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Abstract—LTE in unlicensed spectrum (LTE-U) is a promising
approach to overcome the wireless spectrum scarcity. However, to
reap the benefits of LTE-U, a fair coexistence mechanism with
other incumbent WiFi deployments is required. In this paper,
a novel deep learning approach is proposed for modeling the
resource allocation problem of LTE-U small base stations (SBSs).
The proposed approach enables multiple SBSs to perform dynamic
channel selection, carrier aggregation, and fractional spectrum
access proactively while guaranteeing fairness with existing WiFi
networks and other LTE-U operators. SBSs are modeled as Homo
Egualis agents that aim at predicting a sequence of future actions
and thus achieving long-term equal weighted fairness with WLAN
and other LTE-U operators over a given time horizon. Simulation
results using real data traces show that the proposed scheme can
yield up to 28% gains over a conventional reactive approach.
The results also show that the proposed framework prevents WiFi
performance degradation for a densely deployed LTE-U network.

I. INTRODUCTION

LTE in unlicensed bands (LTE-U) has emerged as an effective
solution to overcome the scarcity of the radio spectrum [1].
Using LTE-U, a cellular small base station (SBS) can access the
unlicensed spectrum thus improving the overall network capacity
and spectral efficiency. However, to achieve the promised quality-
of-service (QoS) improvements from LTE-U, many challenges
must be addressed ranging from effective co-existence with
existing WiFi networks to resource allocation and multiple access
over licensed and unlicensed bands [1].

If not properly deployed, LTE-U can significantly degrade the
performance of the wireless local area network (WLAN) in the
absence of an efficient spectrum sharing mechanism [1]. There
has been a number of recent works [2]-[7] that investigated this
challenge. This prior art can be categorized into two groups:
channel access [2]-[4] and channel selection [6], [7]. The authors
in [2] and [3] propose different channel access mechanisms based
on listen-before-talk (LBT) that rely on either a fixed/random
contention window (CW) size [2] or an adaptive CW size [3].
Nevertheless, a fixed CW size cannot handle time-varying traffic
loads thus yielding unfair outcomes. The authors in [4] develop a
holistic approach for both traffic offloading and resource sharing
for one LTE-U SBS. In [5], the authors study the problem of
resource allocation with uplink-downlink decoupling for LTE-U.
However, none of these works jointly account for both channel
selection and channel access. In other words, they do not analyze
the potential gains that can be obtained upon aggregating or
switching between different unlicensed channels.

In terms of LTE-U channel selection, the authors in [6]
propose a matching-based solution, which is both distributed
and cooperative. Moreover, the work in [7] combines channel
selection along with channel access. Despite the promising
results, the work in [6] and [7] consider a reactive sense-and-
avoid approach that does not account for the future dynamics
of the network and thus potentially incurring loss in terms of
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performance. On the other hand, in a proactive approach, rather
than reactively responding to incoming demands and serving
them when requested, SBSs can predict traffic patterns and
determine future off-peak times so that incoming traffic demand
can be properly allocated over a given time window and thus
minimizing disruptions to WLAN.

The main contribution of this paper is to introduce a novel
deep reinforcement learning algorithm based on long short-
term memory (RL-LSTM) cells for proactively allocating LTE-U
resources over the unlicensed spectrum. The LTE-U resource
allocation problem is formulated as a noncooperative game
in which the players are the SBSs. To solve this game, we
propose an RL-LSTM framework which enables the SBSs to
autonomously learn which unlicensed channels to use along with
the corresponding channel access probability on each channel
taking into account future environmental changes, in terms of
WLAN activity on the unlicensed channels and LTE-U traffic
loads. Unlike previous studies which are either centralized [7]
or rely on the coordination among SBSs [3], our approach is
based on a self-organizing proactive resource allocation scheme
in which the SBSs utilize past observations to build predictive
models on spectrum availability and intelligently plan channel
usage over a finite time window. The use of LSTM cells enables
the SBSs to predict a sequence of interdependent actions over a
long-term time horizon thus achieving long-term fairness among
different underlying technologies. Moreover, we show that the
proposed framework converges to a mixed-strategy distribution
which constitutes a mixed-strategy Nash equilibrium (NE) for
the studied game. To the best of our knowledge, this is the
first work that exploits the framework of LSTMs for proactive
resource allocation in LTE-U networks. Simulation results show
that the proposed approach yields significant rate improvements
compared to conventional reactive solutions.

