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Abstract. This paper addresses the problem of enabling a robot to repre-
sent and recreate visual information through physical motion, focusing on
drawing using pens, brushes, or other tools. This work uses ergodicity as
a control objective that translates planar visual input to physical motion
without preprocessing (e.g., tmage processing, motion primitives). We
achieve comparable results to existing drawing methods, while reducing
the algorithmic complexity of the software. We demonstrate that optimal
ergodic control algorithms with different time-horizon characteristics (in-
finitesimal, finite, and receding horizon) can generate qualitatively and
stylistically different motions that render a wide range of visual infor-
mation (e.g., letters, portraits, landscapes). In addition, we show that
ergodic control enables the same software design to apply to multiple
robotic systems by incorporating their particular dynamics, thereby re-
ducing the dependence on task-specific robots. Finally, we demonstrate
physical drawings with the Bazter robot.

Keywords: Robot art, Motion control, Automation

1 Introduction

An increasing amount of research is focused on using control theory as a gener-
ator of artistic expressions for robotics applications [8]. There is a large interest
in enabling robots to create art, such as drawing [5], dancing [7], or writing.
However, the computational tools available in the standard software repertoire
are generally insufficient for enabling these tasks in a natural and interpretable
manner. This paper focuses on enabling robots to draw and write by translating
raw visual input into physical actions.

Drawing is a task that does not lend itself to analysis in terms of trajectory
error. Being at a particular state at a particular time does not improve a drawing,
and failing to do so does not make it worse. Instead, drawing is a process where
the success or failure is determined after the entire time history of motion has
been synthesized into a final product. How should “error” be defined for purpose
of quantitative engineering decisions and software automation? Similarly, motion
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primitives can be an important foundation for tasks such as drawing (e.g., hatch
marks to represent shading), but where should these primitives come from and
what should be done if a robot cannot physically execute them? Questions such
as these often lead to robots and their software being co-designed with the task in
mind, leading to task-specific software enabling a task-specific robot to complete
the task. How can we enable drawing-like tasks in robots as they are rather
than as we would like them to be? And how can we do so in a manner that
minimizes tuning (e.g., in the case of drawing the same parameters can be used
for both faces and landscapes) while also minimizing software complexity? In this
paper we find that the use of ergodic metrics—and the resulting ergodic control—
reduces the dependence on task-specific robots (e.g., robots mechanically designed
with drawing in mind), reduces the algorithmic complexity of the software that
enables the task (e.g., the number of independent processes involved in drawing
decreases), and enables the same software solution to apply to multiple robotic
imstantiations.

Moreover, this paper touches on a fundamental issue for many modern robotic
systems—the need to communicate through motion. Symbolic representations of
information are the currency of communication, physically transmitted through
whatever communication channels are available (electrical signals, light, body
language, written language and related symbolic artifacts such as drawings). The
internal representation of a symbol must both be perceivable given a sensor suite
(voltage readings, cameras, tactile sensors) and actionable given an actuator suite
(signal generators, motors). Insofar as all systems can execute ergodic control, we
hypothesize that ergodic metrics provide a nearly-universal, actionable measure
of spatially-defined symbolic information. Specifically, in this paper we see that
both letters (represented in a font) and photographs can be rendered by a robotic
system working within its own particular physical capabilities. For instance, a
hand-writing-like rendering of the letter N (seen later in Figure 2)is seen to be
a consequence of putting a premium on efficiency for a first-order dynamical
system rendering the letter. Moreover, in the context of drawing photographs
(of people and landscapes), we see a) that other drawing algorithms implicitly
optimize (or at least improve) ergodicity, and b) using ergodic control, multiple
dynamical systems approach rendering in dramatically different manners with
similar levels of success.

