
Published in the 2nd IFIP/IEEE International Workshop on Analytics for Network and Service Management (AnNet‘17)

Random Access in Nondelimited Variable-length

Record Collections for Parallel Reading with Hadoop

Jason Anderson

Clemson University

jwa2@clemson.edu

Christopher Gropp

Clemson University

cgropp@clemson.edu

Linh Ngo

Clemson University

lngo@clemson.edu

Amy Apon

Clemson University

aapon@clemson.edu

Abstract—The industry standard Packet CAPture (PCAP)
format for storing network packet traces is normally only
readable in serial due to its lack of delimiters, indexing, or
blocking. This presents a challenge for parallel analysis of large
networks, where packet traces can be many gigabytes in size. In
this work we present RAPCAP, a novel method for random access
into variable-length record collections like PCAP by identifying
a record boundary within a small number of bytes of the access
point. Unlike related heuristic methods that can limit scalability
with a nonzero probability of error, the new method offers
a correctness guarantee with a well formed file and does not
rely on prior knowledge of the contents. We include a practical
implementation of the algorithm with an extension to the Hadoop
framework, and a performance comparison to serial ingestion.
Finally, we present a number of similar storage types that could
utilize a modified version of RAPCAP for random access.

I. INTRODUCTION

In the fields of computer networking administration, re-
search, and security, the ability to capture a record of traffic at
a certain point in the network for later analysis is essential.
Common tasks include malware classification[1], intrusion
detection[2], and discovering anomalous network activity[3].
In real world systems these network traces can quickly become
very large; a typical 10Gb/s link can receive up to 4.5TB per
hour. As 40, 56, and 100 Gb/s links become more common
in commodity machines, the size of comprehensive network
traces in arbitrary time windows will grow as well.

The industry standard in network trace files is the Packet
CAPture (PCAP) file format. Tools such as TCPdump[4] and
Wireshark[5] capture traffic on one or more network interfaces
and append each packet to the tail of a PCAP file. Many appli-
cations have been written to analyze PCAP traces, including
open source solutions like Snort[6] and TCPtrace[7]. More
recently, Hadoop-based distributed analysis tools[8][9] have
made working with very large trace files more manageable.

Due to the PCAP format’s use of record pointers rather
than easily distinguishable delimiters or indexing, the standard
mechanism for accessing data is a sequential read from the
beginning of the file. Being able to arbitrarily choose a point
in the file to begin reading enables a number of useful abilities.
If the records are ordered by timestamp or some field of the
payload data, random access enables a binary search within the
file. Tail access becomes a matter of seeking to a point suitably
close to the end and reading forward. The primary use case
that we envision, however, is to enable parallel ingestion of
PCAP files into a distributed analytics package.

Fig. 1. The record-oriented structure of the PCAP file format. Records and
headers are appended sequentially without delimiters or indexing.

The task of random access in a trace file can be challenging
to do correctly. Efforts have been made to apply heuristic
algorithms to identifying the first packet header within a
substring of the binary trace file; however, as we will show
in this work, these algorithms can be prone to incorrectly
identifying the start point and misinterpreting the following
data. Past efforts have also relied heavily on metadata and
assumptions about the trace characteristics that are not readily
identifiable from the trace file without reading it first.

In this work we present Random Access in PCAPs (RAP-
CAP), an algorithm that identifies record headers within a
PCAP file at any given starting point. RAPCAP provides
a correctness guarantee that enables scalable file reading in
distributed platforms, and does not require external metadata
or inspection of record contents. Aside from the algorithm, the
main contributions of this paper are:

• an analysis of real world datasets to demonstrate how
inaccurate heuristic identification of record boundaries
limits the scalability of distributed processing;

• a comprehensive study of the boundary conditions
possible within well-formed input and how RAPCAP
guarantees correctness; and

• a description and performance study of a Hadoop
implementation of the RAPCAP algorithm.

Finally, we outline a number of other record storage
formats similar to PCAP that could employ a slightly modified
version of RAPCAP for random access and parallel reading.

II. BACKGROUND

1) The PCAP file format: A network trace in the PCAP
format[4] contains two structural components: the global
header and zero or more packet headers, as shown in Figure 1.
The global header spans 24 octets at the beginning of the file,
and contains fields that describe the libpcap version, byte order,
time zone, timestamp accuracy, network type, and snap len,
the maximum number of bytes that are preserved from any

TABLE I. DATASET FEATURE COMPARISON

name description MB packets B/pkt

datacenter 500-node university datacenter [19] 1,982 19.85M 100

internet CAIDA Internet backbone trace[13] 1,895 30.25M 63

mptcp Multipath smartphone TCP traces [18] 280 2.85M 98

mpi NAS Parallel Benchmark FFT in MPI 294 0.25M 1176

hadoop Hadoop-MR on Wikipedia dataset 1,274 0.19M 6705

download Download of a large PCAP file 1,245 0.13M 9577

p2p Two-way multipeer Bittorrent traffic 1,416 1.39M 1019

netflix Streaming 4k video from Netflix 1,391 0.75M 1855

captured packet. Each 16-octet packet header precedes the
captured snapshot of a packet, and contains three pieces of
information: the timestamp, the incl len field that specifies
how many bytes of the snapshot follow the header, and the
orig len field that records the length of the original packet.

