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Abstract—The autonomous navigation of mobile robots in
unknown environments is of great interest in mobile robotics.
This article discusses a new strategy to navigate to a known
target location in an unknown environment using a combination
of the “go-to-goal” approach and reinforcement learning with
biologically realistic spiking neural networks. While the “go-
to-goal” approach itself might lead to a solution for most
environments, the added neural reinforcement learning in this
work results in a strategy that takes the robot from a starting
position to a target location in a near shortest possible time. To
achieve the goal, we propose a reinforcement learning approach
based on spiking neural networks. The presented biologically
motivated delayed reward mechanism using eligibility traces
results in a greedy approach that leads the robot to the target
in a close to shortest possible time.

I. INTRODUCTION

The research about autonomous navigation of unmanned
vehicles in known and unknown environments is growing
rapidly due to the advent in self-driving cars, extra terrestrial
exploration, rescue missions and similar areas. In this paper,
the problem autonomous navigation of mobile robot towards
a given goal location in environment containing obstacles is
considered. An example instance of the problem is shown in
Figure 1.

In Figure 1 the mobile robot is the circular object “Robot”.
The lines emanating out of the robot’s center are ultrasonic
sensor beams to detect any obstacles. The ultrasonic sensors
have a limited range of detection. The rectangular objects are
wall-like obstacles that can be sensed by the ultrasonic sensors.
The point labeled “Start” is the initial position of the robot.
The square shaped object in the figure labeled “Goal” is the
global target to which the robot has to navigate. It is assumed
that the robot has a way to detect the position of target with
respect to itself. The shape and location of the obstacles is
unknown to the robot which makes this a challenging problem.

A. Previous Work

The existing solutions to similar problems have been pro-
posed using various approaches. [1] presents the Artificial
Potential Field Approach which essentially treats the obstacles

Fig. 1: Example instance of the problem

as repelling the robot, while the target attracts the robot.
[2] and [3] provide strategies for the robot to escape the
problem of the robot getting stuck in local minima in [1].
These approaches assume that the robot has knowledge of the
shapes and locations of obstacles. Our version of the problem
assumes no such information.

Reinforcement learning has also been applied in variety of
ways to the mobile robot navigation problem. For example In
[7], Q-learning [8], a form of Temporal Difference Reinforce-
ment learning algorithm is used to learn a collision free path
in an unknown environment without any goal. Other works
include [9], [10] which use some form of Q-learning to learn
to avoid the obstacles. In all of these works, the aim was
to learn to navigate through obstacles by avoiding collision.
There is no target in the picture.

B. Overview of the Proposed Solution

We first discuss a navigation strategy presented in [11]
and then discuss our reinforcement learning algorithm that
improves this strategy.

In the “go-to-goal” approach [11], the mobile robot navi-
gates towards the goal while there are no obstacles around.



When faced with an obstacle, it turns (left or right) in place

and follows the obstacle using a wall following controller.

The robot leaves the wall following mode upon satisfying

a certain condition discussed in upcoming sections. Then it

moves towards goal. Figure 2. illustrates this solution for a

simple environment.

Fig. 2: Example instance of the solution proposed in [11]

To navigate to the target in the shortest time under this

strategy, the robot must make intelligent turning decisions

when faced with an obstacle. For instance, in Figure 2, if

the robot had taken a left turn at the circled location, it would

have taken a longer time to reach the target.

To facilitate this decision making process, we propose a

biologically motivated reinforcement learning strategy using a

spiking neural network to make the turn decisions. The set of

states for the proposed reinforcement learning algorithm are

the locations where the robot makes a turning decision. The

actions for the robot at each state are: 1) turn left and follow

the wall on its right , and 2) turn right and follow wall on

its left. Our algorithm utilizes state-action values similar to

Q-values in Q-learning, to select the action in each state.

The learning algorithm is implemented using a spiking

neural network [12]. The states of the robot are represented

with an input layer using the state encoding approach used in

[18] and discussed in detail in Section III. The output layer

has two neurons for the two robot turning actions. The firing

rates of the output neurons at each state are considered as the

state-action values.

At each state, the robot selects an action by simulating

our neural network. The synaptic connections of the network

generate a decaying eligibility trace for each of the state-action

pair. The robot is given a reward upon reaching the goal which

is multiplied with the eligibility trace and added to the synaptic

weights which eventually ensures high state-action value for

all actions that lead the robot to the target in near shortest

possible time.

