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Abstract—LTE in unlicensed spectrum (LTE-U) is a promising
approach to overcome the wireless spectrum scarcity. However, to
reap the benefits of LTE-U, a fair coexistence mechanism with
other incumbent WiFi deployments is required. In this paper,
a novel deep learning approach is proposed for modeling the
resource allocation problem of LTE-U small base stations (SBSs).
The proposed approach enables multiple SBSs to perform dynamic
channel selection, carrier aggregation, and fractional spectrum
access proactively while guaranteeing fairness with existing WiFi
networks and other LTE-U operators. SBSs are modeled as Homo
Egualis agents that aim at predicting a sequence of future actions
and thus achieving long-term equal weighted fairness with WLAN
and other LTE-U operators over a given time horizon. Simulation
results using real data traces show that the proposed scheme can
yield up to 28% gains over a conventional reactive approach.
The results also show that the proposed framework prevents WiFi
performance degradation for a densely deployed LTE-U network.

I. INTRODUCTION

LTE in unlicensed bands (LTE-U) has emerged as an effective

solution to overcome the scarcity of the radio spectrum [1].

Using LTE-U, a cellular small base station (SBS) can access the

unlicensed spectrum thus improving the overall network capacity

and spectral efficiency. However, to achieve the promised quality-

of-service (QoS) improvements from LTE-U, many challenges

must be addressed ranging from effective co-existence with

existing WiFi networks to resource allocation and multiple access

over licensed and unlicensed bands [1].

If not properly deployed, LTE-U can significantly degrade the

performance of the wireless local area network (WLAN) in the

absence of an efficient spectrum sharing mechanism [1]. There

has been a number of recent works [2]–[7] that investigated this

challenge. This prior art can be categorized into two groups:

channel access [2]–[4] and channel selection [6], [7]. The authors

in [2] and [3] propose different channel access mechanisms based

on listen-before-talk (LBT) that rely on either a fixed/random

contention window (CW) size [2] or an adaptive CW size [3].

Nevertheless, a fixed CW size cannot handle time-varying traffic

loads thus yielding unfair outcomes. The authors in [4] develop a

holistic approach for both traffic offloading and resource sharing

for one LTE-U SBS. In [5], the authors study the problem of

resource allocation with uplink-downlink decoupling for LTE-U.

However, none of these works jointly account for both channel

selection and channel access. In other words, they do not analyze

the potential gains that can be obtained upon aggregating or

switching between different unlicensed channels.

In terms of LTE-U channel selection, the authors in [6]

propose a matching-based solution, which is both distributed

and cooperative. Moreover, the work in [7] combines channel

selection along with channel access. Despite the promising

results, the work in [6] and [7] consider a reactive sense-and-

avoid approach that does not account for the future dynamics

of the network and thus potentially incurring loss in terms of
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performance. On the other hand, in a proactive approach, rather

than reactively responding to incoming demands and serving

them when requested, SBSs can predict traffic patterns and

determine future off-peak times so that incoming traffic demand

can be properly allocated over a given time window and thus

minimizing disruptions to WLAN.

The main contribution of this paper is to introduce a novel

deep reinforcement learning algorithm based on long short-

term memory (RL-LSTM) cells for proactively allocating LTE-U

resources over the unlicensed spectrum. The LTE-U resource

allocation problem is formulated as a noncooperative game

in which the players are the SBSs. To solve this game, we

propose an RL-LSTM framework which enables the SBSs to

autonomously learn which unlicensed channels to use along with

the corresponding channel access probability on each channel

taking into account future environmental changes, in terms of

WLAN activity on the unlicensed channels and LTE-U traffic

loads. Unlike previous studies which are either centralized [7]

or rely on the coordination among SBSs [3], our approach is

based on a self-organizing proactive resource allocation scheme

in which the SBSs utilize past observations to build predictive

models on spectrum availability and intelligently plan channel

usage over a finite time window. The use of LSTM cells enables

the SBSs to predict a sequence of interdependent actions over a

long-term time horizon thus achieving long-term fairness among

different underlying technologies. Moreover, we show that the

proposed framework converges to a mixed-strategy distribution

which constitutes a mixed-strategy Nash equilibrium (NE) for

the studied game. To the best of our knowledge, this is the

first work that exploits the framework of LSTMs for proactive

resource allocation in LTE-U networks. Simulation results show

that the proposed approach yields significant rate improvements

compared to conventional reactive solutions.