The rest of this paper is organized as follows. In Section
II, we present the system model. Section III describes the
proposed coexistence game model. The LSTM-based algorithm
is proposed in Section IV. In Section V, simulation results are
analyzed. Finally, conclusions are drawn in Section VI.

II. SYSTEM MODEL

Consider the downlink of an LTE-U network composed of a
set J of J LTE-U SBSs belonging to different LTE operators,
a set W of W WiFi access points (WAPs), and a set C of C'
unlicensed channels. Each SBS j € J has a set of ; of K
LTE-U UEs associated with it. We focus on the operation of
the SBSs over the unlicensed band, while the licensed spectrum
resources are allocated in a conventional way. Both SBSs and
WAPs adopt the LBT access scheme and, thus, at a particular
time, a given unlicensed channel is occupied by either an SBS or
a WAP. We consider the LTE carrier aggregation feature using
which the SBSs can aggregate up to five component carriers.

Our goal is to jointly determine the dynamic channel selection,
carrier aggregation, and fractional spectrum access for each



SBS, while guaranteeing long-term airtime fairness with WLAN
and other LTE-U operators. We therefore need to dynamically
analyze the usage of various unlicensed channels. To this end,
we divide our time domain into multiple time windows, of
duration 7', each of which consists of multiple time epochs ¢.
Our objective is to proactively determine the spectrum allocation
vector for each SBS over 7" while guaranteeing long-term equal
weighted airtime share. To guarantee a fair spectrum allocation
among SBSs belonging to different operators, we consider inter-
operator interference along with inter-technology interference.
Next, we define the variables x; ., =1 if channel c is selected by
SBS j during time epoch ¢, and 0, otherwise, and o .; € [0,1].
Zj.c,t determines which channel ¢ SBS j is using during time
t and o is the channel access probability of SBS j on the
unlicensed channel ¢ during time t.

A contention-based protocol is used for the channel access
over the unlicensed band. In this protocol, prior to transmission,
the SBS applies clear channel assessment to detect the state of
the channel (idle or busy) based on the detected energy level.
If the channel is idle, the SBS gets a transmit opportunity for
up to 10 LTE sub-frames; otherwise, it keeps monitoring the
channel until it becomes idle. We consider an exponential backoff
scheme for WiFi while the SBSs adjust their contention window
size (and thus the channel access probability) on each of the
selected channels in a way that would guarantee a long-term
equal weighted fairness with WLAN and other SBSs.

To derive the throughput achieved by an LTE-U user equip-
ment (UE) and a WAP, we first define the stationary probability
of each WAP w and each SBS j, 7, and 7; ., respectively. The
stationary probability denotes the probability with which a given
base station attempts to transmit in a randomly chosen slot. Con-
sidering an exponential backoff scheme for WiFi, the stationary
probability with which WAPs transmit a packet, 7,,, [8]:

2(1 — 2qw) (1)
(1 - 2Qw)(cvvmin + 1) + QwCWmin(l - (ZQw)m)’
where ¢, is the collision probability of a WAP, m is the
maximum backoff stage with CW . = 27" CW i, and CW iy
and CW .« are the minimum and maximum contention window
size, respectively. For LTE-U, m=0 since no exponential backoff
is considered, and, thus the stationary probability of an SBS
on a given unlicensed channel ¢ during time epoch ¢ will be
Tjet = ﬁ, where CWj ., is the contention window
size of SBS j on channel ¢ during time epoch t. Therefore, we
do not consider a contention stage for LTE-U. Instead, the SBSs
adjust their CW size adaptively to control their channel access
probability over the unlicensed band. The collision Jprobablhty of
a WAP is defined as ¢,, = 1—HZV:LU7$U)(1—TU) [T (1=, Ct)
where c is the channel used by WAP w. The throughput R,,
a WAP w will be:

