
File Systems Fated for Senescence? Nonsense, Says Science!

Alex Conway∗, Ainesh Bakshi∗, Yizheng Jiao‡, Yang Zhan‡,
Michael A. Bender†, William Jannen†, Rob Johnson†, Bradley C. Kuszmaul§,

Donald E. Porter‡, Jun Yuan¶, and Martin Farach-Colton∗

∗Rutgers University, †Stony Brook University,
‡The University of North Carolina at Chapel Hill,

§Oracle Corporation and Massachusetts Institute of Technology,
¶Farmingdale State College of SUNY

Abstract
File systems must allocate space for files without

knowing what will be added or removed in the future.
Over the life of a file system, this may cause subopti-
mal file placement decisions which eventually lead to
slower performance, or aging. Traditional file systems
employ heuristics, such as collocating related files and
data blocks, to avoid aging, and many file system imple-
mentors treat aging as a solved problem.

However, this paper describes realistic as well as syn-
thetic workloads that can cause these heuristics to fail,
inducing large performance declines due to aging. For
example, on ext4 and ZFS, a few hundred git pull op-
erations can reduce read performance by a factor of 2;
performing a thousand pulls can reduce performance by
up to a factor of 30. We further present microbenchmarks
demonstrating that common placement strategies are ex-
tremely sensitive to file-creation order; varying the cre-
ation order of a few thousand small files in a real-world
directory structure can slow down reads by 15− 175×,
depending on the file system.

We argue that these slowdowns are caused by poor lay-
out. We demonstrate a correlation between read perfor-
mance of a directory scan and the locality within a file
system’s access patterns, using a dynamic layout score.

In short, many file systems are exquisitely prone to
read aging for a variety of write workloads. We show,
however, that aging is not inevitable. BetrFS, a file sys-
tem based on write-optimized dictionaries, exhibits al-
most no aging in our experiments. BetrFS typically out-
performs the other file systems in our benchmarks; aged
BetrFS even outperforms the unaged versions of these
file systems, excepting Btrfs. We present a framework
for understanding and predicting aging, and identify the
key features of BetrFS that avoid aging.

1 Introduction
File systems tend to become fragmented, or age, as
files are created, deleted, moved, appended to, and trun-

cated [18, 23].
Fragmentation occurs when logically contiguous file

blocks—either blocks from a large file or small files from
the same directory—become scattered on disk. Read-
ing these files requires additional seeks, and on hard
drives, a few seeks can have an outsized effect on perfor-
mance. For example, if a file system places a 100 MiB
file in 200 disjoint pieces (i.e., 200 seeks) on a disk with
100 MiB/s bandwidth and 5 ms seek time, reading the
data will take twice as long as reading it in an ideal lay-
out. Even on SSDs, which do not perform mechanical
seeks, a decline in logical block locality can harm per-
formance [19].

The state of the art in mitigating aging applies best-
effort heuristics at allocation time to avoid fragmenta-
tion. For example, file systems attempt to place related
files close together on disk, while also leaving empty
space for future files [7,17,18,25]. Some file systems (in-
cluding ext4, XFS, Btrfs, and F2FS among those tested
in this paper) also include defragmentation tools that at-
tempt to reorganize files and file blocks into contiguous
regions to counteract aging.

Over the past two decades, there have been differing
opinions about the significance of aging. The seminal
work of Smith and Seltzer [23] showed that file systems
age under realistic workloads, and this aging affects per-
formance. On the other hand, there is a widely held view
in the developer community that aging is a solved prob-
lem in production file systems. For example, the Linux
System Administrator’s Guide [26] says:

Modern Linux file systems keep fragmentation at a
minimum by keeping all blocks in a file close to-
gether, even if they can’t be stored in consecutive
sectors. Some file systems, like ext3, effectively al-
locate the free block that is nearest to other blocks
in a file. Therefore it is not necessary to worry about
fragmentation in a Linux system.

There have also been changes in storage technology



and file system design that could substantially affect ag-
ing. For example, a back-of-the-envelope analysis sug-
gests that aging should get worse as rotating disks get
bigger, as seek times have been relatively stable, but
bandwidth grows (approximately) as the square root of
the capacity. Consider the same level of fragmentation
as the above example, but on a new, faster disk with
600MiB/s bandwidth but still a 5ms seek time. Then
the 200 seeks would introduce four-fold slowdown rather
than a two-fold slowdown. Thus, we expect fragmenta-
tion to become an increasingly significant problem as the
gap between random I/O and sequential I/O grows.

As for SSDs, there is a widespread belief that fragmen-
tation is not an issue. For example, PCWorld measured
the performance gains from defragmenting an NTFS file
system on SSDs [1], and concluded that, “From my lim-
ited tests, I’m firmly convinced that the tiny difference
that even the best SSD defragger makes is not worth re-
ducing the life span of your SSD.”

In this paper, we revisit the issue of file system aging
in light of changes in storage hardware, file system de-
sign, and data-structure theory. We make several contri-
butions: (1) We give a simple, fast, and portable method
for aging file systems. (2) We show that fragmentation
over time (i.e., aging) is a first-order performance con-
cern, and that this is true even on modern hardware, such
as SSDs, and on modern file systems. (3) Furthermore,
we show that aging is not inevitable. We present sev-
eral techniques for avoiding aging. We show that Be-
trFS [10–12, 27], a research prototype that includes sev-
eral of these design techniques, is much more resistant
to aging than the other file systems we tested. In fact,
BetrFS essentially did not age in our experiments, estab-
lishing that aging is a solvable problem.

Results. We use realistic application workloads to age
five widely-used file systems—Btrfs [21], ext4 [7,17,25],
F2FS [15], XFS [24] and ZFS [6]—as well as the BetrFS
research file system. One workload ages the file system
by performing successive git checkouts of the Linux ker-
nel source, emulating the aging that a developer might
experience on her workstation. A second workload ages
the file system by running a mail-server benchmark, em-
ulating aging over continued use of the server.

We evaluate the impact of aging as follows. We peri-
odically stop the aging workload and measure the overall
read throughput of the file system—greater fragmenta-
tion will result in slower read throughput. To isolate the
impact of aging, as opposed to performance degradation
due to changes in, say, the distribution of file sizes, we
then copy the file system onto a fresh partition, essen-
tially producing a defragmented or “unaged” version of
the file system, and perform the same measurement. We
treat the differences in read throughput between the aged

and unaged copies as the result of aging.
We find that:

• All the production file systems age on both rotating
disks and SSDs. For example, under our git workload,
we observe over 50× slowdowns on hard disks and
2–5× slowdowns on SSDs. Similarly, our mail-server
slows down 4–30× on HDDs due to aging.