The rest of this paper is organized as follows. In Section

II, we present the system model. Section III describes the

proposed coexistence game model. The LSTM-based algorithm

is proposed in Section IV. In Section V, simulation results are

analyzed. Finally, conclusions are drawn in Section VI.

II. SYSTEM MODEL

Consider the downlink of an LTE-U network composed of a

set J of J LTE-U SBSs belonging to different LTE operators,

a set W of W WiFi access points (WAPs), and a set C of C

unlicensed channels. Each SBS j ∈ J has a set of Kj of Kj

LTE-U UEs associated with it. We focus on the operation of

the SBSs over the unlicensed band, while the licensed spectrum

resources are allocated in a conventional way. Both SBSs and

WAPs adopt the LBT access scheme and, thus, at a particular

time, a given unlicensed channel is occupied by either an SBS or

a WAP. We consider the LTE carrier aggregation feature using

which the SBSs can aggregate up to five component carriers.

Our goal is to jointly determine the dynamic channel selection,

carrier aggregation, and fractional spectrum access for each



SBS, while guaranteeing long-term airtime fairness with WLAN

and other LTE-U operators. We therefore need to dynamically

analyze the usage of various unlicensed channels. To this end,

we divide our time domain into multiple time windows, of

duration T , each of which consists of multiple time epochs t.

Our objective is to proactively determine the spectrum allocation

vector for each SBS over T while guaranteeing long-term equal

weighted airtime share. To guarantee a fair spectrum allocation

among SBSs belonging to different operators, we consider inter-

operator interference along with inter-technology interference.

Next, we define the variables xj,c,t =1 if channel c is selected by

SBS j during time epoch t, and 0, otherwise, and αj,c,t ∈ [0, 1].
xj,c,t determines which channel c SBS j is using during time

t and αj,c,t is the channel access probability of SBS j on the

unlicensed channel c during time t.

A contention-based protocol is used for the channel access

over the unlicensed band. In this protocol, prior to transmission,

the SBS applies clear channel assessment to detect the state of

the channel (idle or busy) based on the detected energy level.

If the channel is idle, the SBS gets a transmit opportunity for

up to 10 LTE sub-frames; otherwise, it keeps monitoring the

channel until it becomes idle. We consider an exponential backoff

scheme for WiFi while the SBSs adjust their contention window

size (and thus the channel access probability) on each of the

selected channels in a way that would guarantee a long-term

equal weighted fairness with WLAN and other SBSs.

To derive the throughput achieved by an LTE-U user equip-

ment (UE) and a WAP, we first define the stationary probability

of each WAP w and each SBS j, τw and τj,c,t respectively. The

stationary probability denotes the probability with which a given

base station attempts to transmit in a randomly chosen slot. Con-

sidering an exponential backoff scheme for WiFi, the stationary

probability with which WAPs transmit a packet, τw, [8]:

τw =
2(1− 2qw)

(1− 2qw)(CWmin + 1) + qwCWmin(1− (2qw)m)
, (1)

where qw is the collision probability of a WAP, m is the

maximum backoff stage with CWmax = 2mCWmin, and CWmin

and CWmax are the minimum and maximum contention window

size, respectively. For LTE-U, m=0 since no exponential backoff

is considered, and, thus the stationary probability of an SBS

on a given unlicensed channel c during time epoch t will be

τj,c,t = 2
CWj,c,t+1 , where CWj,c,t is the contention window

size of SBS j on channel c during time epoch t. Therefore, we

do not consider a contention stage for LTE-U. Instead, the SBSs

adjust their CW size adaptively to control their channel access

probability over the unlicensed band. The collision probability of

a WAP is defined as qw = 1−
∏W

v=1,v 6=w(1−τv)
∏J

j=1(1−τj,c,t),
where c is the channel used by WAP w. The throughput Rw of

a WAP w will be:

Rw =
Pw,succ · E[Dw]

Pw,idle · θ + Pw,busy · Tb

, (2)

where E[Dw] is the expected payload size for WAP w, Pw,succ =

τw
∏W

v=1,v 6=w(1 − τv)
∏J

j=1(1 − τj,c,t) is the probability of a

successful transmission, Pw,idle =
∏J

j=1(1−τj,c,t)
∏W

w=1(1−τw)

is the probability of an idle slot, and Pw,busy = 1 −
∏J

j=1(1 −

τj,c,t)
∏W

w=1(1− τw) is the probability of a busy slot, regardless

of whether it corresponds to a collision or a successful transmis-

sion. θ and Tb are, respectively, the average durations of an idle

and a busy slot and, thus, the denominator in (2) corresponds to

the mean duration of a WiFi medium access control (MAC) slot.