We begin by introducing ergodicity in Section 2.1, including a discussion of its
characteristics. Section 2.2 includes an overview and comparison of the ergodic
control methods used in this paper. We present some examples in Section 3,
including comparisons of the results of the different ergodic control schemes
introduced in the previous section, comparisons with existing robot drawing
methods, and experiments using the Baxter robot.
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2 Methods

2.1 Ergodicity

Ergodicity compares the spatial statistics of a trajectory to the spatial statistics
of a desired spatial distribution. A trajectory is ergodic with respect to a spatial
distribution if the time spent in a region is proportional to the density of the
spatial distribution. In previous work, the spatial distribution has represented
information density distributions [15, 14]. When used for information density
distribution, it encodes the idea that the higher the information density of a
region in the distribution, the more time spent in that region, shown in Figure 1.
The spatial distributions used in this

paper represent the spatial distribu-

tion of the symbol or image being

recreated through motion, introduced

in [17]. The more intense the color in

the image, the higher the value of the x(T)
spatial distribution. Thus, ergodicity
encodes the idea that the trajectory
represents the path of a tool (e.g.,
marker, paintbrush, etc.), where the
longer the tool spends drawing in the
region the greater the intensity of the
color in that region.

To evaluate the ergodicity, we de-
fine the ergodic metric to be the dis-
tance from ergodicity € of the time-
averaged trajectory from the spatial distribution ¢(z). The ergodicity of the
trajectory is computed as the sum of the weighted squared distance between the
Fourier coefficients of the spatial distribution ¢, and the distribution represent-
ing the time-averaged trajectory ci, defined below:
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Fig. 1. An illustration of ergodic trajecto-
ries. Ergodic trajectories spend time in the
workspace proportional to the spatial dis-
tribution.

where K is the number of coefficients calculated along each of the n dimensions,

and k is a multi-index k& = (k1,...,kn). The coefficients A; weight the lower

frequency information higher and are defined as Ay = W, where s = ”7“
The Fourier basis functions are determined as below:

1T ki
Fy(x) = o Hcos ( Lﬂ—:vz) , (2)
=1 g

where hy, is a normalizing factor as defined in [13]. The spatial Fourier coefficients
are computed from the inner product

i = /X $(c) Fi(z)de, (3)
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and the Fourier coefficients of the trajectory z(-) are evaluated as

o= | P, (4)

where T is the final time of the trajectory [13].

2.2 Ergodic Control Algorithms

To demonstrate the different styles of resulting motions obtained from different
methods, we compare the results of three ergodic control algorithms. All three
algorithms generate trajectories that reduce the ergodic cost in (1), but each
exhibits different time-horizon characteristics.

The algorithm with an infinitesimally small time horizon is a closed-form
ergodic control (CFEC) method derived in [13]. At each time step, the feedback
control is calculated as the closed-form solution to the optimal control problem
with ergodic cost in the limit as the receding horizon goes to zero. The optimal
solution is obtained by minimizing a Hamiltonian [6]. Due to its receding-horizon
origins, the resulting control trajectories are piecewise continuous. The method
can only be applied to linear first-order and second-order dynamics, with con-
stant speed and forcing respectively. Thus, CFEC is an ergodic control algorithm
that optimizes ergodicity along an infinitesimal time horizon at every time step
in order to calculate the next control action.

The algorithm with a non-zero receding time horizon is Ergodic iterative-
Sequential Action Control (E-iSAC), based on Sequential Action Control (SAC)
[1, 20]. At each time step, E-iISAC uses hybrid control theory to calculate the
control action that optimally improves ergodicity over a non-zero receding time
horizon. Like CFEC, resulting controls are piecewise continuous. The method
can generate ergodic trajectories for both linear and nonlinear dynamics, with
saturated controls.

Finally, the method with a non-receding, finite time horizon is the ergodic
Projection-based Trajectory Optimization (PTO) method derived in [14, 15]. Un-
like the previous two approaches, it is an infinite-dimensional gradient-descent
algorithm that outputs continuous control trajectories. Like E-iSAC, it can take
into account the linear/nonlinear dynamics of the robotic system, but it calcu-
lates the control trajectory over the entire time duration that most efficiently
minimizes the ergodic metric rather than simply the next time step. It also has
a weight on control in its objective function that balances the ergodic metric, to
achieve a dynamically-efficient trajectory that minimizes the ergodic metric.