• Aging can happen quickly. For example, ext4 shows
over a 2× slowdown after 100 git pulls; Btrfs and ZFS
slow down similarly after 300 pulls.

• BetrFS exhibits essentially no aging. Other than Btrfs,
BetrFS’s aged performance is better than the other
file systems’ unaged performance on almost all bench-
marks. For instance, on our mail-server workload, un-
aged ext4 is 6× slower than aged BetrFS.

• The costs of aging can be staggering in concrete
terms. For example, at the end of our git workload
on an HDD, all four production file systems took over
8 minutes to grep through 1GiB of data. Two of the
four took over 25 minutes. BetrFS took 10 seconds.

We performed several microbenchmarks to dive into the
causes of aging and found that performance in the pro-
duction file systems was sensitive to numerous factors:
• If only 10% of files are created out of order relative

to the directory structure (and therefore relative to a
depth-first search of the directory tree), Btrfs, ext4,
F2FS, XFS and ZFS cannot achieve a throughput of
5 MiB/s. If the files are copied completely out of
order, then of these only XFS significantly exceeds
1 MiB/s. This need not be the case; BetrFS maintains
a throughput of roughly 50 MiB/s.

• If an application writes to a file in small chunks, then
the file’s blocks can end up scattered on disk, harming
performance when reading the file back. For exam-
ple, in a benchmark that appends 4 KiB chunks to 10
files in a round-robin fashion on a hard drive, Btrfs
and F2FS realize 10 times lower read throughput than
if each file is written completely, one at a time. ext4
and XFS are more stable but eventually age by a fac-
tor of 2. ZFS has relatively low throughout but did not
age. BetrFS throughput is stable, at two thirds of full
disk bandwidth throughout the test.

2 Related Work
Prior work on file system aging falls into three cate-
gories: techniques for artificially inducing aging, for
measuring aging, and for mitigating aging.

2.1 Creating Aged File Systems
The seminal work of Smith and Seltzer [23] created a
methodology for simulating and measuring aging on a
file system—leading to more representative benchmark
results than running on a new, empty file system. The
study is based on data collected from daily snapshots of



Feature Btrfs ext4 F2FS XFS ZFS BetrFS
Grouped allocation
within directories
Extents
Delayed allocation
Packing small files
and metadata (by OID)
Default Node Size 16 K 4 K 4 K 4 K 8 K 2–4 M
Maximum Node Size 64 K 64 K 4 K 64 K 128 K 2–4 M
Rewriting for locality
Batching writes to re-
duce amplification

Table 1: Principal anti-aging features of the file systems mea-
sured in this paper. The top portion of the table are commonly-
deployed features, and the bottom portion indicates features our
model (§3) indicates are essential; an ideal node size should
match the natural transfer size, which is roughly 4 MiB for
modern HDDs and SSDs. OID in Btrfs is an object identifier,
roughly corresponding to an inode number, which is assigned
at creation time.

over fifty real file systems from five servers over dura-
tions ranging from one to three years. An overarching
goal of Smith and Seltzer’s work was to evaluate file sys-
tems with representative levels of aging.

Other tools have been subsequently developed for syn-
thetically aging a file system. In order to measure NFS
performance, TBBT [28] was designed to synthetically
age a disk to create a initial state for NFS trace replay.

The Impressions framework [2] was designed so that
users can synthetically age a file system by setting a
small number of parameters, such as the organization of
the directory hierarchy. Impressions also lets users spec-
ify a target layout score for the resulting image.

Both TBBT and Impressions create file systems with a
specific level of fragmentation, whereas our study iden-
tifies realistic workloads that induce fragmentation.

2.2 Measuring Aged File Systems
Smith and Seltzer also introduced a layout score for
studying aging, which was used by subsequent stud-
ies [2, 4]. Their layout score is the fraction of file blocks
that are placed in consecutive physical locations on the
disk. We introduce a variation of this measure, the dy-
namic layout score in Section 3.3.

The degree of fragmentation (DoF) is used in the
study of fragmentation in mobile devices [13]. DoF is
the ratio of the actual number of extents, or ranges of
contiguous physical blocks, to the ideal number of ex-
tents. Both the layout score and DoF measure how one
file is fragmented.

Several studies have reported file system statistics
such as number of files, distributions of file sizes and
types, and organization of file system namespaces [3, 9,
22]. These statistics can inform parameter choices in ag-
ing frameworks like TBBT and Impressions [2, 28].

2.3 Existing Strategies to Mitigate Aging
When files are created or extended, blocks must be al-
located to store the new data. Especially when data is
rarely or never relocated, as in an update-in-place file
system like ext4, initial block allocation decisions deter-
mine performance over the life of the file system. Here
we outline a few of the strategies use in modern file sys-
tems to address aging, primarily at allocation-time (also
in the top of Table 1).

Cylinder or Block Groups. FFS [18] introduced the
idea of cylinder groups, which later evolved into block
groups or allocation groups (XFS). Each group maintains
information about its inodes and a bitmap of blocks. A
new directory is placed in the cylinder group that con-
tains more than the average number of free inodes, while
inodes and data blocks of files in one directory are placed
in the same cylinder group when possible.

ZFS [6] is designed to pool storage across multiple
devies [6]. ZFS selects from one of a few hundred
metaslabs on a device, based on a weighted calculation
of several factors including minimizing seek distances.
The metaslab with the highest weight is chosen.

In the case of F2FS [15], a log-structured file sys-
tem, the disk is divided into segments—the granularity at
which the log is garbage collected, or cleaned. The pri-
mary locality-related optimization in F2FS is that writes
are grouped to improve locality, and dirty segments are
filled before finding another segment to write to. In other
words, writes with temporal locality are more likely to
be placed with physical locality.

Groups are a best-effort approach to directory local-
ity: space is reserved for co-locating files in the same
directory, but when space is exhausted, files in the same
directory can be scattered across the disk. Similarly, if a
file is renamed, it is not physically moved to a new group.

Extents. All of the file systems we measure, except F2FS
and BetrFS, allocate space using extents, or runs of phys-
ically contiguous blocks. In ext4 [7,17,25], for example,
an extent can be up to 128 MiB. Extents reduce book-
keeping overheads (storing a range versus an exhaustive
list of blocks). Heuristics to select larger extents can im-
prove locality of large files. For instance, ZFS selects
from available extents in a metaslab using a first-fit pol-
icy.

Delayed Allocation. Most modern file systems, includ-
ing ext4, XFS, Btrfs, and ZFS, implement delayed al-
location, where logical blocks are not allocated until
buffers are written to disk. By delaying allocation when a
file is growing, the file system can allocate a larger extent
for data appended to the same file. However, allocations
can only be delayed so long without violating durabil-
ity and/or consistency requirements; a typical file system



ensures data is dirty no longer than a few seconds. Thus,
delaying an allocation only improves locality inasmuch
as adjacent data is also written on the same timescale;
delayed allocation alone cannot prevent fragmentation
when data is added or removed over larger timescales.