On the LTE-U side, the achievable airtime fraction for an SBS

j on channel c during time epoch t, can be expressed as:

αj,c,t = τj,c,t

J∏

i=1,i6=j

(1− τi,c,t)
W∏

w=1

(1− τw). (3)

The airtime fraction essentially represents the time allocated

for an SBS on channel c during time t. Thus, the total throughput

of all Kj,t UEs that are served by SBS j during time epoch t

is:

Rj,t =
C∑

c=1

αj,c,trj,c,t, (4)

where

rj,c,t =

Kj,t∑

k=1

Bclog
(
1 +

Pj,c,thj,k,c,t

Ij,c,t +BcN0

)
. (5)

Here, Ij,c,t =
∑W

w=1 Pw,c,thw,k,c,t +
∑J

i=1,i6=j Pi,c,thi,k,c,t is

the interference level on SBS j when operating on channel c

during time t and Bc is the bandwidth of channel c. Pj,c,t is the

transmit power of SBS j on channel c during time t. hj,k,c,t is the

channel gain between SBS j and UE k on channel c during time

t. N0 is the power spectral density of additive white Gaussian

noise. Since SBSs and WAPs both adopt LBT, one cell may

then occupy the entire channel at a given time thus transmitting

exclusively on a given channel c. However, hidden and exposed

terminals could be present on a given channel which can result

in interference and thus a degradation in the throughput.

Given this system model, next, we develop an effective

spectrum allocation scheme that can allocate the appropriate

unlicensed channels along with the corresponding channel access

probabilities to each SBS simultaneously over T , at t = 0.

III. PROACTIVE RESOURCE ALLOCATION SCHEME FOR

UNLICENSED LTE

In this section, we propose a proactive approach for allocating

spectrum resources to SBSs in the unlicensed bands. In this

regard, we formulate the resource allocation problem as a

noncooperative game G=(J ,Aj , uj) with the SBSs in J being

the players, each of which must choose a channel selection and

channel access pair aj,c,t=(xj,c,t,αj,c,t) ∈ Aj for each time t.

The objective of each SBS j is to maximize its total throughput

over the selected channels over T given by:

uj(aj ,a−j) =
T∑

t=1

C∑

c=1

αj,c,trj,c,t, (6)

where aj = [(aj,1,1, · · · , aj,1,T ), · · · , (aj,C,1, · · · , aj,C,T )] and

a−j correspond, respectively to the action vector of SBS j and

all other SBSs, over all the channels C during T . The goal of

each SBS j is to maximize its own utility:

max
aj∈Aj

uj(aj ,a−j) ∀j ∈ J , (7)

s.t. αj,c,t ≤ xj,c,t ∀c, t, (8)
C∑

c=1

xj,c,t ≤ min(Mc, C) ∀t, (9)

t∑

tT=1

C∑

c=1

αj,c,tTBc ≤
t∑

tT=1

f(Lj,tT ) ∀t, (10)

αw,c,t + αj,c,t +
J∑

i=1,i6=j

αi,c,t ≤ tmax ∀c, t, (11)

xj,c,t ∈ {0, 1}, αj,c,t ∈ [0, 1] ∀c, t. (12)

where Mc denotes the total number of unlicensed channels which

an SBS can aggregate. Constraint (8) allows the allocation of a

channel access proportion for SBS j on channel c during t only if



SBS j transmits on channel c at time t. Constraint (9) guarantees

that each SBS can aggregate a maximum of Mc channels at

a given time t. Constraint (10) limits the amount of allocated

bandwidth to the required demand where f(Lj,t) captures the

relationship between bandwidth requirement and offered load.

(11) captures coupling constraints which limit the proportion of

time used by SBSs and WLAN on a given unlicensed band to the

maximum fraction of time an unlicensed channel can be used,

tmax. (12) represents the feasibility constraints.

Given the fact that different operators and technologies have

equal priorities on the unlicensed spectrum, we incorporate the

Homo Egualis (HE) anthropological model, an inequity-averse

based fairness model, into the strategy design of the agents [9].

Definition 1. Inequity aversion is the preference for fairness and

resistance to incidental inequalities. In other words, it refers to

the willingness of giving up some material payoff in order to

move in the direction of more equitable outcomes.