Both CFEC and E-iSAC are efficient to compute, whereas PTO is compu-
tationally expensive as it requires numerical integration of several complex dif-
ferential equations for the entire finite time horizon during each iteration of the
algorithm. Next, we investigate the application of these techniques to examples
including both letters and photographs.
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Features CFEC | E-iSAC | PTO
Finite Time Horizon °
Closed Loop Control ° °
Nonlinear Dynamics . °
Control Saturation . °
Receding Horizon °
Continuous Control
Weight on Control °
Efficient Computation ° °
Table 1. Comparison of features for the different ergodic control methods used in the
examples.
3 Examples

3.1 Writing Symbols

In the first example, we investigate how a robot can use ergodic control to
recreate a structured visual input, such as a letter, presented as an image. In
addition, because the input image is not merely of artistic interest but also
corresponds to a recognizable symbol (in this case, the letter “N”), we show
how a robot can render meaningful visual cues, without the prior knowledge of a
dictionary or library of symbols. To do this, we represented the image of the letter
as a spatial distribution as described in Section 2.1. We then determined the
trajectories for the three different methods (CFEC, E-iSAC, and PTO) described
in Section 2.2 for systems with first order dynamics and second order dynamics.
We ran all the simulations for 60 seconds total with the same number of Fourier
coeflicients to represent the image spatially.

Figure 2 shows the resulting ergodic motions for each control algorithm with
the drawing dynamics represented as a single integrator. From Figure 2, we can
see that while all three methods produce results that are recognizable as the letter
“N” the trajectories generated to achieve this objective are drastically different.
The velocity-control characteristic of the single integrator system leads to the
sharp, choppy turns evident in both discrete-time CFEC and E-iSAC methods.
The infinitesimally small time horizon of the CFEC method, in contrast to the
non-zero receding horizon of the E-iSAC method, results in the large, aggressive
motions of the CFEC result compared to the E-iSAC result. Finally, the weight
on the control cost and the continuous-time characteristics of the PTO method
lead to a rendering that most closely resembles typical human penmanship.

For the double integrator system shown in Figure 3, the controls are acceler-
ations rather than the velocities of the system. Because of this, the trajectories
produced by the discrete controls for the CFEC and E-iSAC method are much
smoother, without the sharp turns seen in Figure 2. Even though the CFEC
result is smoother, its trajectory is more abstract and messy than the single
integrator trajectory. The receding horizon E-iSAC produces much better re-
sults for systems with complicated or free dynamics (e.g., drift), including the
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CFEC E-iSAC PTO
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Fig. 2. Trajectories generated by the three different methods with single integrator
dynamics for the letter “N” at 10 seconds, 30 seconds and 60 seconds with the spatial
reconstructions of the time-averaged trajectories generated by each of the methods
at the final time. The different methods lead to stylistic differences with an abstract
representation from the CFEC method to a natural, human-penmanship motion from
the PTO method.

double integrator system. The trajectory produced executes an “N” motion rem-
iniscent of human penmanship and continues to draw similarly smooth motions
over the time horizon. While PTO leads to a similarly smooth result compared
to the single integrator system, it leads to a result that less resembles human
penmanship.

From both examples, we can see how ergodicity can be used as a represen-
tation of symbolic spatial information (i.e., the letter “N”) and ergodic control
algorithms can be used to determine the actions needed to sufficiently render
the information while incorporating the physical capabilities of the robot.