The details of our neural learning mechanism are discussed

in Section II and Section III.

II. BACKGROUND

In reinforcement learning, an agent learns by discovering

actions that maximize the total expected reward it receives. In

the reinforcement learning algorithm Q-learning, the agent’s

state-action value function i.e. the Q value is updated after

each state transition. So upon reaching a state, only the Q

value for the previous state is updated. However as it happens

in many problems including the navigation problem, the agent

often takes actions whose rewards are delayed. This problem

is known as the “credit assignment problem” or the “delayed

reward problem” [4].

To solve the “delayed reward problem”, Izhikevich [13],

proposed a mechanism called Dopamine modulated Hebbian

Spike Timing Dependent Plasticity (STDP) with eligibility

trace. This is explained briefly in the following subsections.

A. Hebbian STDP

Consider a simple spiking neural network with a single

synapse connecting a presynaptic neuron i to a postsynaptic

neuron j as shown in Figure 3A. Let the synaptic strength be

denoted by Wij . If tpost is any spike time of postsynaptic

neuron, tpre is any spike time of presynaptic neuron, then the

synaptic weight change ΔWij happens according to Hebbian

STDP [14] as shown below :

ΔWij = A+exp(−Δt

τ+
) for Δt > 0 (1)

ΔWij = A−exp(−Δt

τ−
) for Δt <= 0, (2)

where Δt = tpost − tpre. A+, A−, τ+, τ− are design parame-

ters. A graphical representation of the STDP is shown in Fig

3B.

Fig. 3: Synaptic Connection and STDP curve (Redrawn from

[13])

In any period of time, there are multiple presynaptic and

postsynaptic spikes for synapse. So it is not computationally

efficient to consider all possible pairs of presynaptic and

postsynaptic spike times to calculate synaptic weight changes.

Therefore they use the nearest neighbour STDP [13] where

only one presynaptic spike time is considered for every post-

synaptic spike time.



B. Dopamine Modulated STDP

Reinforcement learning in spiking neural networks is

thought to happen via a mechanism called Dopamine Mod-

ulated STDP [13]. Synaptic weight changes are enhanced in

the presence of Dopamine neuromodulator which is associated

with reward in reinforcement learning. We treat the reward

as taking both positive and negative values for reward and

punishment respectively as is done in [15]. The synaptic

strength is changed by the amount defined by the STDP change

decayed as the eligibility trace multiplied(modulated) with the

scalar reward [13]. Figure 4A. shows this idea for a presynaptic

and postsynaptic spike pair. We can see that the eligibility trace

in Fig 4B. is updated on a pre-before-post spike pattern and

is decayed as time passes. When a reward is applied, it gets

multiplied to the eligibility trace and the weight is updated.

This is shown in equation below:

ΔWij = ΔWstdp.reward (3)

At every time step, the STDP weight change is decayed.

ΔWstdp = ΔWstdp.β (4)

where ΔWstdp is calculated using (1) and (2) after each

simulation for 1000 ms of our network, β is the eligibility

trace decay parameter, and reward is the numerical reward

applied.

Fig. 4: Illustration of Eligibility Trace. (Redrawn from [13])

We use this dopamine modulated STDP in our spiking

neural network to make the mobile robot turn decisions

previously discussed in section 1.B.

III. REINFORCEMENT LEARNING USING SPIKING NEURAL

NETWORK

The solution to the navigation problem proposed in this

work involves a learning part where the robot makes a decision

of either 1) follow the obstacle with obstacle on its left side

by taking a right turn or 2) follow the obstacle with obstacle

on its right side by taking a left turn when faced directly with

an obstacle. This decision making scenario is shown in Figure

5. The robot makes the wall following decision at the areas

marked with circles (labeled ‘0’, ‘1’, and ‘2’ in Figure 5).

Fig. 5: Navigation of the robot showing the points (circled) on

the path where spiking neural network is run to decide which

side of the wall to follow. The dotted path is the trail of the

trajectory taken by the robot.

The spiking neural network designed is shown in Figure 6.

