
Biologically Inspired Reinforcement Learning for
Mobile Robot Collision Avoidance

Myung Seok Shim and Peng Li
Department of Electrical and Computer Engineering

Texas A&M University, College Station, Texas 77843, USA
Emails: {mrshim1101, pli}@tamu.edu

Abstract—Collision avoidance is a key technology enabling
applications such as autonomous vehicles and robots. Various
reinforcement learning techniques such as the popular Q-learning
algorithms have emerged as a promising solution for collision
avoidance in robotics. While spiking neural networks (SNNs),
the third generation model of neural networks, have gained
increased interest due to their closer resemblance to biological
neural circuits in the brain, the application of SNNs to mobile
robot navigation has not been well studied. Under the context
of reinforcement learning, this paper aims to investigate the
potential of biologically-motivated spiking neural networks for
goal-directed collision avoidance in reasonably complex envi-
ronments. Unlike the existing additive reward-modulated spike-
timing dependent plasticity learning rule (A-RM-STDP), for the
first time, we explore a new multiplicative RM-STDP scheme
(M-RM-STDP) for the targeted application. Furthermore, we
propose a more biologically plausible feed-forward spiking neural
network architecture with fine-grained global rewards. Finally,
by combining the above two techniques we demonstrate a
further improved solution to collision avoidance. Our proposed
approaches not only completely outperform Q-learning for cases
where Q-learning can hardly reach the target without collision,
but also significantly outperform a baseline SNN with A-RM-
STDP in terms of both success rate and the quality of navigation
trajectories.

I. INTRODUCTION

Collision avoidance is a key enabling technology and is
essential to autonomous systems such as mobile robots and
self-driving cars. Collision avoidance systems are currently
under intensive development in the auto industry [1]. In mobile
robotic applications, an autonomous agent typically relies
on cameras, lasers, ultrasonic sensors, and certain forms of
learning capabilities to avoid collisions in a given environment.
Towards this end, various types of reinforcement learning
techniques such as adaptive dynamic programming and tem-
poral difference are studied [2], [3]. Also, collision avoidance
techniques based on these reinforcement learning approaches
have been studied in the literature [4]–[9].

Among these, Q-learning [3], a popular method of rein-
forcement learning, has been adopted for collision avoidance
where an optimal state-action policy is computed based on
the Markov Decision Process (MDP). [5] employs Q-learning
to train multiple robots to achieve a certain shaped formation
and move in the formation while avoiding obstacles. [4] uses
an artificial neural network to more efficiently represent the
Q-values as part of Q-learning for robot collision avoidance
without a target. The considered actions are discrete and

correspond to moving and rotating in different directions. It
is shown through simulation that the Q-learning algorithm
converges in about 500 epochs for environments with a few
obstacles [4]. However, the movement of the robot does not
look natural due to discrete control actions. In addition, a
simplistic reward function which depends only on the actions
taken and occurrences of collisions is used.

Fig. 1. A feed-forward spiking neural network.

In recent years, spiking neural networks (SNNs), the third
generation model of neural networks, have gained increased
interest due to their closer resemblance to neural circuits in
biological brains. As an example, Fig. 1 shows a feed-forward
spiking neural network.

Ideas on exploring reinforcement learning under the con-
text of SNNs, particularly the concept of Reward-Modulated
STDP (RM-STDP), have been suggested by the neuroscience
community [10]–[12]. To this end, an SNN may learn an
optimal policy for decision making under a properly designed
global reward signal with eligibility trace for delayed rewards.
Note that RM-STDP is modulated by the reward signal and is
different from the standard Spike-Timing-Dependent Plasticity
(STDP), which is a form of unsupervised Hebbian learning.

While SNN based reinforcement learning and similar tech-
niques are still a relatively new territory of research, there have
been some initial attempts towards applying such techniques
for robot collision avoidance. [13] presents a SNN-based target
tracking robot controller, where a charge coupled device(CCD)
camera is used to detect the target and 16 ultrasonic sensors
are used to detect obstacles around the robot. The camera
inputs are transformed into spike trains and drive directly
the output neurons which control the motors. On the other
hand, ultrasonic sensor inputs are projected to the hidden



layer to learn collision avoidance, and the outputs of the
hidden layers are fed to the output layer. The overall learn-
ing approach is not based on reinforcement learning where
an unsupervised spike-based Hebbian learning mechanism is
adopted to update synaptic weights. In [9], a relatively simple
conditionally reward-modulated Hebbian plasticity mechanism
is used for learning simple goal-directed behaviors in open
environments without any obstacle. [8] employs short-term
plasticity and long-term plastiticy realized using the temporal
difference (TD) rule for wall following. [14] uses standard
STDP for collision avoidance and target approaching in simple
environments.

