
Streaming Periodicity with Mismatches

Funda Ergün1, Elena Grigorescu2, Erfan Sadeqi Azer1, and Samson

Zhou2

1 School of Informatics and Computing, Indiana University, Bloomington, IN.

fergun@indiana.edu, esadeqia@indiana.edu

2 Department of Computer Science, Purdue University, West Lafayette, IN.

elena-g@purdue.edu, samsonzhou@gmail.com

Abstract

We study the problem of finding all k-periods of a length-n string S, presented as a data stream.

S is said to have k-period p if its prefix of length n − p differs from its suffix of length n − p in

at most k locations.

We give a one-pass streaming algorithm that computes the k-periods of a string S using

poly(k, log n) bits of space, for k-periods of length at most n
2 . We also present a two-pass

streaming algorithm that computes k-periods of S using poly(k, log n) bits of space, regardless

of period length. We complement these results with comparable lower bounds.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases String algorithms, Streaming algorithms, Pattern matching, Randomized

algorithms, Sublinear algorithms

Digital Object Identifier 10.4230/LIPIcs.CVIT.2016.23

1 Introduction

In this paper we are interested in finding (possibly imperfect) periodic trends in sequences

given as streams. Informally, a sequence is said to be periodic if it consists of repetitions

of a block of characters; e.g., abcabcabc consists of repetitions of abc, of length 3, and thus

has period 3. The study of periodic patterns in sequences is valuable in fields such as string

algorithms, time series data mining, and computational biology. The question of finding

the smallest period of a string is a fundamental building block for many string algorithms,

especially in pattern matching, such as the classic Knuth-Morris-Pratt [22] algorithm. The

general technique for many pattern matching algorithms is to find the periods of prefixes of

the pattern in a preprocessing stage, then use them as a guide for ruling out locations where

the pattern cannot occur, thus improving efficiency.

While finding exact periods is fundamental to pattern matching, in real life, it is unrealistic

to expect data to be perfectly periodic. In this paper, we assume that even when there is a

fixed period, data might subtly change over time. In particular, we might see mismatches,

defined as locations in the sequence where a block is not the same as the previous block. For

instance, while abababababab is perfectly periodic, abababacacac contains one mismatch where

ab becomes (and stays) ac. This model captures periodic events that undergo permanent

modifications over time (e.g., statistics that remain generally cyclic but experience infrequent

permanent changes or errors). We consider our problem in the streaming setting, where the

input is received in a sequential manner, and is processed using sublinear space.

Our problem generalizes exact periodicity studied in [12], where the authors give a

one-pass, O
(

log2 n
)

-space algorithm for finding the smallest exact period of stream S of

length n, when the period is at most n/2, as well as a linear space lower bound when the

© Funda Ergün, Elena Grigorescu, Erfan Sadeqi Azer, and Samson Zhou;
licensed under Creative Commons License CC-BY

42nd Conference on Very Important Topics (CVIT 2016).
Editors: John Q. Open and Joan R. Acces; Article No. 23; pp. 23:1–23:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

23:2 Streaming Periodicity with Mismatches

period is longer than n/2. They use two standard and equivalent definitions of periodicity: S

has period p if it is of the form B`B′ where B is a block of length p that appears ` ≥ 1 times

in a row, and B′ is a prefix of B. For instance, abcabcabcab has period 3 where B = abc,

and B′ = ab. Equivalently, the length n − p prefix of S is identical to its length n − p suffix.

These definitions imply that at most k of the repeating blocks differ from the preceding ones.

According to this definition, for instance, abcabdabdae is 2-periodic with period 3, with the

mismatches occurring at positions 6 and 11.

In order to allow mismatches in S while looking for periodicity in small space, we utilize

the fingerprint data structure introduced for pattern matching with mismatches by [25, 7].

Ideally, one would hope to combine results from [12] and [7] to readily obtain an algorithm

for detecting k-periodicity. Unfortunately, reasonably direct combinations of these techniques

do not seem to work. This is due to the fact that, in the presence of mismatches, the essential

structural properties of periods break down. For instance, in the exact setting, if S has

periods p and q, it must also have period r, where r is any positive multiple of p or q. It must

also have period d = gcd(p, q). These are not necessarily true when there are mismatches; as

an example consider the following.

I Example 1. S = aaaaba has only one mismatch where S[i] 6= S[i + 2] (over all non

range-violating values of i); likewise where S[i] 6= S[i + 3], thus S is 1-periodic with periods

2 and 3. S is not 1-periodic with period 1 = gcd (2, 3) as it has two mismatches where

S[i] 6= S[i + 1].