Application developers may also request a persistent
preallocation of contiguous blocks using fallocate. To
take full advantage of this interface, developers must
know each file’s size in advance. Furthermore, fallocate
can only help intrafile fragmentation; there is currently
not an analogous interface to ensure directory locality.

Packing small files and metadata. For directories with
many small files, an important optimization can be to
pack the file contents, and potentially metadata, into a
small number of blocks or extents. Btrfs [21] stores
metadata of files and directories in copy-on-write B-
trees. Small files are broken into one or more fragments,
which are packed inside the B-trees. For small files, the
fragments are indexed by object identifier (comparable
to inode number); the locality of a directory with multi-
ple small files depends upon the proximity of the object
identifiers.

BetrFS stores metadata and data as key-value pairs in
two Bε -trees. Nodes in a Bε -tree are large (2–4 MiB),
amortizing seek costs. Key/value pairs are packed within
a node by sort-order, and nodes are periodically rewrit-
ten, copy-on-write, as changes are applied in batches.

BetrFS also divides the namespace of the file system
into zones of a desired size (512 KiB by default), in order
to maintain locality within a directory as well as imple-
ment efficient renames. Each zone root is either a single,
large file, or a subdirectory of small files. The key for a
file or directory is its relative path to its zone root. The
key/value pairs in a zone are contiguous, thereby main-
taining locality.

3 A Framework for Aging
3.1 Natural Transfer Size
Our model of aging is based on the observation that
the bandwidth of many types of hardware is maximized
when I/Os are large; that is, sequential I/Os are faster
than random I/Os. We abstract away from the particulars
of the storage hardware by defining the natural transfer
size (NTS) to be the amount of sequential data that must
be transferred per I/O in order to obtain some fixed frac-
tion of maximum throughput, say 50% or 90%. Reads
that involve more than the NTS of a device will run near
bandwidth.

From Figure 1, which plots SSD and HDD bandwidth
as a function of read size, we conclude that a reasonable
NTS for both the SSDs and HDDs we measured is 4MiB.

The cause of the gap between sequential- and random-
I/O speeds differs for different hardware. For HDDs,

0.004 0.016 0.063 0.25 1 4 16 64 256

0.25

1

4

16

64

256

1024

Read size (MiB)

E
ff
ec
tiv

e
ba
nd

w
id
th

(M
iB

pe
rs
ec
on

d)

SSD HDD

Figure 1: Effective bandwidth vs. read size (higher is
better). Even on SSDs, large I/Os can yield an order of
magnitude more bandwidth than small I/Os.

seek times offer a simple explanation. For SSDs, this
gap is hard to explain conclusively without vendor sup-
port, but common theories include: sequential accesses
are easier to stripe across internal banks, better leverag-
ing parallelism [14]; some FTL translation data struc-
tures have nonuniform search times [16]; and fragmented
SSDs are not able to prefetch data [8] or metadata [13].
Whatever the reason, SSDs show a gap between sequen-
tial and random reads, though not as great as on disks.

In order to avoid aging, file systems should avoid
breaking large files into pieces significantly smaller than
the NTS of the hardware. They should also group small
files that are logically related (close in recursive traversal
order) into clusters of size at least the NTS and store the
clusters near each other on disk. We consider the major
classes of file systems and explore the challenges each
file system type encounters in achieving these two goals.

3.2 Allocation Strategies and Aging
The major file systems currently in use can be roughly
categorized as B-tree-based, such as XFS, ZFS, and
Btrfs, update-in-place, such as ext4, and log-structured,
such as F2FS [15]. The research file system that we con-
sider, BetrFS, is based on Bε -trees. Each of these fun-
damental designs creates different aging considerations,
discussed in turn below. In later sections, we present ex-
perimental validation for the design principles presented
below.

B-trees. The aging profile of a B-tree depends on the leaf
size. If the leaves are much smaller than the NTS, then
the B-tree will age as the leaves are split and merged, and
thus moved around on the storage device.

Making leaves as large as the NTS increases write



amplification, or the ratio between the amount of data
changed and the amount of data written to storage. In
the extreme case, a single-bit change to a B-tree leaf can
cause the entire leaf to be rewritten. Thus, B-trees are
usually implemented with small leaves. Consequently,
we expect them to age under a wide variety of workloads.

In Section 6, we show that the aging of Btrfs is in-
versely related to the size of the leaves, as predicted.
There are, in theory, ways to mitigate the aging due to
B-tree leaf movements. For example, the leaves could
be stored in a packed memory array [5]. However, such
an arrangement might well incur an unacceptable perfor-
mance overhead to keep the leaves arranged in logical
order, and we know of no examples of B-trees imple-
mented with such leaf-arrangement algorithms.

Write-Once or Update-in-Place Filesystems. When
data is written once and never moved, such as in update-
in-place file systems like ext4, sequential order is very
difficult to maintain: imagine a workload that writes two
files to disk, and then creates files that should logically
occur between them. Without moving one of the origi-
nal files, data cannot be maintained sequentially. Such
pathological cases abound, and the process is quite brit-
tle. As noted above, delayed allocation is an attempt to
mitigate the effects of such cases by batching writes and
updates before committing them to the overall structure.

Bε -trees. Bε -trees batch changes to the file system in
a sequence of cascading logs, one per node of the tree.
Each time a node overflows, it is flushed to the next
node. The seeming disadvantage is that data is writ-
ten many times, thus increasing the write amplification.
However, each time a node is modified, it receives many
changes, as opposed to B-tree, which might receive only
one change. Thus, a Bε -tree has asymptotically lower
write amplification than a B-tree. Consequently, it can
have much larger nodes, and typically does in implemen-
tation. BetrFS uses a Bε -tree with 4MiB nodes.

Since 4MiB is around the NTS for our storage devices,
we expect BetrFS not to age—which we verify below.

Log-structured merge trees (LSMs) [20] and other
write-optimized dictionaries can resist aging, depending
on the implementation. As with Bε -trees, it is essential
that node sizes match the NTS, the schema reflect logi-
cal access order, and enough writes are batched to avoid
heavy write amplification.

3.3 Measuring File System Fragmentation
This section explains the two measures for file system
fragmentation used in our evaluation: recursive scan la-
tency and dynamic layout score, a modified form of
Smith and Seltzer’s layout score [23]. These measures
are designed to capture both intra-file fragmentation and
inter-file fragmentation.

Recursive grep test. One measure we present in the fol-
lowing sections is the wall-clock time required to per-
form a recursive grep in the root directory of the file sys-
tem. This captures the effects of both inter- and intra-file
locality, as it searches both large files and large directo-
ries containing many small files. We report search time
per unit of data, normalizing by using ext4’s du output.
We will refer to this as the grep test.