In an HE society, agents focus not only on maximizing

their own payoffs, but also become aware of how their payoffs

are compared to other agents’ payoffs [9]. The HE concept

comes from the anthropological literature in which Homo sapiens

evolved in small hunter-gatherer groups without a centralized

governance [9]. To model our players as HE agents, we consider

the following two coupling constraints for the allocated airtime

fraction on each channel c for each SBS j:

1

wj,c

1

T

∑T

t=1 αj,c,t∑T

t=1 L̄j,t

=
1

wi,c

1

T

∑T

t=1 αi,c,t∑T

t=1 L̄i,t

∀c ∈ Ĉj , i ∈ Ŝj,c(i 6= j),

(13)

1

T

∑T

t=1

∑
n∈Sc,t

αn,c,t

PLTE

∑T

t=1

∑
n∈Sc,t

L̄n,t

=
1

T

∑T

t=1 αw,c,t

PWiFi

∑T

t=1 Lw,c,t

∀c ∈ Ĉj ,

(14)
where Ĉj is the subset of channels used by SBS j during T . Sc,t

is the subset of SBSs that are transmitting over channel c, c ∈ Ĉj ,

during time t and Ŝj,c is the subset of other neighboring SBSs,

i 6= j, that are using the same channel c ∈ Ĉj as SBS j during T .

L̄j,t corresponds to the remaining traffic that needs to be served

by SBSs j and can be expressed as L̄j,t = Lj,t −
∑

c′ f(αj,c′,t)
where Lj,t is the total aggregate traffic demand of SBS j on

channel c during time epoch t. f(.) corresponds to the served

traffic load as a function of the airtime allocation. c′ in that

case represents all the set of channels except channel c. αw,c,t=

min(f(Lw,c,t), tmax − αj,c,t −
∑

i∈Sj,c,t
αi,c,t) is the airtime

allocated for WLAN transmissions over channel c during time

t. PWiFi and PLTE correspond to the priority metric defined for

each technology when operating on the unlicensed band. These

parameters allow adaptation of the level of fairness between LTE-

U and WLAN.

Constraint (13) represents inter-operator fairness which guar-

antees an equal weighted airtime allocation among SBSs belong-

ing to different operators on a given channel c. The adopted

notion of fairness is based on a long-term weighted equal-

ity over T , as opposed to instantaneous weighted equality.

wj,c =
∑T

t=1 xj,c,t is the weight of SBS j on channel c

during T and thus different SBSs are assigned different weights

on each channel c based on the number of time epochs t a

given SBS j is active on that particular channel. (14) defines

an inter-technology fairness metric to guarantee a long-term

equal weighted airtime allocation over T for both LTE-U and

WiFi. Therefore, constraints (13) and (14) reflect the inequity

aversion property of the SBSs. Here, we consider the allocated

airtime as a metric for fairness in order to overcome the rate

anomaly problem that arises when different nodes use distinct

data rates [3], which leads to the slowest link limiting the system

performance.

Our game G belongs to the family of generalized Nash

equilibrium problems (GNEPs) in which both the objective

functions and the action spaces are coupled. To solve the GNEP,

we incorporate the Lagrangian penalty method into the utility

functions thus reducing it to a simpler Nash equilibrium problem

(NEP). The penalized utility function will be given by the

following, ∀j ∈ J :

ûj(aj ,a−j) =

T∑

t=1

C∑

c=1

αj,c,trj,c,t

−ρ1,j

C∑

c=1

T∑

t=1

(
min(0, tmax − αw,c,t − αj,c,t −

J∑

i=1,i6=j

αi,c,t)
)2

−ρ2,j
∑

c∈Ĉj

∑

i∈Ŝj,c(i6=j)

1

T 2

(
1

wj,c

∑T

t=1 αj,c,t∑T

t=1 L̄j,t

−
1

wi,c

∑T

t=1 αi,c,t∑T

t=1 L̄i,t

)2

−ρ3,j
∑

c∈Ĉj

1

T 2

( ∑T

t=1

∑
n∈Sc,t

αn,c,t

PLTE

∑T

t=1

∑
n∈Sc,t

L̄n,t

−

∑T

t=1 αw,c,t

PWiFi

∑T

t=1 Lw,c,t

)2

,

where ρ1,j , ρ2,j and ρ3,j are positive penalty coefficients cor-

responding to constraints (11), (13), and (14) respectively. For

our reformulation, we consider equal penalty coefficients for

all players for each coupled constraint, ρ1,j=ρ1, ρ2,j=ρ2 and

ρ3,j=ρ3. This allows all SBSs to have equal incentives to give

up some payoff in order to satisfy the coupled constraints.