While the application of spiking neural networks has not
been well studied for mobile robot navigation, the key objec-
tive of this paper is to investigate the potential of biologically-
motivated spiking neural networks for goal-directed collision
avoidance in reasonably complex environments under the
context of reinforcement learning. Our main new contributions
are:
• In addition to the existing standard additive RM-STDP

scheme (A-RM-STDP), for the first time, we explore a
multiplicative RM-STDP scheme (M-RM-STDP) under
the context of reinforcement learning and demonstrate its
potential.

• We explore a more biologically plausible feed-forward
SNN architecture where in the hidden layer, both exci-
tatory and inhibitory neurons are employed. We further
develop a fine-grained reward scheme for the new archi-
tecture.

• Finally, we demonstrate that by combining the above two
techniques leading to a further optimized solution with
improved success rates and navigation trajectories.

To demonstrate the proposed ideas, we design several feed-
forward SNNs with one input, one hidden and one output layer.
Our proposed approaches completely outperform Q-learning in
terms of both the success rate and the quality of trajectories
to the target.

With respect to our first contribution, multiplicative reward-
modulated STDP schemes have not been explored for rein-
forcement learning. To this end, for the first time, we present
a multiplicative reward-modulated STDP scheme (M-RM-
STDP). We demonstrate that for the application of mobile
robot navigation, our M-RM-STDP outperforms the more
conventional additive scheme, i.e. A-RM-STDP, significantly,
for example by increasing the success rate by 40% in the
testing phase of robot navigation. In addition, M-RM-STDP
reduces the number of steering movements taken for reaching
the target by 10%.

Our second contribution is motivated by the fact that ex-
citatory and inhibitory mechanisms produce rich behaviors in
biological brains. For this, we introduce both excitatory and
inhibitory neurons not only in the input layer but also in the
hidden layer to improve learning performance. Furthermore,
we propose optimized reward functions which specify the
amount of reward as a function of the distances to nearby
obstacles, the distance to the target, and the angle between the

moving direction of the robot and the vector that points to the
target from the robot. Very importantly, instead of utilizing
a single global reward for all synapses as typically done in
the prior work, we take a finer-grained approach that is based
on the fact that the inclusion of both exictatory and inhibitory
neurons in the first two layers produces feed-forward paths that
have rather different effects on each output neuron. As a result,
the net effects of two synapses on the same output neuron can
be opposite of each other, with one being excitatory and the
other inhibitory, depending the nature of the signal paths which
these synapses are on. Recognizing this disparity, we conduct
additional sign adjustment of the reward for different synapses
in the network, which significantly improves performance.

Based on the first two contributions, our combined ap-
proach, i.e. the third contribution, produces the best results
among studied approaches. It significantly outperforms the
standard RM-STDP scheme, for example by increasing the
success rate in the testing phase by up to 45% while reducing
the number of steering movements taken to get to the target.

II. BACKGROUND

We briefly discuss the leaky integrate-and-fire (LIF) spiking
neuron model, STDP, and additive reward-modulated STDP.

A. The Leaky Integrate-and-Fire Neuron Model

A number of spiking neural models such as the (leaky)
integrate-and-fire, Hodgkin-Huxley [15], and Izhikevich [16]
models have been adopted for modeling SNNs. In this work,
the leaky integrate-and-fire(LIF) model is utilized due to its
simplicity:

τm
dv(t)

dt
= − (v(t) − vrest ) + RI (t), (1)

where v(t) is the membrane potential, τm the membrane
time constant, vrest the resting potential, R the membrane
resistance, and I (t) the synaptic input current. Under some
injected I (t), the membrane potential may go beyond the
threshold voltage starting from which an action potential, or
a spike, would be generated [17].