As a network trace is captured, each packet header and
snapshot are appended to the end of the file, and no previous
part of the file is modified. It is an efficient method of storing
variable-length data; however, since snapshots can contain any
sequence of bytes and PCAP files lack indexing, it can be
difficult to identify the start of a packet record.

2) Hadoop: Hadoop is a software framework that enables
distributed processing of massive amount of data across a clus-
ter of commodity computer systems[10]. The core components
of Hadoop include a file management system called Hadoop
Distributed File System (HDFS)[11] and the MapReduce ap-
plication framework (Hadoop-MR)[12]. Large files in HDFS
are divided into blocks and replicated across the cluster to
provide redundancy. Hadoop-MR enables users to operate on
these data blocks in parallel. The simplicity and scalability of
MapReduce comes at the cost of having to follow a strict map-
reduce workflow with limited knowledge and communication
among executing processes. However, because workers operate
on individual blocks of the data, there must be a scheme to
identify a starting point for each block.

III. MOTIVATING ANALYSIS

The challenge of parsing an arbitrary substring of a PCAP
file is that in addition to the real record headers in the
trace, every string of 16 consecutive bytes in the file can be
interpreted as a possible header. Most of these interpretations
do not meet the criteria for classification as a candidate header.
However, because record payloads can contain any byte string,
there is a nonzero probability of random data and injected
headers within the packet contents meeting the criteria.

Prior to this work, two methods of locating a packet
header after random access have been widely used, both of
which employ heuristic algorithms that rely on highly probable
assumptions about the data to produce correct output. Lee
et al. [15] propose using sensible differences in sequential
timestamps to identify header candidates. Lukashin et al. [16]
use a method that inspects packet contents for conformity to
Ethernet specifications. Our concern with these methods is that
misidentification of a packet header within the trace could lead
to erroneous output. In this section, we assess the reliability of
these heuristics with large packet traces from different sources.

A. Algorithm Characteristics

In both heuristic algorithms, the capture file is parsed byte-
by-byte from the point of random access, interpreting the next

16 bytes as a record header (header A) and using the length
specified by header A to identify the start of the following
record (header B). A set of assertions are then applied to
identify or discard the solution. For the Lee algorithm, the
conditions are:

• ts min < A.timestamp < ts max and
ts min < B.timestamp < ts max,
where ts min and ts max are input parameters in-
dicating the extremes of the trace timestamp range,

• B.timestamp−A.timestamp ≤ ts delta,
where ts delta is an input parameter indicating the
longest interpacket gap in the trace, and

• A.orig len−A.incl len > snap len and
B.orig len−B.incl len > snap len,
where snap len is the maximum record length.

We note that the Lee algorithm assumes absolute packet
ordering by timestamp, which is not guaranteed and is de-
pendent on the libpcap implementation. The algorithm also
depends on timestamp metadata that is not provided by the
PCAP format; specifically, it requires the upper and lower
bounds on timestamps in the trace, as well as the maximum gap
between two consecutive records. The authors propose a gap
value of 1 second, which is likely in many packet traces. How-
ever, any default value may result in falsely negative header
identifications in traces containing relatively rare events.

In contrast, Lukashin et al. make no assumptions about the
timestamps within the trace, and instead employ the following
conditions for header identification:

• A.incl len = A.orig len,

• B.incl len = B.orig len,

• 42 ≤ A.incl len ≤ 65535, indicating the minimum
and maximum size of possible captured packets,

• A.payload[12 : 13] is one of the 1471 valid Ethernet
type codes as specified by [17] or the length of the
payload l, where l = A.orig len− 14.

The Lukashin algorithm assumes that packet contents are
wholly included in the trace, which is not typical in many
anonymized datasets. Furthermore, relying on rigid assump-
tions about a packet’s contents makes the algorithm difficult
to adapt to other network packet types, but we assume that to
be beyond the scope of their work.

Both algorithms require the snap len parameter from the
global header. In theory, the tcpdump default value of 65535
bytes could be assumed, since failure to locate a packet header
may indicate an insufficient sample window. However, either
algorithm could return a false positive within a sample that
does not contain a real header. This may only apply to use
cases such as reading a fragment of a corrupted PCAP file,
which is outside the scope of record detection algorithms.