Tw =

Pw,succ . E[Dw] (2)
Pw,idle -0+ Pw,busy : ,Zjb7
where E[D,,] is the expected payload size for WAP w, P, succ =
Tw HZV:L#w(l —T) H}]:1(1 -7 Ct) is the probability of a
successful transmission, Py, jgie = H] L (I=Tjct) HW (1-7y)
is the probability of an idle slot, and Py, pusy = 1 — Hj:1(1 -
Tjeit) HZ‘;I(I — Tw) is the probability of a busy slot, regardless
of whether it corresponds to a collision or a successful transmis-
sion. @ and Ty, are, respectively, the average durations of an idle

and a busy slot and, thus, the denominator in (2) corresponds to
the mean duration of a WiFi medium access control (MAC) slot.

R, =

On the LTE-U side, the achievable airtime fraction for an SBS
7 on channel ¢ during time epoch ¢, can be expressed as:
J W

=Tier [ U=7iee) [T —7w). 3)
i=1,i] w=1
The airtime fraction essentially represents the time allocated
for an SBS on channel ¢ during time ¢. Thus, the total throughput
of all K;; UEs that are served by SBS j during time epoch ¢
is:

Qjc,t

c
Ry = Z Qjc,tTjc,ts “4)
where K, -
J,c,t ] c Ij’cyt T BCN() .

Here, Ij,c,t = ZZ;[/:l Py cthwkee + Z;]:Li;ﬁj Picthiget is
the interference level on SBS j when operating on channel ¢
during time ¢ and B, is the bandwidth of channel c. P; . is the
transmit power of SBS j on channel ¢ during time ¢. hj ;. . ¢ is the
channel gain between SBS j and UE k on channel ¢ during time
t. Ny is the power spectral density of additive white Gaussian
noise. Since SBSs and WAPs both adopt LBT, one cell may
then occupy the entire channel at a given time thus transmitting
exclusively on a given channel c¢. However, hidden and exposed
terminals could be present on a given channel which can result
in interference and thus a degradation in the throughput.

Given this system model, next, we develop an effective
spectrum allocation scheme that can allocate the appropriate
unlicensed channels along with the corresponding channel access
probabilities to each SBS simultaneously over 7', at ¢ = 0.

III. PROACTIVE RESOURCE ALLOCATION SCHEME FOR
UNLICENSED LTE

In this section, we propose a proactive approach for allocating
spectrum resources to SBSs in the unlicensed bands. In this
regard, we formulate the resource allocation problem as a
noncooperative game G=(7,.A;,u;) with the SBSs in J being
the players, each of which must choose a channel selection and
channel access pair a; . ;=(j c.¢,0.c¢) € Aj; for each time ¢.

The objective of each SBS j is to maximize its total throughput
over the selected channels over T given by:

U, aj, Zzajctr]ch (6)
t=1 c=1
where a; = [(aj1,1," " ,aj,l,T),m (@01, ajcr)] and

a_; correspond, respectively to the action vector of SBS j and
all other SBSs, over all the channels C during 7". The goal of
each SBS j is to maximize its own utility:

LIljne% uj(aj,a_;) Vje T, (M
s.t. et < Tjer Vet (8)
C
ij,c’t < min(M,,C) Vt, )
c 1
Z Za_j,(‘ tT Z f j,tT 7 (10)
tr=1c=1 tr=1
Quet + QG et + Z Qi et <tmax Ve, t, (11)
i=1,i#]
Tjet € {0, 1}, Qjet € [O, 1] Ve, t. (12)

where M, denotes the total number of unlicensed channels which
an SBS can aggregate. Constraint (8) allows the allocation of a
channel access proportion for SBS j on channel ¢ during ¢ only if



SBS j transmits on channel ¢ at time ¢. Constraint (9) guarantees
that each SBS can aggregate a maximum of M, channels at
a given time t. Constraint (10) limits the amount of allocated
bandwidth to the required demand where f(L;.) captures the
relationship between bandwidth requirement and offered load.
(11) captures coupling constraints which limit the proportion of
time used by SBSs and WLAN on a given unlicensed band to the
maximum fraction of time an unlicensed channel can be used,
tmax- (12) represents the feasibility constraints.