Figure 4a-4c shows the ergodic metric, or the difference between the sum of
the trajectory Fourier coefficients and spatial Fourier coefficients, for the different
methods over time. We can see that for both dynamic systems, all three methods
produce trajectories that are similarly ergodic with respect to the letter by the
end of the time horizon. Compared to E-iSAC, CFEC converges more slowly
when more complex dynamics (i.e., double order dynamics) are introduced. PTO
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Fig. 3. The trajectories generated by the three different methods with double integrator
dynamics for the letter “N” at 10 seconds, 30 seconds and 60 seconds. The double-order
dynamics lead to much smoother motion from the discrete methods (CFEC and E-
iSAC) and more ergodic results from the E-iISAC methods due to its receding-horizon

characteristics.
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Fig. 4. a)-c) Time evolution of the ergodic metric, or the normalized difference of the
squared sum of the trajectory Fourier coefficients and the spatial Fourier coefficients,
for the three different methods with first-order and second-order dynamics for the letter
“N” on logarithmic scale. Note that because ergodicity can only be calculated over a
state trajectory of finite time duration (see Eq. 1), we start measuring the ergodicity
values once 0.1 seconds of simulation have passed; hence the three approaches start at
different ergodic metrics. All three methods result in similarly ergodic trajectories by
the end of the time horizon, with differences due to their time-horizon characteristics.
d) Sum of the Fourier coefficients for the trajectory over time compared to the spatial
Fourier coefficients of different letters (N, J, L, and M). The trajectory coefficients
converge to the spatial coefficients of the letter “N” that is being drawn, quantitatively
representing the process of discriminating the specific symbol being drawn over time.

exhibits a lower rate of cost reduction because it performs finite-time horizon
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optimization. Note that E-iSAC always reaches the lowest ergodic cost value by
the end of the 60 second simulation.

Figure 4d compares the sum of the absolute value of the Fourier coefficients
trajectory generated by the CFEC method for the single integrator to the spa-
tial Fourier coefficients of different letters. Initially, the difference between the
trajectory coefficients and spatial Fourier coefficients is large, representing the
ambiguity of the symbol being drawn. As the symbol becomes more clear, the
Fourier coefficients of the trajectory converge to the coefficients of “N”, rep-
resenting the discrimination of the letter being drawn from the other letters.
Moreover, letters that are more visually similar to the letter “N” have Fourier
coefficients that are quantitatively closer to the the spatial coefficients of “N”
and thus take longer to distinguish which symbol is being drawn. The ergodic
control metric allows for representation of a symbol from visual cues and dis-
crimination of that symbol from others without requiring prior knowledge of the
symbols.

3.2 Drawing Images

In the second example, we consider drawing a picture from a photograph as
opposed to drawing a symbol. Previously, we were concerned with the represen-
tation of the structured symbol. In this example, we move to representing a more
abstract image for purely artistic expression. Here, we are drawing a portrait of
Abraham Lincoln! with all three methods for single-order and double-order dy-
namics. We also render the portrait with a lightly damped spring system. The
simulations are performed for the same 60-second time horizon and number of
coefficients as the previous example.

Figure ba compares the trajectories resulting from the different ergodic con-
trol methods for the single-integrator system. The weight on control and continuous-
time characteristics of the PTO method that were desirable for the structured
symbol example are disadvantageous in this case. While it reduces the ergodic
cost, its susceptibility to local minima and its weight on energy lead to a far less
ergodic result compared to the other methods.

Instead, the discrete nature of the other two methods produce trajectories
that are more clearly portraits of Lincoln and are more ergodic with respect to
the photo. The trajectory produced by the CFEC method initially covers much
of the area of the face, but returns to the regions of high interest such that
the final image produced matches the original image closely in shading. The E-
iSAC method produces a trajectory that is much cleaner and does not cover the
regions that are not shaded in (i.e., the forehead, cheeks). The velocity control
of the single-order system leads to a disjointed trajectory similar to the results
from Fig. 2.