Dynamic layout score. Smith and Seltzer’s layout
score [23] measures the fraction of blocks in a file or (in
aggregate) a file system that are allocated in a contigu-
ous sequence in the logical block space. We extend this
score to the dynamic I/O patterns of a file system. During
a given workload, we capture the logical block requests
made by the file system, using blktrace, and measure the
fraction that are contiguous. This approach captures the
impact of placement decisions on a file system’s access
patterns, including the impact of metadata accesses or
accesses that span files. A high dynamic layout score in-
dicates good data and metadata locality, and an efficient
on-disk organization for a given workload.

One potential shortcoming of this measure is that it
does not distinguish between small and large disconti-
guities. Small discontiguities on a hard drive should in-
duce fewer expensive mechanical seeks than large dis-
contiguities in general, however factors such as track
length, difference in angular placement and other geo-
metric considerations can complicate this relationship.
A more sophisticated measure of layout might be more
predictive. We leave this for further research. On SSD,
we have found that the length of discontiguities has a
smaller effect. Thus we will show that dynamic layout
score strongly correlates with grep test performance on
SSD and moderately correlates on hard drive.

4 Experimental Setup
Each experiment compares several file systems: BetrFS,
Btrfs, ext4, F2FS, XFS, and ZFS. We use the versions of
XFS, Btrfs, ext4 and F2FS that are part of the 3.11.10
kernel, and ZFS 0.6.5-234 ge0ab3ab, downloaded from
the zfsonlinux repository on www.github.com. We used
BetrFS 0.3 in the experiments1. We use default recom-
mended file system settings unless otherwise noted. Lazy
inode table and journal initialization are turned off on
ext4, pushing more work onto file system creation time
and reducing experimental noise.

All experimental results are collected on a Dell Op-
tiplex 790 with a 4-core 3.40 GHz Intel Core i7 CPU, 4
GB RAM, a 500 GB, 7200 RPM ATA Seagate Barracuda
ST500DM002 disk with a 4096 B block size, and a 240
GB Sandisk Extreme Pro—both disks used SATA 3.0.
Each file system’s block size is set to 4096 B. Unless

1Available at github.com/oscarlab/betrfs



otherwise noted, all experiments are cold-cache.
The system runs 64-bit Ubuntu 13.10 server with

Linux kernel version 3.11.10 on a bootable USB stick.
All HDD tests are performed on two 20GiB partitions
located at the outermost region of the drive. For the SSD
tests, we additionally partition the remainder of the drive
and fill it with random data, although we have prelimi-
nary data that indicates this does not affect performance.

5 Fragmentation Microbenchmarks
We present several simple microbechmarks, each de-
signed around a write/update pattern for which it is diffi-
cult to ensure both fast writes in the moment and future
locality. These microbenchmarks isolate and highlight
the effects of both intra-file fragmentation and inter-file
fragmentation and show the performance impact aging
can have on read performance in the worst cases.

Intrafile Fragmentation. When a file grows, there may
not be room to store the new blocks with the old blocks
on disk, and a single file’s data may become scattered.

Our benchmark creates 10 files by first creating each
file of an initial size, and then appending between 0 and
100 4KiB chunks of random data in a round-robin fash-
ion until each file is 400KiB. In the first round the initial
size is 400KiB, so each entire file is written sequentially,
one at a time. In subsequent rounds, the initial size be-
comes smaller, so that the number of round-robin chunks
increases until in the last round the data is written en-
tirely with a round-robin of 4KiB chunks. After all the
files are written, the disk cache is flushed by remount-
ing, and we wait for 90 seconds before measuring read
performance. Some file systems appear to perform back-
ground work immediately after mounting that introduced
experimental noise; 90 seconds ensures the file system
has quiesced.

The aging process this microbenchmark emulates is
multiple files growing in length. The file system must
allocate space for these files somewhere, but eventually
the file must either be moved or fragment.

Given that the data set size is small and the test is de-
signed to run in a short time, an fsync is performed after
each file is written in order to defeat deferred allocation.
Similar results are obtained if the test waits for 5 seconds
between each append operation. If fewer fsyncs are per-
formed or less waiting time is used, then the performance
differences are smaller, as the file systems are able to de-
lay allocation, rendering a more contiguous layout.

The performance of these file systems on an HDD and
SSD are summarized in Figures 2. On HDD, the layout
scores generally correlate (−0.93) with the performance
of the file systems. On SSD, the file systems all perform
similarly (note the scale of the y-axis). In some cases,
such as XFS, ext4, and ZFS, there is a correlation, albeit
at a small scale. For Btrfs, ext4, XFS, and F2FS, the

performance is hidden by read-ahead in the OS or in the
case of Btrfs also in the file system itself. If we disable
read-ahead, shown in Figure 2c, the performance is more
clearly correlated (−.67) with layout score. We do note
that this relationship on an SSD is still not precise; SSDs
are sufficiently fast that factors such as CPU time can
also have a significant effect on performance.

Because of the small amount of data and number of
files involved in this microbenchmark, we can visualize
the layout of the various file systems, shown in Figure 3.
Each block of a file is represented by a small vertical
bar, and each bar is colored uniquely to one of the ten
files. Contiguous regions form a colored rectangle. The
visualization suggests, for example, that ext4 both tries
to keep files and eventually larger file fragments sequen-
tial, whereas Btrfs and F2FS interleave the round robin
chunks on the end of the sequential data. This inter-
leaving can help explain why Btrfs and F2FS perform
the way they do: the interleaved sections must be read
through in full each time a file is requested, which by
the end of the test takes roughly 10 times as long. ext4
and XFS manage to keep the files in larger extents, al-
though the extents get smaller as the test progresses, and,
by the end of the benchmark, these file systems also have
chunks of interleaved data; this is why ext4 and XFS’s
dynamic layout scores decline. ZFS keeps the files in
multiple chunks through the test; in doing so it sacrifices
some performance in all states, but does not degrade.

Unfortunately, this sort of visualization doesn’t work
for BetrFS, because this small amount of data fits en-
tirely in a leaf. Thus, BetrFS will read all this data into
memory in one sequential read. This results is some read
amplification, but, on an HDD, only one seek.

Interfile Fragmentation. Many workloads read multi-
ple files with some logical relationship, and frequently
those files are placed in the same directory. Interfile frag-
mentation occurs when files which are related—in this
case being close together in the directory tree—are not
collocated in the LBA space.