B. Spike-Timing-Dependent Plasticity

STDP is an unsupervised Hebbian learning mechanism,
which adjusts a synaptic weight based upon the spike timing
difference between the corresponding pre-synaptic and post-
synaptic spikes [18]. The weight wi j is strengthened if the
pre-synaptic neuron fires before the post-synaptic neuron,
otherwise it is weakened. The temporal difference between
the firing times of each pair of the pre-synaptic and post-
synaptic spikes ∆t = tpost − tpre determines the amount of
weight change:

∆w+ = A+ · e
− ∆tτ+ i f ∆t > 0

∆w− = A− · e
− ∆tτ− i f ∆t < 0,

(2)

where ∆w+ and ∆w− are the weight modifications induced by
long-term potentiation (LTP)and long-term depression (LTD),



respectively, A+ and A− are some positive and negative con-
stant parameter and determine the strength of LTP and LTD,
respectively, and τ+ and τ− set the temporal windows over
which STDP is active. A typical STDP curve is shown in
Fig. 2.

Fig. 2. A typical STDP curve.

C. Additive Reward-Modulated STDP

Additive reward-modulated STDP (A-RM-STDP) is an im-
plementation of reinforcement learning mechanism, which
updates the synaptic efficacy in an additive manner. While
STDP operates based upon the correlation between the spike
timings of the pre- and postsynaptic neurons, a reward is
introduced to modulate STDP in A-RM-STDP. If the reward is
positive, the corresponding synapse is potentiated. Otherwise,
it is depressed.

For a synapse projecting from the j-th neuron to the i-th
neuron, A-RM-STDP may be realized according to [10]:

dwi j (t)
dt

= γr (t)zi j (t), (3)

where γ is the learning rate, r (t) the reward signal, and zi j (t)
the eligibility trace which decays the amount of weight update
over time. The eligibility trace can be defined as:

τz
dzi j (t)

dt
= −zi j (t) + ξi j (t), (4)

where additional dynamic variables Pi j
+, Pi j

− and ξi j are
utilized to track the effect of pre-synaptic and post-synaptic
spikes [10]:

ξi j (t) = Pi j
+
Φi (t) + Pi j

−
Φj (t), (5)

dPi j
+(t)

dt
= −

Pi j
+(t)
τ+

+ A+Φj (t), (6)

dPi j
−(t)

dt
= −

Pi j
−(t)
τ−

+ A−Φi (t), (7)

where Φi is the Dirac delta function which is non-zero only
at times t when the neuron i fires, and A+ and A− are certain

positive and negative constant, respectively. A typical RM-
STDP characteristics is shown in Fig. 3.

Fig. 3. A typical additive RM-STDP characteristics.

III. REINFORCEMENT LEARNING WITH THE PROPOSED
MULTIPLICATIVE RM-STDP

While multiplicative reward-modulated STDP has not been
studied for reinforcement learning, for the first time we
present a multiplicative reward-modulated STDP scheme (M-
RM-STDP) which shows good performance for mobile robot
navigation. We then present an optimized reward function
which specifies the amount of reward as a function of the
distance to obstacles, the distance to the target, and the angle
between the moving direction of the robot and the vector that
points to the target from the robot.

A. Multiplicative Reward-Modulated STDP

In the past, only additive reward-modulated STDP has been
considered for reinforcement learning under the context of
spiking neural networks. In this paper, in contrast to (3), we
explore a new multiplicative scheme as follows:

dwi j (t)
dt

= γwi j (t)r (t)zi j (t). (8)

As can been seen, in this new M-RM-STDP scheme, the
synaptic weight is updated based on the product of four
components: the current weight, learning rate, reward, and
eligibility trace. As a result, the instantaneous rate of weight
change is proportional to the current weight value wi j (t).

Under different contexts, earlier study on multiplicative
STDP demonstrates that it may behave differently from ad-
ditive STDP, for example, by producing stable unimodal
distributions of synaptic weights, which makes synapses less
sensitive to input perturbations [19]. Under the context of
SNN-based reinforcement learning for mobile robot naviga-
tion, we have experimentally observed that in addition to
possible performance boost, the maximum value of weight
change resulted from the proposed M-RM-STDP increases
rather noticeably, for example, by five times in some cases
over A-RM-STDP. As a result, it is also observed that the
multiplicative nature of the proposed RM-STDP scheme leads
to faster learning.



B. Proposed Reward Functions

In this work, we employ feed-forward spiking neural net-
works with an input layer, hidden layer, and output layer. The
output layer consists of two output neurons controlling the left
and right motors of the robot, i.e. the output neuron that fires
with a higher frequency makes the robot turn based on the
corresponding motor. More details about the network setting
are provided in Section V.