Figure 5b compares the resulting trajectories for the double integrator sys-
tem. As discussed previously, the PTO method produces a trajectory that is far

! The image was obtained from https://commons.wikimedia.org/wiki/File:
Abraham_Lincoln_head_on_shoulders_photo_portrait. jpg.
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Fig. 5. Trajectories generated by the three different methods for drawing the portrait
of Abraham Lincoln at 10 seconds, 30 seconds and 60 seconds. a) Single Integrator
Dynamics: CFEC and E-iSAC result in distinguishable results with stylistic differences,
whereas PTO is inadequate for this purpose. b) Double Integrator Dynamics: E-iSAC
results in a smooth, clear portrait of Abraham Lincoln with a trajectory that naturally
draws the face as a person would sketch one, without any preprogramming or library
of motion primitives.

less ergodic with respect to the photo. The control on acceleration significantly
impacts the stylistic rendering of the CFEC rendering. The E-iSAC method pro-
duced better results than the other methods for the double integrator system,
due to its longer time horizon. The resulting trajectory is smoother and more
natural compared to the single integrator results. Interestingly, this method cre-
ates a trajectory that naturally draws the contours of the face— the oval shape
and the lines for the brows and nose— before filling in the details, similar to the
way that humans sketch a face [11].

Fig. 6 compares the results of ergodicity with respect to time for the different
methods. Similar to the symbolic example in Section 3.1, the E-iSAC trajectory
creates a more ergodic image by the end for both cases. While the CFEC method
results in a less ergodic trajectory for both systems, the ergodic cost for the
single-order dynamics decreases faster for much of the time horizon. The CFEC
method performs significantly worse for the double-order dynamics system and
has a higher ergodic cost than the E-iISAC method throughout the entire time
horizon. The inadequacy of the PTO method for this image is demonstrated
here, having significantly higher ergodic costs at the final time for both systems.

Figure 7a compares the renderings of six different images with different
content— portraits and monuments using the E-iISAC method with double-order
dynamics. We show that E-iSAC successfully renders different images using a
single set of parameters.



10 Autonomous Visual Rendering using Physical Motion
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Fig. 6. Time evolution of the ergodic metric, or the normalized difference of the squared
sum of the trajectory Fourier coefficients and the spatial Fourier coefficients for the
three different methods with single-order and double-order dynamics for the Lincoln
image on logarithmic scale. E-iSAC results in a more optimally ergodic trajectory for
both systems. PTO performs poorly for both systems and CFEC performs significantly
worse with the double-order dynamics.

a) b)

Fig. 7. a) Renderings of different images (Eiffel tower, Marilyn Monroe, Einstein’s face,
Lincoln’s face, Einstein with suit, and Taj Mahal) from the double-order dynamical
system using the E-iSAC method with the same set of parameters. E-iSAC is able
to successfully render different images with different content (faces and monuments)
with the identical parameters. b) Trajectory generated by the E-iISAC method for the
Lincoln portrait image with damped spring dynamics. E-iSAC is able to produce a
trajectory that reproduces the image while satisfying the dynamics of a system.

Finally, we demonstrate the ability of the E-iSAC method to take into ac-
count more complicated dynamics of the system. In Figure 7b, we simulate a
system where the drawing mass is connected via a lightly damped spring to the
controlled mass. The resulting Lincoln trajectory is harder to distinguish than
the renderings from the single-order and double-order dynamical systems. How-
ever, the system is successfully able to optimize with respect to the dynamics and
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draw the main features of the face—the hair, the beard, and the eyes—within
the time horizon, reducing the ergodic cost by 31.5% in 60 seconds.

3.3 Comparisons with Existing Robot Drawing Techniques

Existing drawing robots employ a multistage process, using preprocessing (e.g.,
edge detection and/or other image processing techniques) and postprocessing
(e.g., motion primitives, shade rendering, path planning) to render the image
[3, 4, 5, 12, 19]. To accomplish this, most robots and their software are co-
designed specifically with drawing in mind, with most specializing in recreating
scenes of specific structures, such as portraits of human faces. Similar multi-
stage methods are commonly used for robot writing. They typically use image
preprocessing, segmentation, waypoints, or a library of motion primitives to
plan the trajectory and execute the trajectory using different motion control
and trajectory tracking methods [9, 16, 18, 22].