We present a microbenchmark to measure the impact
of namespace creation order on interfile locality. It takes
a given “real-life” file structure, in this case the Tensor-
flow repository obtained from github.com, and replaces
each of the files by 4KiB of random data. This gives us
a “natural” directory structure, but isolates the effect of
file ordering without the influence of intrafile layout. The
benchmark creates a sorted list of the files as well as two
random permutations of that list. On each round of the
test, the benchmark copies all of the files, creating direc-
tories as needed with cp --parents. However, on the
nth round, it swaps the order in which the first n% of files
appearing in the random permutations are copied. Thus,
the first round will be an in-order copy, and subsequent



BetrFS Btrfs ext4 F2FS XFS ZFS

0 20 40 60 80 100
0

50

100

150

Rounds of 4 KiB chunks appended

G
re
p
co
st
(s
ec
/G

iB
)

(a) Recursive grep cost: HDD (lower is better).

0 20 40 60 80 100
0

2

4

6

8

10

12

Rounds of 4 KiB chunks appended

G
re
p
co
st
(s
ec
/G

iB
)

(b) Recursive grep cost: SSD (lower is better).

0 20 40 60 80 100
0

10

20

30

40

50

Rounds of 4 KiB chunks appended

G
re
p
co
st
(s
ec
/G

iB
)

(c) Recursive grep cost: SSD, no readahead (lower is better).

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Rounds of 4 KiB chunks appended

D
yn

am
ic
la
yo

ut
sc
or
e

(d) Dynamic layout score (higher is better).

Figure 2: Intrafile benchmark: 4KiB chunks are appended round-robin to sequential data to create 10 400KiB files.
Dynamic layout scores generally correlate with read performance as measured by the recursive grep test; on an SSD,
this effect is hidden by the readahead buffer.

rounds will be copied in a progressively more random
order until the last round is a fully random-order copy.

The results of this test are shown in Figure 4. On hard
drive, all the file systems except BetrFS and XFS show
a precipitous performance decline even if only a small
percentage of the files are copied out of order. F2FS’s
performance is poor enough to be out of scale for this
figure, but it ends up taking over 4000 seconds per GiB
at round 100; this is not entirely unexpected as it is not
designed to be used on hard drive. XFS is somewhat
more stable, although it is 13-35 times slower than drive
bandwidth throughout the test, even on an in-order copy.
BetrFS consistently performs around 1/3 of bandwidth,
which by the end of the test is 10 times faster than XFS,

and 25 times faster than the other file systems. The dy-
namic layout scores are moderately correlated with this
performance (−0.57).

On SSD, half the file systems perform stably through-
out the test with varying degrees of performance. The
other half have a very sharp slowdown between the in-
order state and the 10% out-of-order state. These two
modes are reflected in their dynamic layout scores as
well. While ext4 and ZFS are stable, their performance
is worse than the best cases of several other file systems.
BetrFS is the only file system with stable fast perfor-
mance; it is faster in every round than any other file sys-
tem even in their best case: the in-order copy. In this
cases the performance strongly correlates with the dy-



0 200 400 600 800 1,000 1,200
0

20
40
60
80
100

(a
)e

xt
4

ro
un

d

0 200 400 600 800 1,000 1,200
0

20
40
60
80
100

(b
)B

tr
fs

ro
un

d

0 200 400 600 800 1,000 1,200
0

20
40
60
80
100

(c
)X

FS
ro
un

d

0 200 400 600 800 1,000 1,200
0

20
40
60
80
100

(d
)Z

FS
ro
un

d

0 200 400 600 800 1,000 1,200
0

20
40
60
80
100

Relative LBA

(e
)F

2F
S

ro
un

d

Figure 3: Intrafile benchmark layout visualization. Each
color represents blocks of a file. The x-axis is the logi-
cal block address (LBA) of the file block relative to the
first LBA of any file block, and y-axis is the round of the
experiment. Rectangle sizes indicate contiguous place-
ment, where larger is better. The brown regions with
vertical lines indicate interleaved blocks of all 10 files.
Some blocks are not shown for ext4, XFS and ZFS.

namic layout score (−0.83).

6 Application Level Read-Aging: Git

To measure aging in the “real-world,” we create a work-
load designed to simulate a developer using git to work
on a collaborative project.

Git is a distributed version control system that enables
collaborating developers to synchronize their source
code changes. Git users pull changes from other devel-
opers, which then get merged with their own changes. In
a typical workload, a Git user may perform pulls multi-
ple times per day over several years in a long-running
project. Git can synchronize all types of file system
changes, so performing a Git pull may result in the cre-
ation of new source files, deletion of old files, file re-
names, and file modifications. Git also maintains its own
internal data structures, which it updates during pulls.

BetrFS Btrfs ext4
F2FS XFS ZFS

0 20 40 60 80 100
0

200

400

600

800

1,000

Percentage of files copied out-of-order

G
re

p
co

st
(s

ec
/G

iB
)

(a) Recursive grep cost: HDD (Lower is better).

0 20 40 60 80 100
0

20

40

60

80

100

Percentage of files copied out-of-order

G
re

p
co

st
(s

ec
/G

iB
)

(b) Recursive grep cost: SSD (Lower is better).

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Percentage of files copied out-of-order

D
yn

am
ic

la
yo

ut
sc

or
e

(c) Dynamic layout score (higher is better).

Figure 4: Interfile benchmark: The TensorFlow github
repository with all files replaced by 4KiB random data
and copied in varying degrees of order. Dynamic layout
scores again are predictive of recursive grep test perfor-
mance.



Thus, Git performs many operations which are similar
to those shown in Section 5 that cause file system aging.

We present a git benchmark that performs 10,000 pulls
from the Linux git repository, starting from the initial
commit. After every 100 pulls, the benchmark performs
a recursive grep test and computes the file system’s dy-
namic layout score. This score is compared to the same
contents copied to a freshly formatted partition.

On a hard disk (Figure 5a), there is a clear aging trend
in all file systems except BetrFS. By the end of the ex-
periment, all the file systems except BetrFS show per-
formance drops under aging on the order of at least 3x
and as much as 15x relative to their unaged versions.
All are at least 15x worse than BetrFS. In all of the ex-
periments in this section, F2FS ages considerably more
than all other file systems, commensurate with signifi-
cantly lower layout scores than the other file systems—
indicating less effective locality in data placement. The
overall correlation between grep performance and dy-
namic layout score is moderate, at −0.41.

On an SSD (Figure 5c), Btrfs and XFS show clear
signs of aging, although they converge to a fully aged
configuration after only about 1,000 pulls. While the ef-
fect is not as drastic as on HDD, in all the traditional file
systems we see slowdowns of 2x-4x over BetrFS, which
does not slow down. In fact, aged BetrFS on the HDD
outperforms all the other aged file systems on an SSD,
and is close even when they are unaged. Again, this per-
formance decline is strongly correlated (−0.79) with the
dynamic layout scores.