Given the fact that different operators and technologies have
equal priorities on the unlicensed spectrum, we incorporate the
Homo Egualis (HE) anthropological model, an inequity-averse
based fairness model, into the strategy design of the agents [9].

Definition 1. Inequity aversion is the preference for fairness and
resistance to incidental inequalities. In other words, it refers to
the willingness of giving up some material payoff in order to
move in the direction of more equitable outcomes.

In an HE society, agents focus not only on maximizing
their own payoffs, but also become aware of how their payoffs
are compared to other agents’ payoffs [9]. The HE concept
comes from the anthropological literature in which Homo sapiens
evolved in small hunter-gatherer groups without a centralized
governance [9]. To model our players as HE agents, we consider
the following two coupling constraints for the allocated airtime
fraction on each channel ¢ for each SBS j:

1 12?:10%615 1 1Zt 1azct

. T 7
wie T >oim1 Ly w”T Zt 1 L (13)
T
1 2 1Znesuo‘”°" l Z’flawct Veel,
]
TPLTEZt IZnES nt TPWIFIZt 1 w(‘t
(14)

where C is the subset of channels used by SBS j during 7T'. Sct
is the subset of SBSs that are transmitting over channel ¢, ¢ € C s
during time ¢ and S] c is the subset of other neighboring SBSs,
i # j, that are using the same channel ¢ € C as SBS j during 7.
LJ’t corresponds to the remaining traffic that needs to be served
by SBSs j and can be expressed as Ijjyt =L —> . floges)
where L;, is the fotal aggregate traffic demand of SBS j on
channel ¢ during time epoch ¢. f(.) corresponds to the served
traffic load as a function of the airtime allocation. ¢’ in that
case represents all the set of channels except channel c. oy, .=
min(f(Luy,ct), tmax — Qjet — Ziesj,ct Qi) 18 the airtime
allocated for WLAN transmissions over channel ¢ during time
t. Pywir; and Prpp correspond to the priority metric defined for
each technology when operating on the unlicensed band. These
parameters allow adaptation of the level of fairness between LTE-
U and WLAN.

Constraint (13) represents inter-operator fairness which guar-
antees an equal weighted airtime allocation among SBSs belong-
ing to different operators on a given channel c. The adopted
notion of fairness is based on a long-term weighted equal-
ity over T, as opposed to instantaneous weighted equality.
Wje S @jes is the weight of SBS j on channel ¢
during 7" and thus different SBSs are assigned different weights
on each channel ¢ based on the number of time epochs ¢ a
given SBS j is active on that particular channel. (14) defines
an inter-technology fairness metric to guarantee a long-term
equal weighted airtime allocation over 7" for both LTE-U and
WiFi. Therefore, constraints (13) and (14) reflect the inequity
aversion property of the SBSs. Here, we consider the allocated

VeeCjie8;eli 7).

airtime as a metric for fairness in order to overcome the rate
anomaly problem that arises when different nodes use distinct
data rates [3], which leads to the slowest link limiting the system
performance.

Our game G belongs to the family of generalized Nash
equilibrium problems (GNEPs) in which both the objective
functions and the action spaces are coupled. To solve the GNEP,
we incorporate the Lagrangian penalty method into the utility
functions thus reducing it to a simpler Nash equilibrium problem
(NEP). The penalized utility function will be given by the
following, Vj € J:

ilaj,a E E Qj,c,tT,et
t=1 c=1
J
2
—P1,5 § E (mln max — Quyet — Qjet — § ai,c,t))
c=1t=1 i=1,i#j

/)2732 Z 1 Zt 1O‘Jct

T2 (w .
cEC 168] (i#£7) 9 Zt 1 jt

—p Zt 1 Znescvt Qn,e,t Z?:l Qi et
3,J E - - s
e T2 Pure Y1 Yones, It Pwiri oy Lucs

where py ;, po; and p3; are positive penalty coefficients cor-
responding to constraints (11), (13), and (14) respectively. For
our reformulation, we consider equal penalty coefficients for
all players for each coupled constraint, p; ;j=p1, p2,,;=p2 and
p3,5=p3. This allows all SBSs to have equal incentives to give
up some payoff in order to satisfy the coupled constraints.
Moreover, to determine the values of pi, po and ps3, we adopt
the incremental penalty algorithm in [10] where it has been
shown that there exists some penalty parameters pj'=[p7, p3, p3]
at which the coupled constraints can be satisfied.