It is a two layered network: one input layer of 88 excitatory

Poisson spiking neurons and one output layer with 2 excitatory

spiking neurons. The input layer is connected to output layer

in a fully connected fashion. The input neurons are numbered

from 0 through 87 and output neurons are labeled LEFT

and RIGHT. The state for the reinforcement learning problem

is represented by the input layer. This is accomplished by

calculating the input firing rates in such a way that for each

state, a distinct population of input neurons fire. This encoding

of the states has been done previously in [18]. For each input

neuron i, a frequency fi is used to generate the Poisson spike

train. fi is calculated as follows:

fi = f0exp

(
− (d− di)

2

2σ2
1

− (θ − θi)
2

2σ2
2

)
, (5)

where θ is the orientation of the robot heading direction with

respect to a fixed axis measured in degrees and d is the distance

of the center of robot to the target location (center of the square

shaped target) measured in pixels. Calculaton of these two

parameters is shown in Figure 7. For θ, a fixed axis pointing

upwards in the plane of simulation environment is used as

reference and is measured in the clockwise direction. θ can

take values from 0◦ through 360◦ .

The parameters di and θi are such that (di, θi) ∈ D × Θ,

where

D = {100, 200, 300, 400, 500, 600, 700, 800} (6)

Θ = {300, 600, ..., 3000, 3300} (7)

In other words, D is the set of discretized distances from

the robot agent to the target, and Θ is the set of discretized

orientations of the robot heading direction. The total number

of possible pairs (di, θi) are therefore n(D)n(Θ) = (8)(11) =
88, which determines the number of neurons in the input layer

of network in Figure 6. Here n(S) denotes the cardinality of

a set S. σ1 and σ2 are design parameters that determine the

spread of the curve fi v/s (d, θ) .



Each state in the reinforcement learning problem is thus

represented by the ordered pair (d, θ) and the input rates fi
calculated are such that distinct set of input neurons are excited

for distinct ordered pairs (d, θ). For example in Figure 5, the

circles labeled ‘0’, ‘1’, and ‘2’ are locations where the d and

θ are measured and fi is calculated for each of the 88 input

neurons. The population of neurons fired are different for the

points ‘0’, ‘1’, and ‘2’. To visualize this firing behavior, a plot

of firing rates vs input neuron number is shown in Figure 8

for each of the states ‘0’, ‘1’, and ‘2’ of Figure 5.

Fig. 6: The spiking neural network architecture used for

reinforcement learning part of the solution.

Fig. 7: Calculations for distance to the target d and robot

orientation θ . The upward facing arrow is a fixed axis and

the shorter arrow is the robot heading direction

When the neural network is run, its output layer produces

two output firing rates: fleft and fright corresponding to

Fig. 8: Firing Rate v/s Input layer neuron number for state 0,

1, and 2 of Figure 5.

output neurons labeled ’LEFT’ and ’RIGHT’ in Figure 6.

When making the wall follow decision, if fleft is greater than

fright, then the robot decides to follow the obstacle on its

LEFT by making a right turn. Otherwise the robot decides to

follow the obstacle on its RIGHT by making a left turn.



IV. THE COMPLETE PROPOSED SOLUTION

In this section we will combine the “go-to-goal” approach

[11] and the reinforcement learning with spiking neural net-

work to make the wall following decisions. The “go-to-goal”

like solution is also used in work presented in [19].

Figure 9. shows the robot abstraction used for the solution.

It is a simple differential drive robot equipped with 5 ultra-

sonic sensors with 45◦ angle between them. They are desig-

nated as US LEFT, US LEFT45, US FRONT, US RIGHT45,

US RIGHT as shown in Figure 9. The robot is also assumed

to have a sensor that determines its orientation with respect to

a fixed axis and also assumed that it can sense its orientation

with respect to and distance to the target.

The proposed navigation algorithm is designed as a state

machine with 5 states which we referred to as ”Navigation

Modes” namely PRE-GO-TO-GOAL, GO-TO-GOAL, PRE-
WALL-FOLLOW, WALL-FOLLOW and TARGET-REACHED.

The robot behavior in these states is discussed in the following

detailed algorithm.

Fig. 9: The differential drive robot model used in the proposed

solution.

A. Detailed Algorithm

The robot is in PRE-GO-TO-GOAL mode at the start of

each trial.

1) PRE-GO-TO-GOAL :

a) The robot makes turns so that its orientation is

towards the target.

b) Once the robot is done orienting itself towards

target, it changes its navigation mode to GO-TO-
GOAL.

2) GO-TO-GOAL :

a) The robot moves 10 pixels every time step towards

the target.

b) If the sensor readings from US LEFT45 or

US FRONT or US RIGHT45 indicate a proximity

of less than 40 pixels, then change the mode to

PRE-WALL-FOLLOW.

c) If the robot reaches the target, it transitions to

TARGET-REACHED mode.