The aged and unaged performance of ext4 and ZFS
are comparable, and slower than several other file sys-
tems. We believe this is because the average file size de-
creases over the course of the test, and these file systems
are not as well-tuned for small files. To test this hypoth-
esis, we constructed synthetic workloads similar to the
interfile fragmentation microbenchmark (Section 5), but
varied the file size (in the microbenchmark it was uni-
formly 4KB). Figure 6 shows both the measured, average
file size of the git workload (one point is one pull), and
the microbenchmark. Overall, there is a clear relation-
ship between the average file size and grep cost.

The zig-zag pattern in the graphs is created by an au-
tomatic garbage collection process in Git. Once a certain
number of “loose objects” are created (in git terminol-
ogy), many of them are collected and compressed into
a “pack.” At the file system level, this corresponds to
merging numerous small files into a single large file. Ac-
cording to the Git manual, this process is designed to “re-
duce disk space and increase performance,” so this is an
example of an application-level attempt to mitigate file
system aging. If we turn off the git garbage collection, as
show in Figures 5b, 5d and 5f, the effect of aging is even
more pronounced, and the zig-zags essentially disappear.

On both the HDD and SSD, the same patterns emerge
as with garbage collection on, but exacerbated: F2FS
aging is by far the most extreme. ZFS ages consider-
ably on the HDD, but not on the SSD. ZFS on SSD and
ext4 perform worse than the other file systems (except
F2FS aged), but do not age particularly. XFS and Btrfs
both aged significantly, around 2x each, and BetrFS has
strong, level performance in both states. This perfor-
mance correlates with dynamic layout score both on SSD
(−0.78) and moderately so on HDD (−0.54).

We note that this analysis, both of the microbench-
marks and of the git workload, runs counter to the com-
monly held belief that locality is solely a hard drive issue.
While the random read performance of solid state drives
does somewhat mitigate the aging effects, aging clearly
has a major performance impact.

Git Workload with Warm Cache. The tests we have
presented so far have all been performed with a cold
cache, so that they more or less directly test the perfor-
mance of the file systems’ on-disk layout under various
aging conditions. In practice, however, some data will be
in cache, and so it is natural to ask how much the layout
choices that the file system makes will affect the overall
performance with a warm cache.

We evaluate the sensitivity of the git workloads to
varying amounts of system RAM. We use the same pro-
cedure as above, except that we do not flush any caches
or remount the hard drive between iterations. This test
is performed on a hard drive with git garbage collection
off. The size of the data on disk is initially about 280MiB
and grows throughout the test to approximately 1GiB.

The results are summarized in Figure 7. We present
data for ext4 and F2FS; the results for Btrfs, XFS and
ZFS are similar. BetrFS is a research prototype and un-
stable under memory pressure; although we plan to fix
these issues in the future, we omit this comparison.

In general, when the caches are warm and there is suf-
ficient memory to keep all the data in cache, then the read
is very fast. However, as soon as there is no longer suf-
ficient memory, the performance of the aged file system
with a warm cache is generally worse than unaged with
a cold cache. In general, unless all data fits into DRAM,
a good layout matters more than a having a warm cache.

Btrfs Node-Size Trade-Off. Btrfs allows users to spec-
ify the node size of its metadata B-tree at creation time.
Because small files are stored in the metadata B-tree, a
larger node size results in a less fragmented file system,
at a cost of more expensive metadata updates.

We present the git test with a 4KiB node size, the de-
fault setting, as well as 8KiB, 16KiB, 32KiB, and 64KiB
(the maximum). Figure 8a shows similar performance
graphs to Figure 5, one line for each node size. The 4KiB
node size has the worst read performance by the end of



BetrFS clean Btrfs clean ext4 clean F2FS clean XFS clean ZFS clean
BetrFS aged Btrfs aged ext4 aged F2FS aged XFS aged ZFS aged

0 2,000 4,000 6,000 8,000 10,000
0

200

400

600

Pulls accrued

G
re
p
co
st
(s
ec
/G

B
)

(a) HDD, git garbage collection on (Lower is better).

0 2,000 4,000 6,000 8,000 10,000
0

500

1,000

1,500

2,000

2,500

Pulls accrued

G
re
p
co
st
(s
ec
/G

B
)

(b) HDD, git garbage collection off (Lower is better).

0 2,000 4,000 6,000 8,000 10,000
0

5

10

15

20

Pulls accrued

G
re
p
co
st
(s
ec
/G

B
)

(c) SSD, git garbage collection on (Lower is better).

0 2,000 4,000 6,000 8,000 10,000
0

5

10

15

20

25

30

Pulls accrued

G
re
p
co
st
(s
ec
/G

B
)

(d) SSD, git garbage collection off (Lower is better).

0 2,000 4,000 6,000 8,000 10,000
0

0.2

0.4

0.6

0.8

1

Pulls Accrued

D
yn

am
ic
la
yo

ut
sc
or
e

(e) Dynamic layout score: git garbage collection on (Higher is
better).

0 2,000 4,000 6,000 8,000 10,000
0

0.2

0.4

0.6

0.8

1

Pulls Accrued

D
yn

am
ic
la
yo

ut
sc
or
e

(f) Dynamic layout score: git garbage collection off (Higher is
better).

Figure 5: Git read-aging experimental results: On-disk layout as measured by dynamic layout score generally is
predictive of read performance.



4KiB 8KiB 16KiB 32KiB
0

10

20

30

Average file size

G
re

p
co

st
(s

ec
s/

G
B

)

ext4 git
ext4 interfile

ZFS git
ZFS interfile

Figure 6: Average file size versus unaged grep costs
(lower is better) on SSD. Each point in the git line is
the average file size for the git experiment, compared to
a microbenchmark with all files set to a given size.

the test, and the performance consistently improves as
we increase the node size all the way to 64KiB. Figure 8b
plots the number of 4KiB blocks written to disk between
each test (within the 100 pulls). As expected, the 64KiB
node size writes the maximum number of blocks and the
4KiB node writes the least. We thus demonstrate—as
predicted by our model—that aging is reduced by a larger
block size, but at the cost of write-amplification.

7 Application Level Aging: Mail Server
In addition to the git workload, we evaluate aging with
the Dovecot email server. Dovecot is configured with
the Maildir backend, which stores each message in a file,
and each inbox in a directory. We simulate 2 users, each
having 80 mailboxes receiving new email, deleting old
emails, and searching through their mailboxes.

A cycle or “day” for the mailserver comprises of 8,000
operations, where each operation is equally likely to be a
insert or a delete, corresponding to receiving a new email
or deleting an old one. Each email is a string of random
characters, the length of which is uniformly distributed
over the range [1, 32K]. Each mailbox is initialized with
1,000 messages, and, because inserts and deletes are bal-
anced, mailbox size tends to stay around 1,000. We
simulate the mailserver for 100 cycles and after each cy-
cle we perform a recursive grep for a random string. As
in our git benchmarks, we then copy the partition to a
freshly formatted file system, and run a recursive grep.