In our game model G, «; .+ is a continuous variable bounded
between 0 and 1, however, for a particular network state, we
are interested only in a certain region of the continuous space
where the optimal actions are expected to be. Therefore, we
will propose a sampling-based approach to discretize .
in Section IV. Given that the action space becomes discrete,
we turn our attention to mixed strategies in which players
choose their strategies probabilistically. Such a mixed strategy
approach enables us to analyze the frequency with which players
choose different channels and channel access combinations.
Let A(A) be the set of all probability distributions over the
action space A and p;=[pja, - 1Pj.aia,] be a probability
distribution with which SBS j selects a particular action from
A;. Therefore, our objective is to maximize u;(p;,p_;), the
expected value of the utility function where u;(p;,p_;) =

~ ~ J
Ep, [Uj (aj, a—;)|=>"qcaUj(aj,a—;) [T;_i Pja,-

Definition 2. A mixed strategy p*=(p7, - ,p})=(p},p~;) is
a mixed-strategy Nash equilibrium if, Vj € J and Vp; € A( Aj),

7(p_]7p )>u.](pj7p—J)

Here, we note that any finite noncooperative game will admit
at least one mixed-strategy Nash equilibrium [11]. However,
solving for this equilibrium in our proposed game model is
challenging due to the proposed long-term fairness notion which
necessitates the prediction of a sequence of actions for each
SBS over T" at ¢ = 0 as well as a temporal dependence among
these predicted actions. Therefore, next, we develop a novel deep
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Fig. 1. Proposed framework.

learning algorithm for solving for the mixed-strategy NE of our
game.

IV. RL-LSTM FOR RESOURCE ALLOCATION

To proactively allocate resources on the unlicensed band, we
propose a novel RL-LSTM algorithm that allows SBSs to learn a
sequence of future actions based on a sequence of historic traffic
load and thus maximizing the sum of their future rewards.

LSTMs are a special kind of “deep” recurrent neural networks
(RNNS5) that are capable of storing information for long periods
of time and hence learning the long-term dependency within
a given sequence [12]. In essence, LSTMs process a variable-
length sequence y = (y1, Y2, ..., Ym) by incrementally adding
new content into a single memory slot, with gates controlling
the extent to which new content should be memorized, old
content should be erased, and current content should be exposed.
Predictions at a given time step are influenced by the network
activations at previous time steps thus making LSTMs suitable
for our application in which an action at time ¢ depends on all
previous and future actions within the current window 7'

Consequently, we consider an end-to-end RL-LSTM based
approach to train the network to find a mixed-strategy NE of
the game G without any prior knowledge. Fig. 1 summarizes the
proposed approach. The traffic encoder learns a vector represen-
tation of the input time-series (i.e., historical traffic loads), the
multi-layer perceptron (MLP) summarizes the input vectors into
one vector and the action decoder uses the summarized vector
to reconstruct the predicted action sequence. In our scheme,
an MLP is required to encode all the vectors together since a
particular action at time ¢ depends on the values of all other input
vectors (i.e., traffic values of all SBSs and WLAN on all the
unlicensed channels). All SBSs share the same traffic encoders
while different SBSs use different action decoders.

During the training phase, the parameters of the algorithm
are learned from a given training data set. For our proposed
framework, we train the weights of our neural network based
on RL. We consider a policy gradient approach that is an RL
technique that aims at maximizing the expected return of a
policy. This is achieved by representing the policy by its own
function approximator and updating it according to the gradient
of the expected reward with respect to the policy parameters.
Consider the set M of M history traffic sequences corresponding
to either an SBS or WiFi on each unlicensed channel, where
M =J+C. Let hy,; € R" and h;; € R" denote the hidden
vectors of the traffic encoder m and action decoder of SBS j,
respectively, at time ¢. h,, ; and h;, are then computed by:

hm,t=¢ ('Um,ta hm,t—l) 5 h‘j,t=¢ (’Uj,ta hj,t—l) ) (15)

where ¢ refers to the LSTM cell function [12] being used,
and wv,,; is the input vector. For the encoder, v,,; =