3) PRE-WALL-FOLLOW:

In this mode, the robot runs the spiking neural network

to decide which side of the wall to follow on.

a) The robot calculates the distance to the target d
and its orientation θ as shown in Figure 7. The

firing rates fi are calculated for each input Poisson

spiking neuron.

b) The network is simulated for 1000 ms and the

output firing rates fleft and fright are calculated.

Running the neural network updates eligibility

traces on the synapses from input layer to LEFT

and RIGHT output neurons as discussed in section

II B . For example, if a subset Nj of neurons are

excited in a particular state Sj = (dj , θj), then

eligibility traces for synaptic connections from Nj

to LEFT output and Nj to RIGHT output neuron

are updated as shown in Figure 4.

c) Action exploration is done with a probability of

50% (0.5 greedy). During exploitation, if fleft ≥
fright , the robot decides to follow the obstacle

in a wall following manner with the obstacle on

its left. If fright > fleft, the robot decides to

follow the obstacle in a wall following manner

with the obstacle on its right . The two wall follow

modes can be denoted by WALL-FOLLOW-LEFT
and WALL-FOLLOW-RIGHT. During exploration,

one of the two actions is selected randomly with a

probability of 50%.

d) Eligibility trace is recorded only for the synapses

from input layer to the output neuron that has

highest firing rate. That is we do not record

eligibility traces for actions that are not taken. If

the condition

‖(fleft − fright)‖ ≥ fthreshold (8)

is satisfied, then no eligibility trace is stored. If

this condition is satisfied for all the times the robot

enters PRE-WALL-FOLLOW mode in a trial, the

learning algorithm is assumed to be converged and

weights of the neural network are fixed at their

current values.

e) The eligibility traces for all the synapses are de-

cayed every time step throughout the trial.

f) After deciding which side to follow the obstacle

on, the navigation mode is changed to WALL-

FOLLOW.

4) WALL-FOLLOW:

a) The robot moves in a wall following fashion. It

follows the wall on its left or on its right side

depending on the wall following decision made in

PRE-WALL-FOLLOW mode.

b) The robot leaves the mode if it decides that it has

a clear way towards the goal. The calculations to



determine the condition to leave the wall following

mode [11] are as shown in Figure 10.

Fig. 10: Calculation of the Angle between obstacle avoidance

vector and robot to target vector to determine the condition to

leave wall following mode

In Figure 10, the Obstacle Avoidance Vector A is

calculated as a resultant of vectors with directions

opposite to the ultrasonic beam direction and

magnitude inversely related to the proximity

from the obstacle. The equations to calculate the

obstacle avoidance vector are shown below:

A = VUS LEFT d(US LEFT ) +
VUS LEFT45d(US LEFT45) +
VUS FRONT d(US FRONT ) +
VUS RIGHT45d(US RIGHT45) +
VUS RIGHT d(US RIGHT ) (9)

In equation 9, the vector VUS SENS is a unit

vector in the direction opposite to the sonar beam

of the ultrasonic sensor SENS where

SENS ∈ {LEFT, LEFT45, FRONT, FRONT45,
RIGHT, RIGHT45} . The term d(US SENS) is

defined as follows: d(US SENS) = 0 if dis-

tance measured by US SENS is greater than 40

and d(US SENS) = 40 - (distance measured by

US SENS) otherwise.

The goal vector G is the vector from the robot to

the target. The condition used to decide if the robot

should leave wall follow mode is :

|α| ≤ 90◦

where α is the angle between G and A. If the

condition above is satisfied, the robot moves to the

PRE-GO-TO-GOAL navigation mode.

5) TARGET-REACHED:

a) The robot reaches its destination. The spiking neu-

ral network is now rewarded with a global scalar

reward. That is the weights of synapses to the

output neurons LEFT and RIGHT are changed by

the amount equal to the value of eligibility trace

multiplied by this scalar reward.

b) The robot is placed in its initial position for another

learning trial. All of the eligibility traces are set to

zero.

Figure 11. shows all navigation modes of the robot for a

simple environment.

Fig. 11: All robot navigation modes in a simple environment.

The curved arrows show the direction of turn of the robot.

V. SIMULATION SETUP, RESULTS AND DISCUSSION

The simulation environment is written in C++ using a 2-

D game library Allegro http://liballeg.org. The simulator used

for spiking neural network simulation is CARLsim [16] avail-

able at http://www.socsci.uci.edu/ jkrichma/CARLsim. CARL-

sim uses the Izhikevich model [17] of neurons which are

reasonably biologically realistic yet computationally efficient.