Figure 9 shows the read costs in seconds per GiB of
the grep test on hard disk. Although the unaged versions
of all file systems show consistent performance over the
life of the benchmark, the aged versions of ext4, Btrfs,
XFS and ZFS all show significant degradation over time.
In particular, aged ext4 performance degrades by 4.4×,
and is 28× slower than aged BetrFS. XFS slows down
by a factor of 7 and Btrfs by a factor of 30. ZFS slows
down drastically, taking about 20 minutes per GiB by

768MiB 2048MiB
1024MiB Cold Cache Aged
1280MiB Cold Cache Unaged
1536MiB

0 2,000 4,000 6,000 8,000 10,000
0

200

400

600

800

Pulls Accrued
(a
)e

xt
4

G
re
p
co
st
(s
ec
/G

B
)

0 2,000 4,000 6,000 8,000 10,000
0

500

1,000

1,500

2,000

2,500

Pulls Accrued

(b
)F

2F
S

G
re
p
co
st
(s
ec
/G

B
)

Figure 7: Grep costs as a function of git pulls with warm
cache and varying system RAM on ext4 (top) and F2FS
(bottom). Lower is better.

cycle 20. However, the aged version of BetrFS does not
slow down. As with the other HDD experiments, dy-
namic layout score is moderately correlated (−0.63) with
grep cost.

8 Conclusion
The experiments above suggest that conventional wis-
dom on fragmentation, aging, allocation and file systems
is inadequate in several ways.

First, while it may seem intuitive to write data as few
times as possible, writing data only once creates a ten-
sion between the logical ordering of the file system’s cur-
rent state and the potential to make modifications with-
out disrupting the future order. Rewriting data multiple
times allows the file system to maintain locality. The



4Kib 8Kib 16Kib
32Kib 64Kib

0 2,000 4,000 6,000 8,000 10,000
0

100

200

300

400

500

Pulls Accrued

G
re
p
co
st
(s
ec
s/
G
B
)

(a) Grep cost at different node sizes (lower is better).

0 2,000 4,000 6,000 8,000 10,000
0

50

100

150

200

250

300

Pulls accrued

N
um

be
ro

f4
K
iB

bl
oc
ks

w
ri
tte

n
(t
ho

us
an
ds
)

(b) Write amplification at different node sizes (lower is better).

Figure 8: Aging and write amplification on Btrfs, with
varying node sizes, under the git aging benchmark.

overhead of these multiple writes can be managed by
rewriting data in batches, as is done in write-optimized
dictionaries.

For example, in BetrFS, data might be written as many
as a logarithmic number of times, whereas in ext4, it will
be written once, yet BetrFS in general is able to perform
as well as or better than an unaged ext4 file system and
significantly outperforms aged ext4 file systems.

Second, today’s file system heuristics are not able to
maintain enough locality to enable reads to be performed
at the disks natural transfer size. And since the natural
transfer size on a rotating disk is a function of the seek
time and bandwidth, it will tend to increase with time.
Thus we expect this problem to possibly become worse
with newer hardware, not better.

Btrfs BetrFS ext4
F2FS XFS ZFS
aged unaged

0 20 40 60 80 100
0

200

400

600

800

1,000

1,200

1,400

1,600

Operations performed
G
re
p
co
st
(s
ec
/G

iB
)

(a) Grep cost during mailserver workload (lower is better).

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Operations performed

D
yn

am
ic
la
yo

ut
sc
or
e

(b) Mailserver layout (higher is better).

Figure 9: Mailserver performance and layout scores.

We experimentally confirmed our expectation that
non-write-optimized file systems would age, but we were
surprised by how quickly and dramatically aging impacts
performance. This rapid aging is important: a user’s ex-
perience with unaged file systems is likely so fleeting that
they do not notice performance degradation. Instead, the
performance costs of aging are built into their expecta-
tions of file system performance.

Finally, because representative aging is a difficult goal,
simulating multi-year workloads, many research papers
benchmark on unaged file systems. Our results indicate
that it is relatively easy to quickly drive a file system into
an aged state—even if this state is not precisely the state
of the file system after, say, three years of typical use—
and this degraded state can be easily measured.



Acknowledgments
We thank the anonymous reviewers and our shepherd
Philip Shilane for their insightful comments on ear-
lier drafts of the work. Part of this work was done
while Jiao, Porter, Yuan, and Zhan were at Stony
Brook University. This research was supported in part
by NSF grants CNS-1409238, CNS-1408782, CNS-
1408695, CNS-1405641, CNS-1161541, IIS-1247750,
CCF-1314547, and VMware.

References
[1] Fragging wonderful: The truth about defragging

your ssd. http://www.pcworld.com/article/
2047513/fragging-wonderful-the-truth-

about-defragging-your-ssd.html. Accessed
25 September 2016.

[2] AGRAWAL, N., ARPACI-DUSSEAU, A. C., AND
ARPACI-DUSSEAU, R. H. Generating realistic
impressions for file-system benchmarking. ACM
Transactions on Storage (TOS)5, 4 (Dec. 2009),
art. 16.

[3] AGRAWAL, N., BOLOSKY, W. J., DOUCEUR,
J. R., AND LORCH, J. R. A five-year study of
file-system metadata. Trans. Storage 3, 3 (Oct.
2007).

[4] AHN, W. H., KIM, K., CHOI, Y., AND PARK, D.
DFS: A de-fragmented file system. In Proceedings
of the IEEE International Symposium on
Modeling, Analysis and Simulation of Computer
and Telecommunications Systems (MASCOTS)
(2002), pp. 71–80.

[5] BENDER, M. A., DEMAINE, E., AND
FARACH-COLTON, M. Cache-oblivious B-trees.
SIAM J. Comput. 35, 2 (2005), 341–358.

[6] BONWICK, J., AND MOORE, B. ZFS: The last
word in file systems. In SNIA Developers
Conference (Santa Clara, CA, USA, Sept. 2008).
Slides at
http://wiki.illumos.org/download/

attachments/1146951/zfs_last.pdf, talk at
https://blogs.oracle.com/video/entry/

zfs_the_last_word_in. Accessed 10 May
2016.

[7] CARD, R., TS’O, T., AND TWEEDIE, S. Design
and implementation of the Second Extended
Filesystem. In Proceedings of the First Dutch
International Symposium on Linux (Amsterdam,
NL, Dec. 8–9 1994), pp. 1–6.
http://e2fsprogs.sourceforge.net/

ext2intro.html.