Reward functions play an important role for reinforcement
learning as they provide critical feedback from the environ-
ment to the agent. In conjunction with the existing A-RM-
STDP and proposed M-RM-STDP schemes, we make use of
reward functions optimized for the targeted application. Unlike
the simple reward function used in [4], which only depends
on actions and occurrences of collision, the proposed reward
functions takes the distance to obstacles, the distance to the
target, and the angle between the moving direction of the robot
and the vector that points to the target from the robot into
consideration. In this section, we describe how rewards are
computed. The specific ways in which the rewards are applied
to the network will be discussed in the next section.

1) Rewards for Collisions and Arrival: During each train-
ing trial, when the robot collides with an obstacle, the entire
network gets a negative reward of Rcol . Otherwise, if the robot
arrives at the target, the network gets a positive reward of Rarr .
In our experiments, we set: Rcol = −2.0 and Rarr = 2.0. In
both cases, the training trial ends after the application of the
reward.

2) Rewards for Collision Avoidance: In the absence of
collisions and arrival at the target, we compute the following
two rewards to promote collision avoidance when the robot
gets close to obstacles, which may be detected, for example,
by ultrasonic sensors:

r1(d) = +
dsa f e − d

dsa f e
+ k, f or d < dsa f e

r2(d) = −
dsa f e − d

dsa f e
− k, f or d < dsa f e

(9)

where d is the distance to the nearest obstacle. In our simula-
tion environment, we set dsa f e to 100 pixels: dsa f e = 100, and
constant k to 0.3 for A-RM-STDP and 1.3 for M-RM-STDP,
respectively. The reward values are earned experimentally for
avoiding deadlock situations.

More specifically, if the nearest obstacle is within dsa f e

from the robot on the right, the negative reward r2 is applied to
the subset of synapses that influence the firing of the left motor
(output) neuron while the positive reward of r1 is applied to
the remaining synapses of the network, which influence the
right motor (output) neuron. In this case, there is a tendency
for the right motor to rotate faster than the left motor, steering
the robot to the left. We swap the roles of r1 and r2 if the
nearest obstacle is within dsa f e from the robot on the left.

3) Reward in the Vicinity of the Target: After conditionally
applying the rewards specified in (9), we further check if the
robot is in the vicinity of the target, i.e. if the distance d

between the target and robot is less than a specified threshold
dtar . If so, the following additional award is computed:

r3(d) =
1

dtar
(dtar − d) + 1.0, f or d < dtar, (10)

where dtar is set to 200 pixels in our experiments.

Fig. 4. Four intervals for the angle between the moving direction of the robot
and the vector that points to the target from the robot.

We further consider the angle between the moving direction
of the robot and the vector that points to the target from the
robot. As shown in Fig. 4, we split the environment into four
regions around the robot. If the target falls into the regions
"2" and "4", the reward r3 is then applied to the synapses
influencing the left and right motor neuron, respectively. No
reward is applied when the target falls in the regions "1" and
"3".

IV. PROPOSED FEED-FORWARD SNNS AND FINE-GRAINED
REWARDS

A. Feed-forward SNNs

Cortical circuits in biological brains operate based upon
both excitatory and inhibitory mechanisms. A proper balancing
between excitation and inhibition in feed-forward networks has
been shown to be beneficial [20]. While earlier works have
employed both inhibitory and excitatory neurons only in the
input layer [10], [21], we extend by doing the same for the
hidden layer as well as shown in Fig. 5. Here, the synapses
from each excitatory (inhibitory) neuron are considered to be
excitatory (inhibitory) in nature.

Fig. 5. The proposed spiking neural network with fine-grained rewards.

While the above approach improves learning performance as
demonstrated by our experimental results, such improvements



can only be achieved if and only if each reward signal is prop-
erly applied to the network. In particular, the inclusion of both
excitatory and inhibitory neurons in the network nevertheless
introduces certain complications in the application of rewards.
Our experiments have shown that treating each reward as a
"global" signal and applying it uni-formally to all synapses in
the network, as what is typically done in the literature, can lead
to very poor learning performance. To address this problem,
we propose a fine-grained approach for applying a reward to
the network as discussed next.

B. Fine-Grained Rewards

We first recognize that there exist four types of feed-forward
paths from the input layer, to the hidden layer, and finally to
the output layer in the network of Fig. 5: Inhibitory-Inhibitory
(I-I), Inhibitory-Excitatory (I-E), Excitatory-Inhibitory (E-I),
and Excitatory-Excitatory (E-E), where the first designation
specifies the synapse type from the input to the hidden layer
and the second the synapse type from the hidden to the output
layer on the path.