B. Datasets

To compare the accuracy of the heuristic algorithms, we
chose datasets to represent a range of characteristics typical
of real world network analytics problems. Table I shows the
features of each set. The mpi, p2p, hadoop, and download
datasets were recorded in our lab, while the other datasets are

2

Algorithm 1 Find first header in PCAP split

1: procedure ISVALID(h, snap len)
2: if h.orig len > 0 and
3: h.incl len = MIN(h.orig len, snap len) then
4: return true
5: end if
6: return false
7: end procedure
8: procedure FINDSTART(file, snap len)
9: solutions ← MINHEAP()

10: packet len ← snap len+HLEN
11: chunk ← file.READ(packet len+HLEN− 1)
12: for all i in (0..packet len− 1) do
13: h ← HEADER(chunk[i, i+HLEN))
14: if ISVALID(h, snap len) then
15: next i ← i+ h.incl len+HLEN
16: s ← SOLUTION(i, next i)
17: solutions.PUSH(s)
18: end if
19: end for
20: if |solutions| = 0 then
21: return no solution
22: end if
23: offset ← 0
24: while |chunk| ≥ HLEN do
25: max i ← offset + |chunk|−HLEN
26: while solutions.PEEK().next i ≤ max i do
27: s ← solutions.POP()
28: while |solutions| > 0 and
29: solutions.PEEK().next i = s.next i do
30: s.last i ← s.next i
31: solutions.POP()
32: end while
33: header i ← s.next i− offset
34: h ← HEADER(chunk[header i,HLEN))
35: if ISVALID(h, snap len) then
36: if |solutions| = 0 then
37: return s.last i
38: end if
39: s.next i ← s.last i+h.incl len+HLEN
40: solutions.PUSH(s)
41: end if
42: end while
43: offset ← offset + packet len
44: carry ← chunk[packet len, |chunk|)
45: chunk ← carry ⋆ file.READ(packet len)
46: end while
47: return parallel solutions
48: end procedure

Tree solutions present an additional challenge; it can be
difficult to tell which parent of a candidate is part of the true
solution. This can be seen in Figure 5: nodes 164 and 218 both
point to node 240, but without information outside the scope of
the parser, it cannot be known which is correct. Furthermore, it
is also possible that the real parent of a true solution candidate
is outside the read window. We refer to these potential parents
as ambiguous. In a read window that only guarantees inclusion
of one node from the true solution, all nodes except the highest
indexed true solution candidate are ambiguous.

Fig. 5. Candidate record headers within a PCAP string, where the incl len

field identifies the starting byte of the next record.

V. THE RAPCAP ALGORITHM

In order to find the correct starting point within a substring
of a PCAP file, we must eliminate all false and ambiguous
nodes from a comprehensive set of candidates. In this section,
we describe the RAPCAP algorithm and the logic used to
ensure that the identified node is an unambiguous member of
the true solution. The general form is as follows:

1) Sample enough bytes of the input to guarantee the
inclusion of a complete header;

2) Parse the sample for valid headers to build a set of
candidate solutions;

3) Validate the header at each solution’s next index
while within the sample window;

4) Read further into the file to validate more candidates;
5) Repeat #3 and #4 until reduced to a single solution.

When only one solution remains, we can be sure that the
last validated header index is part of the true solution. If we
are unable to narrow the solution set to a single item, then
we have parallel solutions, an error condition that must be
handled differently depending on the implementation. If step
2 finds no valid headers, it is an error condition that indicates a
malformed PCAP file. Note that this algorithm is not intended
to detect malformation, and assumes well-formed input.

We define a string of 16 bytes as valid packet header if
it meets two criteria, which are based on the definition of the
PCAP file format:

1) orig len > 0
2) incl len = min(orig len, snap len)

Assertion 1 is not strictly necessary, but simply eliminates
many false candidate solutions in real world traces. Assertion
2 limits the value of incl len to one of two possible scenarios:
either the entire original packet was captured, or the packet was
truncated to a length equal to snap len. Algorithm 1, lines 1-
7 describe this procedure. Note that we make no assumptions
based on the packet contents or about relationships between
headers that are not explicitly defined by the format.

In the RAPCAP algorithm, it is unnecessary to store the
entire tree, as the only file index that needs to be reported is an
unambiguous member of the true solution. Candidate solutions
are stored as a tuple containing two fields: next i, the next
index referred to by this solution; and last i, the last validated
header index.

4

A. Phase 1: Initial Candidates

In a well formed trace, no packet data may be longer than
the file’s snap len. We refer to the number of bytes spanned
by a maximum-sized packet and its header as packet len.
We assert that a sample of length packet len + HLEN − 1
must include at least one complete header from the file’s true
solution. Therefore, parsing the sample for all valid headers
must yield a nonempty set of potential solutions, of which
one or more are members of the true solution. In Algorithm
1, lines 9-19, we create the initial set of candidate solutions.
These candidates form the leaves of solution trees, which will
be pruned and converged in Phase 2.