Moreover, to determine the values of ρ1, ρ2 and ρ3, we adopt

the incremental penalty algorithm in [10] where it has been

shown that there exists some penalty parameters ρ∗
l =[ρ∗1, ρ

∗
2, ρ

∗
3]

at which the coupled constraints can be satisfied.

In our game model G, αj,c,t is a continuous variable bounded

between 0 and 1, however, for a particular network state, we

are interested only in a certain region of the continuous space

where the optimal actions are expected to be. Therefore, we

will propose a sampling-based approach to discretize αj,c,t

in Section IV. Given that the action space becomes discrete,

we turn our attention to mixed strategies in which players

choose their strategies probabilistically. Such a mixed strategy

approach enables us to analyze the frequency with which players

choose different channels and channel access combinations.

Let ∆(A) be the set of all probability distributions over the

action space A and pj=[pj,a1
· · · , pj,a|Aj |

] be a probability

distribution with which SBS j selects a particular action from

Aj . Therefore, our objective is to maximize uj(pj ,p−j), the

expected value of the utility function where uj(pj ,p−j) =

Epj
[ûj (aj ,a−j)]=

∑
a∈A ûj(aj ,a−j)

∏J

j=1 pj,aj
.

Definition 2. A mixed strategy p∗=(p∗
1, · · · ,p

∗
J)=(p∗

j ,p
∗
−j) is

a mixed-strategy Nash equilibrium if, ∀j ∈ J and ∀pj ∈ ∆(Aj),
uj(p

∗
j ,p

∗
−j) ≥ uj(pj ,p

∗
−j).

Here, we note that any finite noncooperative game will admit

at least one mixed-strategy Nash equilibrium [11]. However,

solving for this equilibrium in our proposed game model is

challenging due to the proposed long-term fairness notion which

necessitates the prediction of a sequence of actions for each

SBS over T at t = 0 as well as a temporal dependence among

these predicted actions. Therefore, next, we develop a novel deep
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Fig. 1. Proposed framework.

learning algorithm for solving for the mixed-strategy NE of our

game.

IV. RL-LSTM FOR RESOURCE ALLOCATION

To proactively allocate resources on the unlicensed band, we

propose a novel RL-LSTM algorithm that allows SBSs to learn a

sequence of future actions based on a sequence of historic traffic

load and thus maximizing the sum of their future rewards.

LSTMs are a special kind of “deep” recurrent neural networks

(RNNs) that are capable of storing information for long periods

of time and hence learning the long-term dependency within

a given sequence [12]. In essence, LSTMs process a variable-

length sequence y = (y1, y2, ..., ym) by incrementally adding

new content into a single memory slot, with gates controlling

the extent to which new content should be memorized, old

content should be erased, and current content should be exposed.

Predictions at a given time step are influenced by the network

activations at previous time steps thus making LSTMs suitable

for our application in which an action at time t depends on all

previous and future actions within the current window T .

Consequently, we consider an end-to-end RL-LSTM based

approach to train the network to find a mixed-strategy NE of

the game G without any prior knowledge. Fig. 1 summarizes the

proposed approach. The traffic encoder learns a vector represen-

tation of the input time-series (i.e., historical traffic loads), the

multi-layer perceptron (MLP) summarizes the input vectors into

one vector and the action decoder uses the summarized vector

to reconstruct the predicted action sequence. In our scheme,

an MLP is required to encode all the vectors together since a

particular action at time t depends on the values of all other input

vectors (i.e., traffic values of all SBSs and WLAN on all the

unlicensed channels). All SBSs share the same traffic encoders

while different SBSs use different action decoders.

During the training phase, the parameters of the algorithm

are learned from a given training data set. For our proposed

framework, we train the weights of our neural network based

on RL. We consider a policy gradient approach that is an RL

technique that aims at maximizing the expected return of a

policy. This is achieved by representing the policy by its own

function approximator and updating it according to the gradient

of the expected reward with respect to the policy parameters.