In the exact setting the smallest period t determines the entire structure of S as all other

periods must be multiples of t. This property does not necessarily hold when we allow

mismatches, thus the smallest period does not carry as much information as in the exact

case. Similarly, overlaps of a pattern with itself in S exhibits a much less well-defined

periodic structure in the presence of mismatches. This makes it much harder to achieve the

fundamental space reduction achievable in exact periodicity computation, where this kind of

structure is crucially exploited.

1.1 Our Results

Given the structural challenges introduced by the presence of mismatches, we first focus on

understanding the unique structural properties of k-periods and the relationship between the

period p, and the number of mismatches k (See Theorem 9). This understanding gives us

tools for “compressing” our data into sublinear space. We proceed to present the following

on a given stream S of length n:

(1) a two-pass streaming algorithm that computes all k-periods of S using O
(

k4 log9 n
)

space, regardless of period length (see Section 4)

(2) a one-pass streaming algorithm that computes all k-periods of length at most n/2 of S

using O
(

k4 log9 n
)

space (see Section 5)

(3) a lower bound that any one-pass streaming algorithm that computes all k-periods of S

requires Ω(n) space (see Section 6)

(4) a lower bound that for k = o(
√

n) with k > 2, any one-pass streaming algorithm that

computes all k-periods of S with probability at least 1 − 1/n requires Ω(k log n) space,

even under the promise that the k-periods are of length at most n/2. (see Section 6)

Given the above results, it is trivial to modify the algorithms to return, rather than all

k-periods, the smallest, largest, or any particular k-period of S.

Ergün et. al. 23:3

1.2 Related Work

Our work extends two natural directions in sublinear algorithms for strings: on one hand

the study of the repetitive structure of long strings, and on the other hand the notion of

approximate matching of patterns, in which the algorithm can detect a pattern even when

some of it got corrupted.

In the first line of work, Ergün et al. [12] initiate the study of streaming algorithms

for detecting the period of a string, using poly(log n) bits of space. Indyk et al. [19] also

studied mining periodic patterns in streams, [10] studied periodicity in time-series databases

and online data, and Crouch and McGregor [9] study periodicity via linear sketches. [13]

and [23] studied the problem of distinguishing periodic strings from aperiodic ones in the

property testing model of sublinear-time computation. Furthermore, [1] studied approximate

periodicity in RAM model under the Hamming and swap distance metrics.

The pattern matching literature is a vast area (see [3] for a survey) with many variants.

Following the pattern matching streaming algorithm of Porat and Porat [25], Clifford et al.

[7] recently show improved streaming algorithms for the k-mismatch problem, as well as

offline and online variants. We adapt the use of sketches from [7] though there are some

other works with different sketches for strings ([2], [5], [27] and [26]). [8] also showed several

lower bounds for online pattern matching problem.

This line of work is also related to the detection of other natural patterns in strings, such

as palindromes or near palindromes. Ergün et al. [4] initiate the study of this problem and

give sublinear-space algorithms, while [16] show lower bounds. In recent work, [18] extend

this problem to finding near-palindromes (i.e., palindromes with possibly a few corrupted

entries).

Many ideas used in these sublinear algorithms stem from related work in the classical

offline model. The well-known KMP algorithm [21] initially used periodic structures to

search for patterns within a text. Galil et al.[14] later improved the space performance of

this pattern matching algorithm. Recently, [15] also used the properties of periodic strings

for pattern matching when the strings are compressed. These interesting properties have

allowed several algorithms to satisfy some non-trivial requirements of respective models (see

[17], [6] for example).

2 Preliminaries

We assume our input is a stream S[1, . . . , n] of length |S| = n over some alphabet Σ. The ith

character of S is denoted S[i], and the substring between locations i and j (inclusive) S[i, j].

Two strings S, T ∈ Σn are said to have a mismatch at index i if S[i] 6= T [i], and their Hamming

distance is the number of such mismatches, denoted HAM (S, T) =
∣

∣

∣
{i | S[i] 6= T [i]}

∣

∣

∣
. We

denote the concatenation of S and T by S ◦ T .

S is said to have period p if S[x] = S[x + p] for all 1 ≤ x ≤ n − p; more succinctly, if

S[1, n − p] = S[p + 1, n]. In general, we say S has k-period p (i.e., S has period p with k

mismatches) if S[x] = S[x + p] for all but at most k valid indices x. Equivalently, S has

k-period p if and only if HAM (S[1, n − p], S[p + 1, n]) ≤ k.