The navigation environment is a 2-D rectangular space with

dimensions 1000 pixels x 800 pixels. The obstacles considered

are wall-like, rectangular in shape (unknown to the robot). The

obstacle free space is shown in white color and obstacles are

colored black. The target location is labeled “GOAL”. The

robot is circular in shape with 5 ultrasonic sensors as shown

in Figure 9. Each of the 5 ultrasonic sensors has a range of 40

pixels detection distance. That is any object within 40 pixels

of the ultrasonic sensor is detected. The values of parameters

used in the simulation of the spiking neural network learning

algorithm are shown in Table I .

The simulation is performed using 3 different environments

: Env 1, Env 2, and Env 3. The snapshots of simulation before

and after training are shown in Figures 12, 13, and 14.

The number of trials taken to converge are shown in Table II

for each of these environments. A training session is assumed

to terminate when equation (8) holds for all PRE-WALL-
FOLLOW states the robot encounters.

To analyze the working of the algorithm, consider the

eligibility traces for the actions taken at state labeled ‘1’ in

Fig. 12 “Before Training” and “After Training” Figures. These

traces are plotted in Figure 15.

Figure 15 (a), shows the trace of the robot action “Follow

the obstacle on the right side” taken at state 1 in Env 1. The



TABLE I: Simulation Parameters and their Values

Parameter Description Value
A+ CARLsim LTP parameter for STDP in eq 1 0.0001

A− CARLsim LTD parameter for STDP in eq 2 0.0005

τ+ CARLsim LTP parameter for STDP in eq 1 20ms

τ− CARLsim LTD parameter for STDP in eq 2 20ms

β Eligibility trace decay in eq 4 0.99

f0 Constant in eq 5 100 Hz

σ1 Constant in eq 5 25 pixels

σ2 Constant in eq 5 10◦

reward Scalar reward on reaching the Goal 10

fthreshold Threshold firing rate difference in eq 8 10Hz

Fig. 12: Simulation results for Env 1

Fig. 13: Simulation results for Env 2

TABLE II: Number of Trials taken for the learning to converge

Environment No. of Trials

Env1 14

Env2 16

Env3 44

label “1” indicates the timestep in which the robot is in state 1

and “Goal” indicates the timestep the robot reaches the target.

The eligibility trace for this action is almost zero by this time.

In contrast, the robot action “Follow the obstacle on the left

Fig. 14: Simulation results for Env 3

A nice little title

(a) Trace of the robot action: Follow the obstacle on the right side at
state 1 in Env 1

A nice little title

(b) Trace of the robot action: Follow the obstacle on the left side at
state 1 in Env 1

Fig. 15: Eligibility traces for input layer to RIGHT output

neuron (top) and input layer to LEFT output neuron (bottom).



side” at the same state 1 in Figure 15 (b) has a trace that
has a positive value for all traces produced at state 1. So
in the scenario of Figure 15 (b), the synapses between input
layer and LEFT output neuron are strengthened more than the
synapses in scenario of Figure 15 (a), between input layer
and RIGHT output neuron. This results in higher output firing
rate for LEFT output neuron than the RIGHT output neuron
in subsequent network simulations. Therefore the state-action
value at state 1 is higher for the action “Follow the obstacle
on the left side” than the action “Follow the obstacle on the
right side”. This happens essentially because when the robot
takes turn decisions resulting in the relatively shorter path, the
eligibility trace decays by a smaller amount than when the
robot takes turn decisions resulting in longer time paths. Thus
the robot eventually learns the actions that lead it to the target
in the near shortest time.

VI. CONCLUSION

The go-to-goal approach to navigation problem can be
enhanced using a spiking neural network based reinforcement
learning solution equipped with eligibility trace mechanism.
The proposed solution is demonstrated to have provided an
algorithm for the robot to reach its destination in shortest
possible time.

The number of trials needed to achieve convergence of the
solution depends on the complexity of the environment as seen
from Table II.

The limitations of the proposed solution are:
1) It does not consider complex obstacle shapes,
2) It is assumed the environment is bounded by walls,
3) Danger zones where the robot can get stuck are not

considered,
4) The proposed approach does not give an absolute short-

est time path as the termination condition (8) does not
guarantee it.

We intend to address these limitations in our future work.
The current work is to be seen as exploring the use of
eligibility trace mechanism to solve the navigation problem.
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