upper bound of c for activating depression. Combining

the stop-learning mechanism and probabilistic weight updates

gives the CaL-S2TDP algorithm:

w ← w +ΔW w/ prob. ∝|Δw+| if Δt > 0 &&

cθ < c < cθ + δ

w ← w −ΔW w/ prob. ∝|Δw−| if Δt < 0 &&

cθ > c > cθ − δ, (4)

where Δw+/Δw− are the weight changes computed based on

the employed the STDP rule, and determine the probabilities

for committing a fixed weight update of ±ΔW for LTP and

LTD, respectively. As in Fig. 4(b), a synapse can be potentiated

when the calcium concentration c of the desired neuron falls

into [cθ,cθ + δ] and depressed when c is in [cθ − δ, cθ].

C. Stop-learning for Undesired Neurons

Since the depressive STDP is employed for the afferent

synapses of undesired neurons, only the second equation in (4)

is activated. The CaL-S2TDP algorithm is further illustrated

in Fig. 4(c) and (d) where no long-term modification is induced

if the calcium level is too low or too high, different from D-

S2TDP as shown in Fig. 3(b) and (c).

V. PROPOSED CaS-S2TDP SPARSIFICATION ALGORITHM

The plastic readout synapses in an LSM often need to be

very dense, e.g. forming a full-connectivity between the reser-

voir and readout, and have high resolution to guarantee good

learning performance. This leads to two potential problems:
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Fig. 4. (a) Proposed CaL-S2TDP training algorithm with probabilistic weight updates. The desired neuron i1 is expected to be active because of CT and
the unwanted neuron i2 is inactive due to the depressive STDP; (b) Stop-learning mechanisms; (c) and (d) The training of desired and undesired synapses.
Different from Fig. 3(b) and (c), the LTP or LTD takes place only when the postsynaptic calcium level c falls into the specified range.

over-fitting due to high model complexity, and large overhead

for hardware implementation. On the other hand, randomly

pruning readout connections can easily degrade performance

significantly.

A. Readout Synapse Sparsification

The starting point for the proposed CaS-S2TDP sparsi-

fication algorithm is the recognition of the fact that different

from supervised classification for which neurons are instructed

to learn certain firing patterns, the objective of sparsification is

to allow sufficient competition among plastic readout synapses.

We further recognize that synapses mediated by standard

STDP characteristics compete for control of the timing of

postsynaptic action potentials. As a result, some synapses

to a postsynaptic neuron are strengthened while others are

weakened [19]. When properly explored, the above process

can lead to a bimodal weight distribution out of which many

zero-valued or small-valued synapses can be pruned out.

As a common practice, only excitatory plastic synapses are

sparsified.
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Fig. 5. (a) The non-optimal sparsification based on the entire input set; (b)
Optimized sparsification with the corresponding subset of inputs for each
readout neuron.

In order to make use of the above ideas for real-life

multi-class classification tasks, we make additional important

observations. To guarantee good performance, sparsification

shall be not be performed blindly, instead, it must take into the

spatio-temporal structures embedded in the training samples

such that the discovered sparse patterns fit well with the

data, and hence do not lead to significant performance loss.

This suggests to enable a standard STDP for introducing

competitions among the afferent synapses of each readout

neuron over the entire training data set, as shown in Fig. 5(a).

However, a closer examination reveals that since each readout

neuron is associated with a specific class label, it is not

necessary to instruct each readout neuron to learn the sparse

structure of the entire input data. A more optimal approach

is to constrain the finding of sparsity within of the subset of

training data of the corresponding input class for each readout

neuron as shown in Fig. 5(b). This leads to the maximum

sparsity.
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No Learning
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Fig. 6. (a) The CaS-S2TDP sparsification algorithm. The activity level of
the selected readout neuron i1 is boosted by the sparsity teacher (ST). (b)
stop learning for readout synapse sparsification.

Akin to the CaL-S2TDP training algorithm, we make

readout sparsification robust by introducing an external spar-

sity teacher (ST) (Fig. 6(a)), whose job is to reliably bring up

the firing activity of each readout neuron to start synaptic com-

petition modulated by the STDP. To maintain good learning

performance, we also introduce a stop-learning mechanism.

As shown in Fig. 6(b), this stop-learning mechanism is more

relaxed with a wider calcium range for both LTP and LTD

to avoid undesirable bias in calcium regulation and maximize

sparsity. The resulting CaS-S2TDP sparsification algorithm



is summarized as:

w ← w +ΔW w/ prob. ∝|Δw+| if Δt > 0 &&

c < cθ + δ

w ← w −ΔW w/ prob. ∝|Δw−| if Δt < 0 &&

cθ − δ < c. (5)

VI. COMBINED SPARSIFICATION AND TRAINING

The integration of the proposed sparsification and classifica-

tion algorithms is summarized in Fig. 7. First, CaS-S2TDP
is applied to sparsify readout synapses. After removing the

synapses of a zero-valued weight, the remaining synaptic

weights are used as a starting point for training of the readout

based on CaL-S2TDP .