I Observation 2. If p is a k-period of S, then at most k of the sequence of substrings

S[1, p], S[p + 1, 2p], S[2p + 1, 3p], . . . can differ from the previous substring in the sequence.

When obvious from the context, given k-period p, we denote as a mismatch a position i for

which S[i] 6= S[i + p].

CVIT 2016

23:4 Streaming Periodicity with Mismatches

I Example 3. The string S = aaaaaabbccd has 3-period equal to 1, since S[i] = S[i + 1] for

all valid locations i except mismatches at i = 6, 8, 10. On the other hand, S = abcabcadcabc

has 2-period equal to 3 since S[i] = S[i + 3] for all valid i except mismatches i = 5, 8.

The following observation notes that the number of mismatches between two strings is an

upper bound on the number of mismatches between their prefixes of equal length.

I Observation 4. If p is a k-period of S, then for any x ≤ n − p, the number of mismatches

between S[1, x] and S[p + 1, p + x] is at most k.

Given two integers x and y, we denote their greatest common divisor by gcd (x, y).

We repeatedly use data structures and subroutines that use Karp-Rabin fingerprints. For

more about the properties of Karp-Rabin fingerprints see [20], but for our purposes, the

following suffice:

I Theorem 5 ([7]). Given two strings S and T of length n, there exists a data structure

that uses O
(

k log6 n
)

bits of space, and outputs whether HAM (S, T) > k or HAM (S, T) ≤ k,

along with the set of locations of the mismatches in the latter case.

From here, we use the term fingerprint to refer to this data structure.

2.1 The k-Mismatch Algorithm

For our string-matching tasks, we utilize an algorithm from [7], whose parameters are given

in Theorem 6. For us, string matching is a tool rather than a goal; as a result, we require

additional properties from the algorithm that are not obvious at first glance. In Corollary 7

we consider these properties. Throughout our algorithms and proofs, we frequently refer to

this algorithm as the k-Mismatch Algorithm.

I Theorem 6 ([7]). Given a pattern P of length `, a text T of length n and some mismatch

threshold k, there exists an algorithm that, with probability 1 − 1
n2 , outputs all indices i such

that HAM (T [i, i + ` − 1], P) ≤ k using O
(

k2 log8 n
)

bits of space.

Whereas the pattern in the k-Mismatch Algorithm is given in advance and can be

preprocessed before the text, in our case the pattern is a prefix of the text, and the algorithm

must return any matches of this pattern, starting possibly at location 2, well within the

original occurrence of the pattern itself. (Consider text ‘abcdabcdabcdabcd’ and the pattern

‘abcdabcd,’ the first six characters of the text. The first match starts at location 4, but the

algorithm does not finish reading the full pattern until it has read location 6.) To eliminate

a potential problem due to this requirement, we make modifications so that the algorithm

can search for all matches in S of a prefix of S.

I Corollary 7. Given a string S and an index x, there exists an algorithm which, with proba-

bility 1 − 1
n2 , outputs all indices i where HAM (S[1, x], S[i + 1, i + x]) ≤ k using O

(

k2 log8 n
)

bits of space.

Proof. We claim that the algorithm of Theorem 6 can be arranged and modified to output

all such indices i. We need to input S[1, x] as the pattern and S[2, n] as the text for this

algorithm.

Thus, it suffices to argue that the data structure for the pattern is built in an online

fashion. That is, after reading each symbol of the pattern, the data structure corresponding

to the prefix of the pattern that has already been read is updated and ready to use. Moreover,

the process of building the data structure for the text should not depend on the pattern.

Ergün et. al. 23:5

The only dependency between these two processes can be that they need to use the same

randomness. Therefore, the algorithm only needs to decide the randomness before starting

to process the input and share it between processes.

The algorithm of Theorem 6 has a few components, explained in the proof of Theorem

1.2 in [7]. Here, we go through these components and explain how they satisfy the conditions

we mentioned.

The main data structure for this algorithm is also used in Theorem 5. In this data

structure, each symbol is partitioned to various subpatterns determined by the index of

the symbol along with predetermined random primes. Each subpattern is then fed to a

dictionary matching algorithm. The dictionary entries are exactly the subpatterns of the

original patterns and thus can be updated online.

The algorithm also needs to consider run-length encoding for each of these subpatterns in

case they are highly periodic. It is clear that run-length encoding can be done independently

for the pattern and the text.