JLmi is the history traffic value. For the decoder, v;; =
W e(xj+—1)||aj,c—1] is the vector of the previous predicted
action where e() maps discrete value to a one-hot vector, W, €
R™*N= is a matrix that is used to transform the discrete actions
;1 to a vector, and IV, is the number of discrete actions. In
our implementation, we learn the channel selection vector for all
the channels simultaneously and thus @;; = [z 14, - , ;0]

We use a softmax classifier to predict the distribution for the
discrete variable x;; and a Gaussian policy for the distribution
of the continuous variable «; .. For the Gaussian policy, the
probability of an action is proportional to a Gaussian distribution
with a parameterized mean and a fixed value for the variance in
our implementation. The variance of the Gaussian distribution
defines the area around the mean from which we explore the
action space. For our implementation, the initial value of the
variance is set to 0.06 in order to increase exploration and then is
decreased linearly towards 0.02. Therefore, defining probability
distributions for our variables allows the initialization of the
action space .A; by sampling Z actions from the proposed
distributions. This enables the SBSs to learn more accurate trans-
mission probabilities for «; . ¢, as opposed to fixed discretization,
thus satisfying the fairness constraints. The hidden vector h;;
in the decoder is used to predict the ¢-th output actions x;; and
;- The probability vector over x;; and «; ., can be defined,
respectively, as:

mj,t|mj,<t7aj,c,<taLt ~ 0 (thj,t)v (16)

Lot =S (Wuhi), e ~N(pjer, Var(age)), (17)

where 1., and Var(aj.:) correspond to the mean value
and variance of the Gaussian policy respectively, W, &
RIValxn W, € R™ are parameters, o(.) is the softmax function
o(b), = % for ¢ = 1,---,0, and S(.) is the sigmoid
function where S(b) = i7t= and is used to normalize the
value to (0,1). Note that ;. is computed only in the case
when z;.. = 1. The probability of the whole action sequence

for SBS j, given a historic traffic sequence L, Pja,|L is given
thad]
by:
T
Pja, L = II» ((wj,maj,c,t)le,q, Qjc,<ts Lt), (13)
~ ~t=1 ~
where Li=(L1¢,---, Lare), ®j<=[xj1,-- ,Tj:-1], and

e, <t=[Hj,e 157 s B t—1]-

Our goal is to maximize the exact expectation of the reward
uj(aj,a_;) over the action space for the training dataset.
Therefore, the objective function can be defined as:

max » 7 [u;(a;,a-;)l, (19)
where D is the training dataset. For this objective function,
the REINFORCE algorithm [13] can be used to compute the
gradient, and then standard gradient descent optimization algo-
rithms [14] can be adopted to allow the model to generate opti-
mal action sequences for input history traffic values. Specifically,
Monte Carlo sampling is used to compute the expectation.

On the other hand, the testing phase corresponds to the actual
execution of the algorithm on each SBS. Based on history traffic
values, each SBS learns the future sequence of actions based on
the learned parameters from the training phase. Therefore, for
applicability, we assume knowledge of historical measurements
of the WiFi activity on each of the unlicensed channels through
long-term channel sensing [4] and of other SBSs by exchanging
history traffic information via the X2 interface. Consequently, the



Algorithm 1: Training phase of the proposed approach.

Input: 7;W;C; Ej,th cJ,t; Ewyu,th eC,t.
Initialization: The weights of all LSTMs are initialized following a uniform distribution
with arbitrarily small values.
Training: Each SBS j is modeled as an LSTM network.
while Any of the coupled constraints is not satisfied do
for Number of training epochs do
for Size of the training dataset do
Step 1. Run Algorithm 2 to compute the best actions for all SBSs.
for j=1:J do
Step 2. Sample actions for SBS j based on the best expected actions of
other SBSs.
Step 3. Use REINFORCE [13] to update rule and compute the gradient
of the expected value of the reward function.
Step 4. Update model parameters with back-propagation algorithm [15].
end for
end for
end for
Step 5. Using the incremental penalty algorithm, check the feasibility of the coupled
constraints and update the values of p; accordingly.
end while

Algorithm 2: Testing phase of the proposed approach.