Recall that Section III-B describes several different types of
reward. Each reward may be applied to all synapses or just
a subset of them in the network. Once obtaining the value
of a reward, we do not immediately apply the reward to the
targeted synapses. Instead, additional sign adjustment may be
performed to properly deal with each of the four types of
feed-forward signal paths.

To explain our idea, let us consider the following illustrative
example for which a reward value of r is computed based on
one of the reward functions described in Section III-B. Let us
further assume that this reward is intended for the synapses
influencing the right motor (output) neuron to incentivize the
right motor to rotate faster than the left motor to make the
robot turn left. In this case, we consider all four different type
paths ending at the right motor neuron.

To achieve our goal, we potentiate or depress each synapse
on a given signal path as follows (Fig. 5):

• I-I: potentiate the first with a reward of r; depress the
second with a reward of −r;

• I-E: depress the first with a reward of −r; potentiate the
second with a reward of r;

• E-I: depress the first with a reward of −r; depress the
second with a reward of −r;

• E-E: potentiate the first with a reward of r; potentiate the
second with a reward of r;

Note that here depressing an inhibitory synapse with a
negative reward means reducing the absolute value of the
synaptic weight. The basic idea behind the above fine-grained
reward approach is to consider the excitatory or inhibitory
nature of each synapse with respect to the targeted output
neuron. For example, for the E-I type signal paths, while the
first synapse is excitatory, its effect on the right motor neuron
is in fact inhibitory. As a result, we depress this synapse with
a negative reward of −r .

V. EXPERIMENTAL SETTINGS

To demonstrate the proposed reinforcement learning ap-
proach, we consider the problem of autonomous mobile robot
navigation towards a fixed target in environments with station-
ary obstacles. As shown in Fig. 6, we assume that the targeted
robot has five ultrasonic sensors to measure distances to nearby
obstacles. In addition, we also assume that the distance from
the current location to the target and the angle between the
moving direction of the robot and the vector that points to the
target from the robot are also available to the robot through
a "distance" and "angle" sensor, respectively. Note that the
robot is modeled simplistically without internal delay and
motor control dynamics. The adopted simulation environment
is based on Pygame 1.9.2, a game library in Python, and Brian
1.41 [22], an SNN simulator in Python.

Fig. 6. The adopted car model.

A. Spiking Neural Networks

We employ feed-forward spiking neural networks of three
layers: an input, hidden, and output layer. The input layer is
composed of seven groups of Poisson neurons for generating
spike trains encoding the inputs from the five ultrasonic
sensors, distance sensor and angle sensor. Each group has 15
excitatory and 15 inhibitory neurons.

Fig. 7. The reference SNN with only excitatory neurons in the hidden layer.

To demonstrate the SNN architecture proposed in Sec-
tion IV-A, we consider two compositions for the hidden layer:
210 excitatory neurons (Fig. 7) vs. 104 excitatory and 104
inhibitory neurons (Fig. 8), with the former being a reference
and the latter representing the proposed architecture. In both
networks, the input layer is fully connected to the hidden
layer. The hidden layer is split into two equal halves, with
each projecting to one of the two output neurons with fully
connectivity. The two output neurons control the left and right
motors of the robot and can steer the robot to right and left,
respectively.



Fig. 8. The proposed SNN with both excitatory and inhibitory-neurons in the
hidden layer.

B. State Space and Discretization

The sensory inputs from the five ultrasonic (measuring the
distances to nearby obstacles), one distance (measuring the
distance to the target) and one angle sensor form the seven-
dimensional state of the robot. Each of the five ultrasonic
sensors can measure up to 300 pixels. For the reference SNN,
every ultrasonic sensor input is discretized into three intervals
with each encoded using a different firing frequency: 0 to 99
pixels (0 Hz), 100 to 199 pixels (20 Hz), and 200 to 300 pixels
(40 Hz). The encoding of the ultrasonic sensor inputs is done
somewhat differently for the proposed SNN: 0 to 99 pixels (0
Hz), 100 to 199 pixels (50 Hz), and 200 to 300 pixels (100
Hz). Each frequency value is used to set the firing frequency of
the Poisson neurons in the corresponding input neuron group.

The distance sensor can measure up to 800 pixels for the
distance to the target. Its input range (0 to 800 pixels) is
divided evenly into four intervals. For the reference SNN, the
encoded Poisson firing frequency is 10 Hz, 20 Hz, 30 Hz and
40 Hz, respectively for these intervals. For the proposed SNN,
the encoded frequencies are 25 Hz, 50 Hz, 75 Hz, and 100
Hz.