Consider the set M of M history traffic sequences corresponding

to either an SBS or WiFi on each unlicensed channel, where

M = J + C. Let hm,t ∈ R
n and hj,t ∈ R

n denote the hidden

vectors of the traffic encoder m and action decoder of SBS j,

respectively, at time t. hm,t and hj,t are then computed by:

hm,t=φ (vm,t,hm,t−1) , hj,t=φ (vj,t,hj,t−1) , (15)

where φ refers to the LSTM cell function [12] being used,

and vm,t is the input vector. For the encoder, vm,t =

[
L̂m,t

]
is the history traffic value. For the decoder, vj,t =

[W de(xj,t−1)||αj,c,t−1] is the vector of the previous predicted

action where e() maps discrete value to a one-hot vector, W d ∈
R

n×Nx is a matrix that is used to transform the discrete actions

xj,t−1 to a vector, and Nx is the number of discrete actions. In

our implementation, we learn the channel selection vector for all

the channels simultaneously and thus xj,t = [xj,1,t, · · · , xj,C,t].
We use a softmax classifier to predict the distribution for the

discrete variable xj,t and a Gaussian policy for the distribution

of the continuous variable αj,c,t. For the Gaussian policy, the

probability of an action is proportional to a Gaussian distribution

with a parameterized mean and a fixed value for the variance in

our implementation. The variance of the Gaussian distribution

defines the area around the mean from which we explore the

action space. For our implementation, the initial value of the

variance is set to 0.06 in order to increase exploration and then is

decreased linearly towards 0.02. Therefore, defining probability

distributions for our variables allows the initialization of the

action space Aj by sampling Z actions from the proposed

distributions. This enables the SBSs to learn more accurate trans-

mission probabilities for αj,c,t, as opposed to fixed discretization,

thus satisfying the fairness constraints. The hidden vector hj,t

in the decoder is used to predict the t-th output actions xj,t and

αj,c,t. The probability vector over xj,t and αj,c,t can be defined,

respectively, as:

xj,t|xj,<t, αj,c,<t, L̂t ∼ σ (W xhj,t), (16)

µj,c,t = S (W µhj,t), αj,c,t ∼ N (µj,c,t,Var(αj,c,t)), (17)

where µj,c,t and Var(αj,c,t) correspond to the mean value

and variance of the Gaussian policy respectively, W x ∈
R

|Va|×n,W µ ∈ R
n are parameters, σ(.) is the softmax function

σ(b)q = ebq∑
O
o=1

ebo
for q = 1, · · · , O, and S(.) is the sigmoid

function where S(b) = 1
1+e−b and is used to normalize the

value to (0, 1). Note that αj,c,t is computed only in the case

when xj,c,t = 1. The probability of the whole action sequence

for SBS j, given a historic traffic sequence L̂, p
j,aj |L̂

, is given

by:

p
j,aj |L̂

=
T∏

t=1

p
(
(xj,t, αj,c,t)|xj,<t, αj,c,<t, L̂t

)
, (18)

where L̂t=(L̂1,t, · · · , L̂M,t), xj,<t=[xj,1, · · · ,xj,t−1], and

µj,c,<t=[µj,c,1, · · · , µj,c,t−1].
Our goal is to maximize the exact expectation of the reward

ûj(aj ,a−j) over the action space for the training dataset.

Therefore, the objective function can be defined as:

max
aj∈Aj

∑

D

E
pj |L̂

[ûj (aj ,a−j)], (19)

where D is the training dataset. For this objective function,

the REINFORCE algorithm [13] can be used to compute the

gradient, and then standard gradient descent optimization algo-

rithms [14] can be adopted to allow the model to generate opti-

mal action sequences for input history traffic values. Specifically,

Monte Carlo sampling is used to compute the expectation.

On the other hand, the testing phase corresponds to the actual

execution of the algorithm on each SBS. Based on history traffic

values, each SBS learns the future sequence of actions based on

the learned parameters from the training phase. Therefore, for

applicability, we assume knowledge of historical measurements

of the WiFi activity on each of the unlicensed channels through

long-term channel sensing [4] and of other SBSs by exchanging

history traffic information via the X2 interface. Consequently, the



Algorithm 1: Training phase of the proposed approach.

Input: J ;W; C; L̂j,t∀j ∈ J , t; L̂w,c,t∀c ∈ C , t.
Initialization: The weights of all LSTMs are initialized following a uniform distribution
with arbitrarily small values.
Training: Each SBS j is modeled as an LSTM network.
while Any of the coupled constraints is not satisfied do

for Number of training epochs do
for Size of the training dataset do

Step 1. Run Algorithm 2 to compute the best actions for all SBSs.
for j=1:J do

Step 2. Sample actions for SBS j based on the best expected actions of
other SBSs.
Step 3. Use REINFORCE [13] to update rule and compute the gradient
of the expected value of the reward function.
Step 4. Update model parameters with back-propagation algorithm [15].

end for
end for

end for
Step 5. Using the incremental penalty algorithm, check the feasibility of the coupled
constraints and update the values of ρl accordingly.

end while

Algorithm 2: Testing phase of the proposed approach.