Supervised Learning 
for Classification

spW : Sparse Weights

iW : Initial Weights

Remove Zero-Valued 
Weights

  Supervised Learning 
for Sparsification

Fig. 7. Two-step sparsification and classification.

Because of the self-organizing behavior introduced by the

STDP, the proposed CaS-S2TDP sparsification algorithm

learns to capture the spatio-temporal structures of the input

spikes. Therefore, unlike blind synapse pruning, the proposed

approach makes it possible to pass the discovered sparsity from

the sparsification stage to the training phase, and produce good

learning performance in the end.

VII. EXPERIMENTAL SETTINGS AND BENCHMARK

Using the approach described in [5], two LSMs with 135

and 90 reservoir neurons are set up on a 3D grid, respectively.

80% of the reservoir neurons are excitatory while the rest of

them are inhibitory. Since the adopted benchmark is spoken

English letter recognition, there are 26 neurons in the readout

layer, which is fully connected to the reservoir through plastic

synapses. Furthermore, we adopt the discrete LIF neuronal

model and the second-order synaptic model described in [5].

The parameters of the STDP algorithms described in this

work are selected by exploring the design space to a certain

degree and we summarize the chosen ones in Table I. The

maximum readout synaptic weight Wmax is set to 8.0. The

initial weights of excitatory readout plastic synapses are set

to 1.0 while inhibitory synaptic weights are initialized to be a

random value between 0 and -Wmax. We set the bit-width of

readout synaptic weights to 10 bits.

TABLE I
PARAMETER SETTINGS OF THE PROPOSED STDP ALGORITHMS.

Parameter Value
A+ 3.0
A− 1.5
τ+ 4.0
τ− 8.0
ΔW 0.016
cθ 5.0
δ 2.0
τc 64.0

The adopted benchmark is a subset of the TI46 speech

corpus [18], which contains 10 utterances of each English

letter from “A” to “Z”. The speech samples were recorded

from a single speaker. 260 samples are in this benchmark.

The time domain speech signals are preprocessed by Lyon’s

passive ear model [23], and encoded into 78 spike trains using

the BSA algorithm [24]. Each input spike train generated in the

preprocessing stage is sent to 32 randomly selected reservoir

neurons with a fixed weight randomly chosen to be 2 or −2.

During the supervised readout sparsification phase, all

speech samples are presented to the reservoir one by one

while the CaS-S2TDP algorithm is only applied to tune the

plastic synapses of the corresponding readout neuron while

other readout neurons are isolated. The process is repeated for

a sufficient number of iterations until the distribution of the

readout synaptic weights reaches to the steady-state. Then, we

permanently remove zero-valued plastic weights and train the

readout layer with the proposed CaL-S2TDP algorithm for

final training. A 5-fold cross validation scheme is adopted to

test the recognition performance for each LSM by randomly

dividing entire speech samples into 5 groups. The recognition

decision is made right after each testing speech sample is

presented. At this time, the class label of the readout neuron

with the highest firing rate is regarded as the classification

decision. The readout layer is trained for 500 iterations in

order to get decent learning performance.

VIII. EXPERIMENTAL RESULTS

Using the experimental setups described in Section VII,

we compare the learning performance of CaL-S2TDP to

both the simpler D-S2TDP algorithm of Section III and the

competitive non-STDP spike-dependent algorithm of [5]. We

also compare the proposed CaS-S2TDP based sparsification

algorithm with random and variance-based pruning [9] for both

of which the algorithm of [5] is used to train the readout.

A. Classification Performance of CaL-S2TDP

We use the adopted benchmark described in Section VII

to test the LSM recognition rates with three different readout

learning algorithms and the results are shown in Table II. The

standard deviations are obtained from five experiments. Here,

the proposed readout sparsification is not performed before

the application of CaL-S2TDP . It turns out that D-S2TDP
produces very low recognition rates under both reservoir



sizes, indicating that D-S2TDP is ineffective for the readout

learning when the synapses have a finite resolution. In Fig. 8,

we visualize the distribution of the readout plastic weights

obtained after running the first ten training iterations. For D-

S2TDP , a considerable number of plastic readout weights

quickly reach to the highest or lowest weight value, which

is a direct sign of synaptic memory saturation. Fig. 8(a) and

(c) also suggest that the poor performance of D-S2TDP may

be attributed to the occurrence of synaptic weight saturation,

resulting from the lack of stop-learning mechanisms.

TABLE II
RECOGNITION RATES OF THE LSMS WITH DIFFERENT READOUT

TRAINING ALGORITHMS.

Reservoir Size [5] D-S2TDP CaL-S2TDP
135 92.3± 0.4% 68.8± 0.1% 93.8 ±0.5%
90 89.6± 0.5% 67.3± 0.4% 92.3 ±0.4%

The proposed CaL-S2TDP algorithms achieves good

learning performances of 93.8% with 135 reservoir neu-

rons and 92.3% with 90 reservoir neurons, respectively.