Finally, the input from the angle sensor is discretized into
four intervals: north, south, west and east direction, as shown
in Fig. 4. The frequency encoding schemes used for the
distance sensor are adopted for the angle sensor.

C. Motor Control

The speed of the robot is fixed as 15 pixels/sec such that the
robot always moves forward. At each simulation time step, the
instantaneous firing rates of the two output (motor) neurons
are used to determine the steering angle, that is, the steering
angle θ is set to θ = f reql − f reqr , where f reql and f reqr
are the firing frequencies of the left and right motor neuron,
respectively. As such, θ is continuous-valued and the robot is
steered to the left if θ is negative. Note that, in Q-learning,
ε-greedy with ε set to 0.3 is used for selecting from three
actions: move forward, turn left by 30◦ and turn right by 30◦.

D. STDP parameter settings

The parameter settings of the A-RM-STDP and M-RM-
STDP schemes are given in Table I. The initial weights of
excitatory synapses are set randomly between 0 - Wmax mV
while those of inhibitory synapses are set randomly between
Wmin - 0 mV . For the proposed network architecture in Fig.
8, the maximum synaptic weight is set to 5mV for the half of

the synapses between input and hidden layer, and 2.5mV for
the remaining half.

TABLE I
PARAMETER SETTINGS OF A-RM-STDP AND M-RM-STDP.

Parameter Value
A+ 1mV
A− -1mV
τ+ 20ms
τ− 20ms
Wmax 5mV
Wmin -5mV

VI. EXPERIMENTAL RESULTS

By using the setups described previously, we compare four
spiking neural networks and Q-learning as summarized in
Table II. Two spiking neural networks have both excitatory and
inhibitory neurons only in the input layer while the other two
have excitatory and inhibitory neurons in both the input and
hidden layers. All SNNs have the same numbers of neurons
in three layers.

TABLE II
ALGORITHM SETTINGS

Network Algorithm Network Structure
Q-learning Q-learning Look-up table
S1 A-RM-STDP E & I in Input layer; E in Hidden layer
S2 M-RM-STDP E & I in Input layer; E in Hidden layer
S3 A-RM-STDP E & I in Input and Hidden layers
S4 M-RM-STDP E & I in Input and Hidden layers

We examine these five approaches by the success rate, SR,
defined as as the number of successful trials, i.e. ones in which
the robot gets to the target without any collision, divided by
the total number of trials. We evaluate the success rate for
both the learning and testing phase. The average number of
steering movements per trial, Nmv (the smaller the better), is
another indicator of the quality of learning. We consider Nmv

in the testing phase for the four SNNs, and Nmv in the learning
phase for Q-learning as it does not perform well in testing.

A. Scenario 1

As shown in Fig. 9 and Fig. 10, the target (red box) is
located in the center of a closed environment. The robot
navigates from a randomly chosen point within one of the
blue circles on the left and right sides. The starting blue
circle is also chosen at random. This setup forces the robot
to explore the unknown environment widely. 2,000 training
and 100 testing trials are used in the learning and testing
phase, respectively, for Q-learning. The learning with the
SNNs converges much faster so we use only 20 training trials
and 30 testing trials. The results are shown in Table III.

Despite of the large number of training trials used, Q-
learning performs poorly with an extremely low success rate
(SR) in both the learning and testing phase. In addition, Q-
learning also leads to a large number of steering movements
in the testing phase, indicating a poor quality of trajectories
learnt. Note again that in this paper, for Q-learning, Nmv is
reported based on the training data. The four SNNs demon-
strate a much better performance than Q-learning. Among



Fig. 9. A simulated trial in the learning phase of S4 for Scenario 1.

Fig. 10. A simulated trial in the testing phase of S4 for Scenario 1.

them, the proposed multiplicative RM-STDP scheme (M-RM-
STDP) outperforms its additive counterpart (A-RM-STDP)
rather noticeably in terms of success rate for both learning
and testing.

The proposed neural network architecture of Fig. 8, where
the hidden layer is composed of an equal number of excitatory
and inhibitory neurons, performs fairly well. In particular,
the network S4, which combines the proposed M-RM-STDP
and network architecture has the highest success rate for both
learning and testing, and dramatically outperforms S1, which
is the baseline SNN. S4 also produces almost the lowest
number of steering movements in testing. Fig. 9 and Fig. 10
show two representative trajectories produced by S4 in the
learning and testing phase.