Original Image Original Image Original
Image
Shading
Edge Image Salient Line Process
Detection Binarization Extraction Fourier
Y ) ) Transform
l Comp. Feedback Visual Feedback with Camera
Filtering l
Filtering K
' Computational Visual Shade Ergodic Control
. Shading — h e
Contour Motion § Calculation
N N Calculation
Extraction Planning l
i Motion Planning .
Motion i
. Motion Update i
hicion Planning Plannin I‘l:m e Tra]e.clor)f
Planning ] 8 mapping (if
Motor l needed)
l Planning/Control
. Motor Motor
Inverse " . Planning/Control Planning/Control
. N Kinematics
Kinematics
l l , Motion Execution
Motion Motion Motion N
N 5 3 Motion
Execution Execution Execution p
Execution
‘ Rendering
b >
a) Edge Detection b) Paul the Robot ) Ergodic Control

Fig. 8. Comparison of Drawing Methods. a) Edge detection and Binarization method
used in [3] b) Method used by Paul the Drawing Robot from [19] and ¢) Ergodic Control.
Ergodic Control is able to achieve comparable results with an algorithm requiring fewer
independent processes.

Recently, some approaches using motion-driven machine learning have been
used to enable robots to learn and mimic human motion [10, 18, 21]. These
methods can be difficult and computationally costly and efforts to make them
tractable (i.e., predefined dictionary of symbols) can be limiting in scope [9, 22].
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Furthermore, they do not consider the robot’s physical capabilities and can thus
generate motions that are difficult for the robot to execute.

Edge Detection Rendering E-iSAC Rendering

YL

ik

Original Image Edge Detection Preview E-iSAC Rendering

Fig. 9. Comparison of the method in [3] and the E-iISAC method. a) The original im-
age and edge detection rendering using the HOAP2 robotic system come directly from
[3]. While the edge detection method is successful, producing a tractable trajectory
requires morphological filters to extract the facial features and predetermined drawing
primitives to render the shading. b) Comparison for a landscape image, with a pre-
view of the overlaid edge detection and binarization results compared to the E-iSAC
trajectory. Producing a motion trajectory from the extracted contours of the preview
would be computationally difficult (over 22000 contours result from the edge detection)
or needs content-specific postprocessing, and requires a precise drawing system. The
E-iSAC rendering results in a highly tractable result.

For comparison, we contrast ergodic control to the method employed in [3],
a multi-stage process described in Figure 8a, with a preliminary stage to render
the outlines of the important features using edge detction and a secondary stage
to render shading using image binarization. Figure 9a shows the results of the
method from [3] compared to the trajectory created using the E-iSAC method
for the double-order system. While the edge detection method from [3] renders
a successful recreation, obtaining a tractable trajectory requires parameter tun-
ing and filtering to extract the most important features from the drawing, and
predetermined drawing primitives and postprocessing to formulate the planar
trajectory needed for rendering. Furthermore, the E-iISAC method is able to
capture different levels of shading as opposed to the method in [3] that only
renders a binary image (black and white).

In addition, because the processing (e.g., filtering, parameter tuning) used
by [3] is tailored to drawing human portraits, the method is not robust to other
content. To show this, we compare the results for rendering a landscape in Figure
9b. While the simulated preview of the rendering appears successful, the image
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binarization to render shading fails as it is tuned specifically for human portraits.
Instead, the quality of the image comes entirely from the edge detection step.
However, processing and rendering the contours would be difficult (over 22,000
contours are generated to render the image), and the filtering implemented to
make the results tractable are tailored specifically for facial portraits. While the
E-iSAC method results in a more abstract image, the trajectory produced is
tractable and the method is robust to a variety of subjects (as shown in Figure
Ta).