Finally the approximation algorithm (Theorem 1.3 of [7]) uses a similar data structure

to Theorem 5, but with different magnitudes for primes. Thus, the entire algorithm can be

modified to run in an online fashion. J

3 Our Approach

Our approach to find all the k-periods of S is to first determine a set T of candidate k-periods,

which is guaranteed to be a superset of all the true k-periods. We first describe the algorithm

to find the k-period in two passes. In the first pass, we let T be the set of indices π that

satisfy

HAM (S[1, x], S[π + 1, π + x]) ≤ k,

for some appropriate value of x that we specify later. Note that by Observation 4, all

k-periods must satisfy the above inequality. We show that even though T may be linear in

size, we can succinctly represent T by adding a few additional indices into T . We then show

how to use the compressed version of T during the second pass to verify the candidates and

output the true k-periods of S.

This strategy does not work if we are allowed only one pass; by the time we discover a

candidate k-period p, it may be too late for us to start collecting the extra data needed to

verify p (in the two-pass version this is not a problem, as the extra pass allows us to go back

to the start of S and any needed data). We approach this problem by utilizing a trick from

[12] of identifying candidate periods p using non-uniform criteria depending on the value of

p. Using this idea, once a candidate period is found, it is not too late to verify that it is a

true k-period, and the data can still be compressed into sublinear size.

Perhaps the biggest hidden challenge in the above approach is due to the major structural

differences between exactly periodic and k-periodic strings; k-periodic strings show much

less structure than exactly periodic strings. As a result, incremental adaptations of existing

techniques on periodic strings do not yield corresponding schemes for k-periodic strings.

In order to achieve small space, one needs to explore the weaker structural properties of

k-periodic streams. A large part of the effort in this work is in formalizing said structure (see

Appendix A), culminating in Theorem 23 and its proof, as well as exploring its application

to our algorithms.

To show lower bounds for randomized algorithms finding the smallest k-period, we use

a strategy similar to that in [12], using a reduction from the Augmented Index Problem.

CVIT 2016

23:6 Streaming Periodicity with Mismatches

To show lower bounds for randomized algorithms finding the smallest k-period given the

promise that the smallest k-period is at most n
2 , we use Yao’s Principle [28].

4 Two-Pass Algorithm to Compute k-Periods

In this section, we provide a two-pass, O
(

k4 log9 n
)

-space algorithm to output all k-periods of

S. The general approach is to first identify a superset of the k-periods of S, based on the self-

similarity of S, detected via the k-Mismatch algorithm of [7] as a black box. Unfortunately,

while this tool allows us to match parts of S to each other, we get only incomplete information

about possible periods, and this information is not readily stored in small space due to

insufficient structure. We explore the structure of periods with mismatches in order to come

up with a technique that massages our data into a form that can be compressed in small

space, and is easily uncompressed. During the second pass, we go over S as well as the

compressed data to verify the candidate periods.

We consider two classes of periods by their length, and run two separate algorithms in

parallel. The first algorithm identifies all k-periods p with p ≤ n
2 , while the second algorithm

identifies all k-periods p with p > n
2 .

4.1 Finding small k-periods

Our algorithm for finding periods of length at most n/2 proceeds in two passes. In the first

pass, we identify a set T of candidate k-periods, and formulate its compressed representation,

T C . In the second pass, we recover each index from T C and verify whether or not it is a

k-period. We need T and T C to satisfy four properties.

(1) All true k-periods (likely accompanied by some candidate k-periods that are false

positives) are in T .

(2) T C can be stored in sublinear space.

(3) T can be fully recovered from T C in small space.

(4) The verification process in the second pass weeds out those candidates that are not true

periods in sublinear space.

We now describe our approach and show how it satisfies the above properties.

4.2 Pass 1: Property 1.

We crucially observe that any k-period p must satisfy the requirement

HAM (S[1, x], S[p + 1, p + x]) ≤ k

for all x ≤ n − p, and specifically for x = n
2 . This observation allows us to refer to indices

as periods, as the index p + 1 where the requirement is satisfied corresponds to (possible)

k-period p. For the remainder of this algorithm, we set x = n
2 , and designate the indices p + 1

that satisfy the requirement with x = n
2 as candidate k-periods; collectively these indices

serve as T . Since satisfying this requirement is necessary but not sufficient for a candidate

to be a real k-period, Property 1 follows.