Input: J ;W; C; L̂j,t∀j ∈ J , t; L̂w,c,t∀c ∈ C , t.
for For each SBS j do

Step 1. Traffic history encoding: The history traffic of each SBS and WLAN activity
on each channel is fed into each of the M LSTM traffic encoders.
Step 2. Vector summarization: The encoded vectors are transformed to initialize
action decoders.
Step 3. Action decoding: Action sequence is decoded for each SBS j.

end for

TABLE I
SYSTEM PARAMETERS

Parameters Values Parameters Values

Transmit power (Pt) 20 dBm BW (channel) 20 MHz

CCA threshold -80 dBm Noise variance 92 dBm/Hz

Path loss 15.3 + 50 log10(m) SIFS 16 µs

Hidden size (encoder) 70 DIFS 34 µs

Hidden size (decoder) 70 CWmin 15 slots

time epoch (t) 5 min CWmax 1023 slots

Action sampling (Z) 100 samples ACK 256 bits

History traffic size 7 time epochs PLTE, PWiFi 1, 1

Learning rate 0.01 LSTM layers 1

Learning rate decay 0.95 tmax 0.9

proposed algorithm offers a practical solution that is amenable to

implementation. The training and the testing phases are given in

Algorithms 1 and 2 respectively. In what follows, we characterize

the convergence point of our proposed algorithm.

Proposition 1. If Algorithm 1 converges, then the convergence

strategy profile corresponds to a mixed-strategy NE of game G.

Proof. The resulting penalized utility function is an affine com-

bination of convex functions, and hence is convex. Therefore,

a gradient-based learning algorithm for our game G allows

the convergence to an equilibrium point of that game [16].

Moreover, following the penalized reformulation of our game

G, one can easily show that a strategy that violates the coupled

constraints cannot be a best response strategy. From [10], there

exists ρ∗
l such that the incremental penalty algorithm terminates.

Therefore, there exists a mixed strategy for which the coupled

constraints are satisfied at ρ∗
l . In that case, there is no incentive

for an SBS to violate any of the coupled constraints, otherwise,

its reward function would be penalized by the corresponding

penalty function. Hence, all strategies that violate the coupled

constraints are dominated by the alternative of complying with

these constraints. Since in the proposed algorithm, the optimal

strategy profile results in maximizing Epj
[ûj (aj ,a−j)], we can

conclude that the converged mixed-strategy NE is guaranteed not

to violate the coupled constraints and hence it corresponds to a

mixed-strategy NE for the game G.

2 4 6 8 10 12
0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

Time window T

A
v
e
ra

g
e
 a

ir
ti
m

e
 a

llo
c
a
ti
o
n
 f
o
r 

L
T

E
−

U

Proposed scheme - 2 SBSs, 2 channels
Proposed scheme - 4 SBSs, 4 channels
Proposed scheme - 7 SBSs, 7 channels
Reactive approach - 2 SBSs, 2 channels
Reactive approach - 4 SBSs, 4 channels
Reactive approach - 7 SBSs, 7 channels

Fig. 2. Comparison of the average airtime allocated for LTE-U (with varying
T ) resulting from our proposed scheme as well as from a conventional reactive
approach.
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Fig. 3. The proportion of load served over LTE-U as a function of T .

V. SIMULATION RESULTS AND ANALYSIS

For our simulations, we consider a 300 m × 300 m square

area in which we randomly deploy a number of SBSs and

WAPs that share 7 unlicensed channels. We use real data for

traffic loads from a dataset provided at [17] and divide it as

80% for training and 20% for testing. We consider WAPs to

be passive such that their channel selection action is fixed

and thus we characterize the activity on a given channel by

the level of activity of WAPs. Table I summarizes the main

simulation parameters. All statistical results are averaged over

a large number of independent runs.

Fig. 2 shows the average airtime allocated for LTE-U as a

function of T for our proposed scheme as well as the conven-

tional reactive approach under three different network scenar-

ios. Intuitively, a larger T provides the framework additional

opportunities to benefit over the reactive approach, which does

not account for future traffic loads. First, evidently, for very

small T , the proactive approach does not yield any significant

gains. However, as T increases the gains start to become more

pronounced. For example, for the case of 4 SBSs and 4 channels,

the average airtime allocated for LTE-U increases from 0.45 to

0.52 as T increases from 2 to 5, respectively, as opposed to

0.44 for the reactive approach. Eventually, as T grows, LTE-U

transmission opportunities of our proposed framework remains

almost constant at the maximum achievable value.