Original Image Rendering with Visual Feedback Rendering with Comp. Feedback Rendering with E-iISAC
‘ . \ Gt \ %
b
b
e,
L
RN,
Original Reconstruction Visual Feedback Reconstruction ~Comp. Feedback Reconstruction E-iSAC Reconstruction

2
3.5 3 :
’
15
15 0.2 0.6
0.0 799 2.70 |

Fig. 10. Comparison of drawings rendered with Paul the Robot [19] and the drawing
rendered with E-iSAC and the ergodic Fourier reconstructions of these results. The
original image and the images of the renderings from feedback come directly from [19].
The E-iSAC rendering is able to perform comparably to the visual-feedback rendering
(a closed-loop algorithm) and better than the computational-feedback rendering (an
open-loop algorithm) with a simpler, open-loop algorithm. The reconstructions of the
Fourier coefficients representing the different renderings with the respective ergodic
costs show how ergodicity can be used as a quantitative metric for assessment of results.

‘ Ergodic Cost:

Another drawing method is performed by Paul the robot [19], which uses a
complicated multi-stage process (shown in Figure 8b) to render portraits. The
first stage involves a salient-line extraction to draw the important features, and
then performs a shading method using either visual feedback or computational
feedback. The visual-feedback shading process uses an external camera to up-
date the belief in real-time, while the computational-feedback shading process is
based on the simulation of the line-extraction stage and is an open-loop process,
similar to the E-iISAC method. Figure 10 compares the results of Paul the robot
[19] with the E-iISAC method, and shows the reconstructions of the Fourier co-
efficients representing each rendering. While the robot successfully renders the
image, the E-iSAC method performs comparably well with a much simpler, open-
loop algorithm and could be improved with the integration of an external camera
setup to update the drawing in real-time. Furthermore, the method from [19]
relies on a highly engineered system that moves precisely and cannot take into
account a change in the robotic system, unlike E-iSAC. In addition, Figure 10
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shows the reconstructions of the Fourier representing each rendering, demon-
strating how ergodicity can be used as a quantitative metric of assessment for
the results, even if ergodic control is not used to determine the trajectories.

3.4 Baxter Experiments

We performed experiments executing the motion trajectories generated with the
Baxter robot to demonstrate it physically rendering the portrait of Abraham
Lincoln generated using the E-iSAC method from Section 3.2. The Baxter robot
is able to successfully complete the trajectory and render a recognizable por-
trait of Lincoln. The main stylistic differences between the simulation and the
experimental results derive primarily from the assumption of an infinitesimally
small marker point in the simulation and the board’s inability to render shading.
Improving the algorithm to enable encoding characteristics of the rendering tool
(e.g., marker size, paintbrush stroke) and integration of an external camera to
update the belief of current drawing would improve the rendering capabilities of
the robotic system in the future.

Fig. 11. Experimental results with the Baxter robot. a) Trajectory generated by the
E-iSAC method b) Rendering executed by the Baxter robot using the Lightboard [2].
The Baxter robot is successfully able to render the portrait of Abraham Lincoln using
the motion trajectory generated.

4 Conclusion

This paper presented an autonomous process for translating visual informa-
tion to physical motion. We demonstrate how ergodic metrics can be used as
an actionable measure of symbolic spatial information, and explore the use of
ergodicity as a measure that enables the robot to actively distinguish among
different symbols with no prior knowledge of letter structure, other than the as-
sociated ergodic value. In addition, ergodic control provides the robot the ability
to naturally represent and recreate a wide range of visual inputs (from letters
to portraits), while incorporating the robot’s physical capabilities (e.g., dynamic
drawing mechanics). Moreover, in the context of drawing, we see other drawing
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algorithms improve ergodicity, suggesting the use of ergodicity as a quantitative
measure of assessment. Finally, we demonstrate experiments with the Baxter
robot rendering these trajectories, and note that as optimal ergodic control can
run in real-time, it can be ideal for developing interactive rendering behaviors
in robots. In the future, we plan to adapt the algorithm to encode rendering
characteristics of the system into the model and to integrate a visual feedback
system to update the representation of the drawing in real-time.
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