Input: J;W;C;L; Vj € T, t; Luy,c.iVe €C ,t.

for For each SBS j do
Step 1. Traffic history encoding: The history traffic of each SBS and WLAN activity
on each channel is fed into each of the M LSTM traffic encoders.
Step 2. Vector summarization: The encoded vectors are transformed to initialize
action decoders.
Step 3. Action decoding: Action sequence is decoded for each SBS j.

end for
TABLE 1
SYSTEM PARAMETERS
Parameters Values Parameters Values
Transmit power (F) 20 dBm BW (channel) 20 MHz
CCA threshold -80 dBm Noise variance | 92 dBm/Hz
Path loss 15.3 + 50log;4(m) SIFS 16 ps
Hidden size (encoder) 70 DIES 34 pus
Hidden size (decoder) 70 CWmin 15 slots
time epoch (%) 5 min CWmax 1023 slots
Action sampling (Z2) 100 samples ACK 256 bits
History traffic size 7 time epochs PrrE, Pwiri 1,1
Learning rate 0.01 LSTM layers 1
Learning rate decay 0.95 tmax 0.9

proposed algorithm offers a practical solution that is amenable to
implementation. The training and the testing phases are given in
Algorithms 1 and 2 respectively. In what follows, we characterize
the convergence point of our proposed algorithm.

Proposition 1. If Algorithm 1 converges, then the convergence
strategy profile corresponds to a mixed-strategy NE of game §.

Proof. The resulting penalized utility function is an affine com-
bination of convex functions, and hence is convex. Therefore,
a gradient-based learning algorithm for our game G allows
the convergence to an equilibrium point of that game [16].
Moreover, following the penalized reformulation of our game
G, one can easily show that a strategy that violates the coupled
constraints cannot be a best response strategy. From [10], there
exists p; such that the incremental penalty algorithm terminates.
Therefore, there exists a mixed strategy for which the coupled
constraints are satisfied at p;. In that case, there is no incentive
for an SBS to violate any of the coupled constraints, otherwise,
its reward function would be penalized by the corresponding
penalty function. Hence, all strategies that violate the coupled
constraints are dominated by the alternative of complying with
these constraints. Since in the proposed algorithm, the optimal
strategy profile results in maximizing E,_[u; (a;,a—;)], we can
conclude that the converged mixed-strategy NE is guaranteed not
to violate the coupled constraints and hence it corresponds to a
mixed-strategy NE for the game G.
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T) resulting from our proposed scheme as well as from a conventional reactive
approach.
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Fig. 3. The proportion of load served over LTE-U as a function of 7.

V. SIMULATION RESULTS AND ANALYSIS

For our simulations, we consider a 300 m x 300 m square
area in which we randomly deploy a number of SBSs and
WAPs that share 7 unlicensed channels. We use real data for
traffic loads from a dataset provided at [17] and divide it as
80% for training and 20% for testing. We consider WAPs to
be passive such that their channel selection action is fixed
and thus we characterize the activity on a given channel by
the level of activity of WAPs. Table I summarizes the main
simulation parameters. All statistical results are averaged over
a large number of independent runs.

Fig. 2 shows the average airtime allocated for LTE-U as a
function of T for our proposed scheme as well as the conven-
tional reactive approach under three different network scenar-
ios. Intuitively, a larger 7' provides the framework additional
opportunities to benefit over the reactive approach, which does
not account for future traffic loads. First, evidently, for very
small T, the proactive approach does not yield any significant
gains. However, as 7' increases the gains start to become more
pronounced. For example, for the case of 4 SBSs and 4 channels,
the average airtime allocated for LTE-U increases from 0.45 to
0.52 as T increases from 2 to 5, respectively, as opposed to
0.44 for the reactive approach. Eventually, as T' grows, LTE-U
transmission opportunities of our proposed framework remains
almost constant at the maximum achievable value.