In a solution tuple, the next i field is used as the com-
parator, so that by always popping the minimum value, we test
solution candidates in order of file index.

B. Phase 2: Iterative Solution Pruning

Narrowing the candidate solutions is a straightforward
process; we iteratively test each solution until it refers to an
index with an invalid header. To accomplish this, we use two
nested loops.

The outer loop (lines 23-25 and 43-46) progressively reads
samples of size packet len from the file into chunk, while
offset tracks the position relative to the starting point. The
last header index that can be tested as a whole header is
16 bytes from the end of the sample, so with each iteration,
the remaining 15 bytes are prepended to the next sample to
continue testing seamlessly (lines 44-45). The loop stops if
there is insufficient remaining input to parse as a header.

The inner loop (lines 26-42) continues until the next solu-
tion index is beyond the current sample window, at which point
another sample is needed. The solution with the minimum
next i is popped from the solution set, and then all other
solutions with the same next i are popped to coalesce the
children in a tree solution to a single parent node (lines 27-
31). The data at that index is interpreted as a header and
validated (lines 32-34). If it is valid, one of two cases must be
true. If it is the only solution remaining, then the index that
was just validated must be unambiguous and part of the true
solution, so it is returned as the correct starting point. If more
solutions remain, then this solution is updated to point at the
next candidate header, and pushed back onto the minheap.

VI. IMPLEMENTATION

In Hadoop, the HDFS file system splits large files across
blocks, which have a configurable default of 128 or 256 MiB.
These blocks are replicated across compute nodes for redun-
dancy and data locality. In the MapReduce framework, the
blocks are abstracted as InputSplits with logical boundaries,
which may not align with block boundaries. The RecordReader
class adjusts the InputSplit boundaries to suit the data type. An
example of this is the Hadoop native LineRecordReader, which
supports text processing by adjusting InputSplit boundaries to
coincide with the closest newline character.

One method of adjusting the InputSplit boundaries is at the
time of instantiating a RecordReader object, where the Hadoop
task is responsible for determining its own InputSplit bound-
aries. For example, LineRecordReader adjusts the InputSplit

start index forward to the first character after the first newline
in the block, and the end index is advanced to include the first
newline character of the next block. In most cases, finding
the start index involves reading from the local disk, while the
length is found by reading data from another HDFS block that
may not be local to the task.

We employ a similar method for local split identifica-
tion using RAPCAP. The PcapRecordReader object is tasked
with identifying the boundary indices, which are the first
unambiguous headers of the task’s InputSplit and the next
InputSplit. Since map tasks do not typically communicate with
each other, it is necessary for each boundary to be computed
twice, similar to LineRecordReader. However, because the
maximum length of PCAP records is typically no more than
64KB, and we can identify the correct header within 1-3 reads
with high probability, the amount of data processed twice is
typically small. Modern Hadoop clusters use HDFS blocks
of 128MB or 256MB, and between 0.05% to 0.30% of data
is read to determine split boundaries. One thing to note is
that the value of snap len must be remotely read by each
PcapRecordReader object, or communicated to the map tasks
in some other way such as the distributed cache.

An alternative to requiring each PcapRecordReader to
determine the boundaries of its own InputSplit is to glob-
ally compute all of the boundaries before the job starts by
overriding the getSplits() method provided by FileInputFormat.
Advantages of this method include only needing to compute
each boundary once rather than twice, and reading the input
file header one time rather than once for every HDFS block
of the input file. However, because of the high overhead of
small reads between HDFS datanodes, serializing this process
can take significant time to complete before the job can start.

A. Methodology

We assessed the performance of parallel ingestion with
Hadoop using a 16-node cluster, with each machine having
dual 16-core Intel Xeon E5-2650 CPUs, 256GB RAM, 10Gb
Ethernet, and 12x1 TB hard drives. The data processed was a
full version of the CAIDA Internet backbone trace[13], which
is one 126.5GB file with 2.03 billion packets, which occupies
970 HDFS blocks. We used Hadoop 2.7.1, and data was
distributed with a replication factor of 3. Our implementation
modifies a fork of the RIPE-NCC packet processing library[8].
The source code is available for use[14] and has been offered
to the upstream project for inclusion in future versions.

B. Performance

In our speedup assessment, we performed a simple packet
count using both the default non-splitting PcapRecordReader
and the RAPCAP-modified version to determine split bound-
aries. To fairly account for the more distributed reduce opera-
tion, the entire run length of the job was measured. On the test
cluster, the mean parallel runtime was 78.8 seconds, a speedup
of 5.1x over the serial runtime.

Compared to heuristic algorithms, the theoretical perfor-
mance of detecting a header boundary with RAPCAP can be
relatively low. Both the Lee and Lukashin algorithms finish
determining a header in O(n) time with a single sample of

5