Equipped with the probabilistic update and stop learning con-

ditions, CaL-S2TDP significantly outperforms the simpler

D-S2TDP by 25% in terms of recognition rate for both

reservoir sizes. The dominance of the proposed CaL-S2TDP
algorithm can be further explained by the weight distribution

in Fig. 8 (b) and (d), where less plastic weights are saturated

compared to the simpler algorithm.

-1 -0.5 0 0.5 1
w/wmax

0

0.1

0.2

0.3

Fr
ac

tio
n

(a)

-1 -0.5 0 0.5 1
w/wmax

0

0.1

0.2

0.3

Fr
ac

tio
n

(b)

-1 -0.5 0 0.5 1
w/wmax

0

0.1

0.2

0.3

Fr
ac

tio
n

(c)

-1 -0.5 0 0.5 1
w/wmax

0

0.1

0.2

0.3

Fr
ac

tio
n

(d)

Fig. 8. The distribution of readout synaptic weights after running first few
training iterations. (a) and (c): the distribution obtained under D-S2TDP
with 90 and 135 neurons in the reservoir, respectively; (b) and (d): the
distribution under CaL-S2TDP with the same two reservoir sizes.

To the best knowledge of the authors, the best reported

performance on the same benchmark achieved by the standard

LSM with 135 reservoir neurons is 92.3% [5]. In comparison

to this algorithm, the proposed supervised STDP algorithm

CaL-S2TDP outperforms it by 1.5% with the reservoir

size of 135 neurons. CaL-S2TDP also produces a good

recognition rate of 92.3% when the size of the reservoir is

reduced to 90 neurons, achieving a performance boost of 2.7%
in this case.

B. Sparsity Obtained by CaS-S2TDP.

We examine the sparsity of the readout due to the proposed

CaS-S2TDP based sparsification scheme. After training the

readout based on the proposed two-step sparsification and

classification, we report the percentages of zero-valued readout

synapses and the final learning performances in Table III.

We implement the random pruning policy and variance-based

pruning of [9] and train the readout with the bio-inspired

algorithm [5] for comparison. The obtained sparsity as well

as learning performances are also shown in Table III. Using

the random pruning policy as a baseline, we plot the perfor-

mance boosts achieved by the variance-based and the proposed

approach in Fig. 9.

TABLE III
RECOGNITION PERFORMANCES WITH THREE SPARSIFICATION METHODS.

Recognition Performance
Sparsity 135 Reservoir Neurons
% Random Variance Proposed
10% 90.7± 0.6% 91.5± 0.4% 92.7± 0.5%
18% 90.4± 0.5% 90.4± 0.8% 91.9± 0.4%
30% 83.8± 1.0% 85.0± 1.3% 90.7± 0.4%
Sparsity 90 Reservoir Neurons
% Random Variance Proposed
10% 86.9± 1.0% 87.7± 0.7% 91.5± 0.4%
18% 85.7± 1.2% 86.9± 0.8% 90.7± 0.4%
30% 89.2± 0.8% 89.6± 0.8% 91.1± 0.4%

As shown in Table III, randomly removing the readout

synapses can lead to apparent performance degradation. The

variance-based policy performs lightly better than the random

baseline but the improvement is not significant. In comparison

to the above two approaches, the proposed CaS-S2TDP
algorithm delivers a decent learning performance under all

considered levels of sparsity for different reservoir sizes as

shown in Table III. Importantly, the proposed approach sub-

stantially improves the effectiveness of readout sparsification

compared to the random baseline. As shown in Fig. 9, the

STDP-based approach is superior than the variance-based

rule. The proposed approach can boost the random baseline

performance up to 6.9% whereas the maximum boost for

variance-based approach is only 1.2%.

IX. CONCLUSIONS

In this paper, we have proposed a novel calcium-modulated

supervised STDP approach for both classification and sparsi-

fication, targeting efficient readout training in the context of

the liquid state machine. Via a classification teacher signal, the

proposed depressive STDP and probabilistic weight updates,
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Fig. 9. The performance boosts over the random pruning policy achieved by
two different readout sparsification approaches. The proposed CaS-S2TDP
algorithm significantly boosts performance compared to the random baseline
and outperforms the variance-based approach.

CaL-S2TDP robustly delivers good learning performance

with finite weight resolutions. CaL-S2TDP addresses the

issue of synaptic memory saturation by imposing an stop

learning condition modulated by the postsynaptic calcium

concentration. Sparse readout layers can be obtained by the

presented CaS-S2TDP readout sparsification approach with

little performance gradation. Using speech recognition as

a realistic benchmark, we have shown that CaL-S2TDP
outperforms all other studied bio-plausible supervised training

algorithms and CaS-S2TDP based readout sparsification

mechanism is superior over all other investigated approaches.
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