In Fig. 3, we evaluate the proportion of LTE-U served load
for different values of 7. Fig. 3 shows that as 7" increases, the
proportion of LTE-U served traffic increases. For example, the
proportion of served load increases from 82% to 97% for the
case of 4 SBSs and 4 channels. Clearly, the gain of the LTE-U
network stems from the flexibility of choosing actions over a
large time horizon 7'. Instantaneous actions are taken based on
the current traffic and future predictions of the traffic as opposed
to a reactive approach that considers the current network state
only. Therefore, the optimal policy will balance the instantaneous
reward and the available information for future use and thus
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Fig. 4. LTE/WLAN airtime ratio as a function of the LTE/WLAN traffic ratio for
3 different values of M. (M.=1, 2 and 3). The number of unlicensed channels is
fixed to 7 and the number of SBSs is equal to 2 and 7 in (a) and (b) respectively.

maximizing the total load served over time. Based on the results
given in Fig. 2 and Fig. 3, a suitable value of 7" for the studied
dataset is 8.

Fig. 4 shows the value of the LTE/WLAN airtime ratio under
varying LTE/WLAN traffic ratio and for different values of M..
We consider two different scenarios with varying number of
SBSs (2 and 7 SBSs for scenarios (a) and (b) respectively), while
the number of unlicensed channels is fixed to 7. Fig. 4 shows that
inter-technology fairness is satisfied. This can be clearly seen in
scenario (b) for the case of M.=1. For instance, when the traffic
ratio is 1, LTE/WLAN airtime ratio is 1 and thus equal weighted
airtime is allocated for each technology (given that Prrg=1 and
Pyiri=1). From Fig. 4, we can also see that enabling carrier
aggregation impacts the resource allocation outcome. In fact, we
can see that a considerable gain in terms of spectrum access
time can be achieved with carrier aggregation. For instance, in
the case of 2 SBSs and 2 channels, the LTE/WLAN airtime ratio
increases from 0.84 for M.=1 to 1.7 and 2.4 for M.=2 and 3
respectively for the value of 0.6 for LTE/WLAN traffic ratio. On
the other hand, this gain decreases as more SBSs are deployed
and for a densely deployed LTE-U network, there is no need to
aggregate more channels. This can be seen from (b) where the
LTE-U network gets the same airtime share for M.=1, 2 and 3.

Moreover, Fig. 4 shows that deploying more SBSs does not
necessarily allow more airtime fraction for the LTE-U network.
For example, LTE/WLAN airtime ratio of scenarios (a) and (b)
corresponding to 0.6 LTE/WLAN traffic ratio is equal to 0.84 and
0.6 respectively for M.=1. Consequently, the proposed scheme
can avoid causing performance degradation to WLAN in the case
LTE operators selfishly deploy a high number of SBSs.

Fig. 5 investigates the proportion of served LTE-U traffic for
different network parameters. From Fig. 5, we can see that,
as the number of SBSs increases, the proportion of LTE-U
served traffic, relative to its corresponding offered load decreases
thus avoiding degradation in the WLAN performance in the
case of a densely deployed LTE-U network. Moreover, reducing
the number of unlicensed channels leads to a decrease in the
proportion of LTE-U served traffic. Although the number of
available unlicensed channels are not players in the game, they
affect spectrum allocation action selection for each SBS. As the
number of channels increases, the action space for the channel
selection vector increases, thus giving more opportunities for an
SBS to serve more of its offered load.

VI. CONCLUSION

In this paper, we have proposed a novel resource allocation
framework for the coexistence of LTE-U and WiFi in the
unlicensed band. We have formulated a game model where

Served LTE-U traffic load (%)
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Fig. 5. The proportion of LTE-U served traffic load as a function of the number
of SBSs and for different number of unlicensed channels (C'=2, 4, and 7).

each SBS seeks to maximize its rate over a given time horizon
while achieving long-term equal weighted fairness with WLAN
and other LTE-U operators transmitting on the same channel.
To solve this problem, we have developed a novel algorithm
based on LSTMs. The proposed algorithm enables each SBS
to decide on its spectrum allocation scheme autonomously with
limited information on the network state. Simulation results have
shown that the proposed approach yields significant performance
gains in terms of rate compared to a conventional approach that
considers only instantaneous network parameters.
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