In Fig. 3, we evaluate the proportion of LTE-U served load

for different values of T . Fig. 3 shows that as T increases, the

proportion of LTE-U served traffic increases. For example, the

proportion of served load increases from 82% to 97% for the

case of 4 SBSs and 4 channels. Clearly, the gain of the LTE-U

network stems from the flexibility of choosing actions over a

large time horizon T . Instantaneous actions are taken based on

the current traffic and future predictions of the traffic as opposed

to a reactive approach that considers the current network state

only. Therefore, the optimal policy will balance the instantaneous

reward and the available information for future use and thus
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Fig. 4. LTE/WLAN airtime ratio as a function of the LTE/WLAN traffic ratio for
3 different values of Mc (Mc=1, 2 and 3). The number of unlicensed channels is
fixed to 7 and the number of SBSs is equal to 2 and 7 in (a) and (b) respectively.

maximizing the total load served over time. Based on the results

given in Fig. 2 and Fig. 3, a suitable value of T for the studied

dataset is 8.

Fig. 4 shows the value of the LTE/WLAN airtime ratio under

varying LTE/WLAN traffic ratio and for different values of Mc.

We consider two different scenarios with varying number of

SBSs (2 and 7 SBSs for scenarios (a) and (b) respectively), while

the number of unlicensed channels is fixed to 7. Fig. 4 shows that

inter-technology fairness is satisfied. This can be clearly seen in

scenario (b) for the case of Mc=1. For instance, when the traffic

ratio is 1, LTE/WLAN airtime ratio is 1 and thus equal weighted

airtime is allocated for each technology (given that PLTE=1 and

PWiFi=1). From Fig. 4, we can also see that enabling carrier

aggregation impacts the resource allocation outcome. In fact, we

can see that a considerable gain in terms of spectrum access

time can be achieved with carrier aggregation. For instance, in

the case of 2 SBSs and 2 channels, the LTE/WLAN airtime ratio

increases from 0.84 for Mc=1 to 1.7 and 2.4 for Mc=2 and 3

respectively for the value of 0.6 for LTE/WLAN traffic ratio. On

the other hand, this gain decreases as more SBSs are deployed

and for a densely deployed LTE-U network, there is no need to

aggregate more channels. This can be seen from (b) where the

LTE-U network gets the same airtime share for Mc=1, 2 and 3.

Moreover, Fig. 4 shows that deploying more SBSs does not

necessarily allow more airtime fraction for the LTE-U network.

For example, LTE/WLAN airtime ratio of scenarios (a) and (b)

corresponding to 0.6 LTE/WLAN traffic ratio is equal to 0.84 and

0.6 respectively for Mc=1. Consequently, the proposed scheme

can avoid causing performance degradation to WLAN in the case

LTE operators selfishly deploy a high number of SBSs.

Fig. 5 investigates the proportion of served LTE-U traffic for

different network parameters. From Fig. 5, we can see that,

as the number of SBSs increases, the proportion of LTE-U

served traffic, relative to its corresponding offered load decreases

thus avoiding degradation in the WLAN performance in the

case of a densely deployed LTE-U network. Moreover, reducing

the number of unlicensed channels leads to a decrease in the

proportion of LTE-U served traffic. Although the number of

available unlicensed channels are not players in the game, they

affect spectrum allocation action selection for each SBS. As the

number of channels increases, the action space for the channel

selection vector increases, thus giving more opportunities for an

SBS to serve more of its offered load.

VI. CONCLUSION

In this paper, we have proposed a novel resource allocation

framework for the coexistence of LTE-U and WiFi in the

unlicensed band. We have formulated a game model where
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Fig. 5. The proportion of LTE-U served traffic load as a function of the number
of SBSs and for different number of unlicensed channels (C=2, 4, and 7).

each SBS seeks to maximize its rate over a given time horizon

while achieving long-term equal weighted fairness with WLAN

and other LTE-U operators transmitting on the same channel.

To solve this problem, we have developed a novel algorithm

based on LSTMs. The proposed algorithm enables each SBS

to decide on its spectrum allocation scheme autonomously with

limited information on the network state. Simulation results have

shown that the proposed approach yields significant performance

gains in terms of rate compared to a conventional approach that

considers only instantaneous network parameters.
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