[8] CHEN, F., KOUFATY, D. A., AND ZHANG, X.
Understanding intrinsic characteristics and system
implications of flash memory based solid state
drives. In Proceedings of the Eleventh
International Joint Conference on Measurement
and Modeling of Computer Systems (New York,
NY, USA, 2009), SIGMETRICS ’09, ACM,
pp. 181–192.

[9] DOWNEY, A. B. The structural cause of file size
distributions. In Proceedings of the 2001 ACM
SIGMETRICS International Conference on
Measurement and Modeling of Computer Systems
(New York, NY, USA, 2001), SIGMETRICS ’01,
ACM, pp. 328–329.

[10] ESMET, J., BENDER, M. A., FARACH-COLTON,
M., AND KUSZMAUL, B. C. The TokuFS
streaming file system. In Proceedings of the
USENIX Conference on Hot Topics in Storage and
File Systems (HotStorage) (2012).

[11] JANNEN, W., YUAN, J., ZHAN, Y.,
AKSHINTALA, A., ESMET, J., JIAO, Y., MITTAL,
A., PANDEY, P., REDDY, P., WALSH, L.,
BENDER, M., FARACH-COLTON, M., JOHNSON,
R., KUSZMAUL, B. C., AND PORTER, D. E.
BetrFS: A right-optimized write-optimized file
system. In Proceedings of the USENIX Conference
on File and Storage Technologies (FAST) (Santa
Clara, CA, USA, Feb. 22–25 2015), pp. 301–315.

[12] JANNEN, W., YUAN, J., ZHAN, Y.,
AKSHINTALA, A., ESMET, J., JIAO, Y., MITTAL,
A., PANDEY, P., REDDY, P., WALSH, L.,
BENDER, M., FARACH-COLTON, M., JOHNSON,
R., KUSZMAUL, B. C., AND PORTER, D. E.
BetrFS: Write-optimization in a kernel file system.
ACM Transactions on Storage (TOS) 11, 4 (Nov.
2015), art. 18.

[13] JI, C., CHANG, L.-P., SHI, L., WU, C., LI, Q.,
AND XUE, C. J. An empirical study of file-system
fragmentation in mobile storage systems. In 8th
USENIX Workshop on Hot Topics in Storage and
File Systems (HotStorage 16) (Denver, CO, 2016),
USENIX Association.

[14] JUNG, M., AND KANDEMIR, M. Revisiting
widely held ssd expectations and rethinking
system-level implications. In Proceedings of the
ACM SIGMETRICS International Conference on
Measurement and Modeling of Computer Systems
(SIGMETRICS) (New York, NY, USA, 2013),
ACM, pp. 203–216.



[15] LEE, C., SIM, D., HWANG, J., AND CHO, S.
F2FS: A new file system for flash storage. In
Proceedings of the USENIX Conference on File
and Storage Technologies (FAST) (Santa Clara,
CA, USA, Feb. 22–25 2015), pp. 273–286.

[16] MA, D., FENG, J., AND LI, G. A survey of
address translation technologies for flash
memories. ACM Comput. Surv. 46, 3 (Jan. 2014),
36:1–36:39.

[17] MATHUR, A., CAO, M., BHATTACHARYA, S.,
DILGER, A., TOMAS, A., AND VIVIER, L. The
new ext4 filesystem: current status and future
plans. In Ottowa Linux Symposium (OLS)
(Ottowa, ON, Canada, 2007), vol. 2, pp. 21–34.

[18] MCKUSICK, M. K., JOY, W. N., LEFFLER, S. J.,
AND FABRY, R. S. A fast file system for UNIX.
ACM Transactions on Computer Systems (TOCS)
2, 3 (Aug. 1984), 181–197.

[19] MIN, C., KIM, K., CHO, H., LEE, S., AND EOM,
Y. I. SFS: random write considered harmful in
solid state drives. In Proceedings of the USENIX
Conference on File and Storage Technologies
(FAST) (San Jose, CA, USA, Feb. 14–17 2012),
art. 12.

[20] O’NEIL, P., CHENG, E., GAWLIC, D., AND
O’NEIL, E. The log-structured merge-tree
(LSM-tree). Acta Informatica 33, 4 (1996),
351–385.
http://dx.doi.org/10.1007/s002360050048doi: 10.1007/s002360050048.

[21] RODEH, O., BACIK, J., AND MASON, C.
BTRFS: The Linux B-tree filesystem. ACM
Transactions on Storage (TOS) 9, 3 (Aug. 2013),
art. 9.

[22] ROSELLI, D., LORCH, J. R., AND ANDERSON,
T. E. A comparison of file system workloads. In
Proceedings of the Annual Conference on USENIX
Annual Technical Conference (Berkeley, CA,
USA, 2000), ATEC ’00, USENIX Association,
pp. 4–4.

[23] SMITH, K. A., AND SELTZER, M. File system
aging — increasing the relevance of file system
benchmarks. In Proceedings of the ACM
SIGMETRICS International Conference on
Measurement and Modeling of Computer Systems
(SIGMETRICS) (Seattle, WA, June 15–18 1997),
pp. 203–213.

[24] SWEENEY, A., DOUCETTE, D., HU, W.,
ANDERSON, C., NISHIMOTO, M., AND PECK, G.
Scalability in the XFS file system. In Proceedings
of the USENIX Annual Technical Conference (San
Diego, CA, USA, Jan.22–26 1996), art. 1.

[25] TWEEDIE, S. EXT3, journaling filesystem. In
Ottowa Linux Symposium (Ottowa, ON, Canada,
July 20 2000).

[26] WIRZENIUS, L., OJA, J., STAFFORD, S., AND
WEEKS, A. Linux System Administrator’s Guide.
The Linux Documentation Project, 2004.
http://www.tldp.org/LDP/sag/sag.pdf.
Version 0.9.

[27] YUAN, J., ZHAN, Y., JANNEN, W., PANDEY, P.,
AKSHINTALA, A., CHANDNANI, K., DEO, P.,
KASHEFF, Z., WALSH, L., BENDER, M.,
FARACH-COLTON, M., JOHNSON, R.,
KUSZMAUL, B. C., AND PORTER, D. E.
Optimizing every operation in a write-optimized
file system. In Proceedings of the USENIX
Conference on File and Storage Technologies
(FAST) (Santa Clara, CA, USA, Feb. 22–25 2016),
pp. 1–14. https://www.usenix.org/
conference/fast16/technical-

sessions/presentation/yuan.

[28] ZHU, N., CHEN, J., AND CHIUEH, T.-C. TBBT:
Scalable and accurate trace replay for file server
evaluation. In Proceedings of the USENIX
Conference on File and Storage Technologies
(FAST) (Santa Clara, CA, USA, Feb. 16–19 2005),
pp. 323–336.