It is interesting to note that S2 somewhat outperforms S3
in terms of success rate while S3 produces a smaller Nmv .
S2 employs only the proposed M-RM-STDP while S3 only
employs the proposed neural network architecture.

B. Scenario 2

The second scenario has obstacles of varying shapes (Fig. 11
and Fig. 12). Again, the robot starts to navigate randomly from

TABLE III
RESULT OF SCENARIO 1

Network SR-Learning SR-Testing Nmv

Q-learning 4.05% 10% 62

S1:A-RM 45% 70% 50

S2:M-RM 65% 95% 49

S3:A-RM (E+I in hidden) 55% 90% 45

S4:M-RM (E+I in hidden) 70% 100% 46

Fig. 11. A simulated trial in the learning phase of S4 for Scenario 2.

Fig. 12. A simulated trial in the testing phase of S4 for Scenario 2.

two blue circles. The same numbers of trials are used for Q-
learning: 2,000 in the learning phase and 100 in the testing
phase. For the SNNs, 20 training trials are used, 10 of which
start from the left circle and the remaining 10 start from the
right circle. 20 trials are used for testing. Table IV summarizes
the performances of the five approaches.

TABLE IV
RESULT OF SCENARIO 2

Network SR-Learning SR-Testing Nmv

Q-learning 4.05% 0% 75

S1: A-RM 75% 45% 67

S2: M-RM 50% 85% 65

S3: A-RM (E + I in hidden) 55% 55% 64

S4: M-RM (E + I in hidden) 40% 90% 62

For this more challenging test case, Q-learning performs
even worse, and completely fails the testing. Among the four
SNNs, adopting the proposed M-RM-STDP leads to a success
rate lower than A-RM-STDP in the learning phase, but a
significantly boosted success rate in the testing phase. For
example, the testing SR is 55% for S3, which is boosted
to 90% by S4. The proposed neural network architecture
appears to have a negative impact on the SR in the learning
phase, as observed by comparing S3 to S1 and S4 to S2. It,
however, noticeably improves the SR during testing. S4, which
combines the two proposed techniques, has the highest success
rate (90%) and the lowest Nmv (62) for testing, showing the
best overall performance. We show two simulated trials of S4
in Fig. 11 and Fig. 12.

C. Scenario 3

In this last test case, the robot navigates from randomly
sampled points in the blue circle at the bottom-right corner



Fig. 13. A simulated trial in the learning phase of S4 for Scenario 3

Fig. 14. A simulated trial in the testing phase of S4 for Scenario 3.

of the enclosed environment with more obstacles (Fig. 13
and Fig. 14). 2,000 trials are used for training the Q-learning
based robot and 100 trials for testing. The detailed simulation
results are described in Table V. Q-learning again performs
poorly and is not able to successfully reach the target at all
during testing phase. In comparison, the SNNs deliver a much
better performance with the network S4 producing the highest
success rate (90%) and the lowest Nmv (54) during testing.
Two simulated trajectories of S4 are shown in Fig. 13 and
Fig. 14.

TABLE V
RESULTS OF SCENARIO 3

Network SR-Learning SR-Testing Nmv

Q-learning 2.05% 0% 72

S1: A-RM 20% 75% 61

S2: M-RM 40% 90% 57

S3: A-RM (E + I in hidden) 60% 65% 56

S4: M-RM (E + I in hidden) 45% 90% 54

VII. CONCLUSION

This paper proposes two techniques for spiking neural
network based reinforcement learning for mobile robot naviga-
tion: a new multiplicative RM-STDP (M-RM-STDP) scheme
and feed-forward spiking neural network architecture with
fine-grained rewards. It has been shown that the proposed tech-
niques significantly outperform Q-learning and a baseline SNN
approach. Especially, combining the two proposed techniques
leads to a fairly robust solution with significantly improved
success rates and quality of navigation trajectories measured
by the number of steering movements. In our future work, the
two proposed techniques will be demonstrated on a real robot.

ACKNOWLEDGEMENT

This material is based upon work supported by the Na-
tional Science Foundation under Grant No. CCF-1639995 and
the Semiconductor Research Corporation (SRC) under Task
2692.001.

REFERENCES

[1] J. Gorzelany, “The safest cars and crossovers for 2016,” Forbes, 2016.
[2] T. Dierks, B. T. Thumati, and S. Jagannathan, “Optimal control of

unknown affine nonlinear discrete-time systems using offline-trained
neural networks with proof of convergence,” Neural Networks, vol. 22,
no. 5, pp. 851–860, 2009.

[3] C. J. Watkins and P. Dayan, “Q-learning,” Machine learning, vol. 8, no.
3-4, pp. 279–292, 1992.

[4] B.-Q. Huang, G.-Y. Cao, and M. Guo, “Reinforcement learning neural
network to the problem of autonomous mobile robot obstacle avoidance,”
in 2005 International Conference on Machine Learning and Cybernetics,
vol. 1. IEEE, 2005, pp. 85–89.

[5] O. Azouaoui, A. Cherifi, R. Bensalem, A. Farah, and K. Achour,
“Reinforcement learning-based group navigation approach for multiple
autonomous robotic systems,” Advanced Robotics, vol. 20, no. 5, pp.
519–542, 2006.

[6] J. Qiao, Z. Hou, and X. Ruan, “Application of reinforcement learning
based on neural network to dynamic obstacle avoidance,” in Information
and Automation, 2008. ICIA 2008. International Conference on. IEEE,
2008, pp. 784–788.

[7] K. Macek, I. PetroviC, and N. Peric, “A reinforcement learning approach
to obstacle avoidance of mobile robots,” in Advanced Motion Control,
2002. 7th International Workshop on. IEEE, 2002, pp. 462–466.

[8] E. Nichols, L. J. McDaid, and N. Siddique, “Biologically inspired snn
for robot control,” IEEE transactions on cybernetics, vol. 43, no. 1, pp.
115–128, 2013.

[9] L. I. Helgadóttir, J. Haenicke, T. Landgraf, R. Rojas, and M. P.
Nawrot, “Conditioned behavior in a robot controlled by a spiking
neural network,” in Neural Engineering (NER), 2013 6th International
IEEE/EMBS Conference on. IEEE, 2013, pp. 891–894.

[10] R. V. Florian, “Reinforcement learning through modulation of spike-
timing-dependent synaptic plasticity,” Neural Computation, vol. 19,
no. 6, pp. 1468–1502, 2007.

[11] E. M. Izhikevich, “Solving the distal reward problem through linkage
of stdp and dopamine signaling,” Cerebral cortex, vol. 17, no. 10, pp.
2443–2452, 2007.

[12] R. Legenstein, D. Pecevski, and W. Maass, “A learning theory for
reward-modulated spike-timing-dependent plasticity with application to
biofeedback,” PLoS Comput Biol, vol. 4, no. 10, p. e1000180, 2008.

[13] Z. Cao, L. Cheng, C. Zhou, N. Gu, X. Wang, and M. Tan, “Spiking
neural network-based target tracking control for autonomous mobile
robots,” Neural Computing and Applications, vol. 26, no. 8, pp. 1839–
1847, 2015.

[14] P. Arena, L. Fortuna, M. Frasca, and L. Patané, “Learning anticipation
via spiking networks: application to navigation control,” IEEE transac-
tions on neural networks, vol. 20, no. 2, pp. 202–216, 2009.

[15] A. L. Hodgkin and A. F. Huxley, “A quantitative description of mem-
brane current and its application to conduction and excitation in nerve,”
The Journal of physiology, vol. 117, no. 4, p. 500, 1952.

[16] E. M. Izhikevich et al., “Simple model of spiking neurons,” IEEE
Transactions on neural networks, vol. 14, no. 6, pp. 1569–1572, 2003.

[17] W. Gerstner, W. M. Kistler, R. Naud, and L. Paninski, Neuronal
dynamics: From single neurons to networks and models of cognition.
Cambridge University Press, 2014.

[18] J. Sjöström and W. Gerstner, “Spike-timing dependent plasticity,” Spike-
timing dependent plasticity, p. 35, 2010.

[19] M. C. Van Rossum, G. Q. Bi, and G. G. Turrigiano, “Stable hebbian
learning from spike timing-dependent plasticity,” The Journal of Neuro-
science, vol. 20, no. 23, pp. 8812–8821, 2000.

[20] Y. Luz and M. Shamir, “Balancing feed-forward excitation and inhibition
via hebbian inhibitory synaptic plasticity,” PLoS Comput Biol, vol. 8,
no. 1, p. e1002334, 2012.

[21] R. Evans, “Reinforcement learning in a neurally controlled robot using
dopamine modulated stdp,” arXiv preprint arXiv:1502.06096, 2015.

[22] D. F. Goodman and R. Brette, “The brian simulator,” Frontiers in
neuroscience, vol. 3, p. 26, 2009.