4.3 Pass 1: Property 2.

Observe that T could be linear in size, so we cannot store each index explicitly. We observe

that if our indices followed an arithmetic progression, they could be kept implicitly in very

Ergün et. al. 23:7

succinct format (as is the case where there are no mismatches). Unfortunately, due to the

presence of mismatches in S, such a regular structure does not happen. However, we show

that it is still possible to implicitly add a small number of extra indices to our candidates

and end up with an arithmetic series and allow for succinct representation. Our algorithm

produces several such series, and represents each one in terms of its first index and the

increment between consecutive terms, obtaining T C from T , with the details given below.

In order to compress T into T C , we partition [1, x] into the 2mk + 2 disjoint intervals

Hj =
[

jx
2(mk+1) + 1, (j+1)x

2(mk+1)

)

, where m = log n. The goal is, possibly through the addition

of extra candidates, to represent the candidates in each interval as a single arithmetic

series. This series will be represented by its first term, as well as the increment between its

consecutive terms, πj . As each new candidate arrives, we update πj (except for the first

update, πj never increases, and it may shrink by an integer factor). Throughout the process,

we maintain the invariant, by updating πj , that the arithmetic sequence represented in Hj

contains all candidates in Hj output by the k-Mismatch algorithm. Then it is clear that T C

and {πj} take sublinear space, satisfying Property 2.

4.4 Pass 1: Property 3.

It remains to describe how to update πj . The first time we see two candidates in Hj , we set

πj to be the increment between the candidates (before, it is set to -1). Each subsequent time

we see a new candidate index in the interval Hj , we update πj to be the greatest common

divisor of πj and the increment between the candidate and the smallest index in T ∩ Hj ,

which is kept explicitly. For instance, if our first candidate index is 10, and afterwards we

receive 22, 26, 32 (assume the interval ends at 35), our πj values over time are -1, 12, 4, 2.

Ultimately, the candidates that we will be checking in Pass 2 will be 10, 12, 14, 16, 18, . . . ,

34. For another example, see Figure 1. We now need to show that the above invariant is

. . .S:

1

H1 H2 H3 H4 H5

π1 π2 π3 π4 = −1 π5

Figure 1 Observe that all dots in each interval are equally spaced after the first. These dots

represent T
c: the black dots represent T , while the white dots are added to convert the irregularly

spaced black dots into regularly spaced dot sequences.

maintained throughout the algorithm. To do this, we show that any k-period p ∈ Hj is an

increment of some multiple of πj away from the smallest index in T ∩ Hj . Then, if we insert

implicitly into T all indices in Hj whose distance from the smallest index in T ∩ Hj is a

multiple of πj , we will guarantee that any k-period in Hj will be included in T .

We now show that any k-period p is implicitly represented in, and can be recovered from

T C and the values {πj} at the end of the first pass.

I Lemma 8. If p < n
2 is a k-period and p ∈ Hj, then p can be recovered from T C and πj.

Proof. Since p ∈ Hj is a k-period, then it satisfies HAM (S[1, n − p], S[p + 1, n]) ≤ k. More

specifically, i = p satisfies

HAM
(

S
[

1,
n

2

]

, S
[

i + 1,
n

2
+ i

])

≤ k

CVIT 2016

23:8 Streaming Periodicity with Mismatches

and will be reported by the k-Mismatch Algorithm. If there is no other index in T C ∩ Hj ,

then p will be inserted into T C in the first pass, so p can clearly be recovered from T C .

On the other hand, if there is another index q in T C ∩ Hj , then πj will be updated to

be a divisor of the pairwise distances. Hence, the increment p − q is a multiple of πj . Any

change that might later happen to πj will be due to a gcd operation, and thus, will reduce it

by a factor by at least 2. Thus, p − q will remain a multiple of the final value of πj , and p

will be recovered at the end of the first pass as a member of T . J

Thus Property 3 is satisfied. The first pass algorithm in full appears below.

(To determine any k-period p with p ≤ n
2):

First pass:

(1) Initialize πj = −1 for each 0 ≤ j < 2k log n + 2.

(2) Initialize T C = ∅.

(3) For each index i such that (using the k-Mismatch algorithm)

HAM
(

S
[

1,
n

2

]

, S
[

i + 1,
n

2
+ i

])

≤ k

For the integer j for which i is in the interval Hj =
[

jn
4(k log n+1) + 1, (j+1)n

4(k log n+1)

)

:

a. If there exists no candidate t ∈ T C in the interval Hj , then add i to T C .

b. Otherwise, let t be the smallest candidate in T C and either πj = −1 or πj > 0.

If πj = −1, then set πj = i − t. Otherwise, set πj = gcd (πj , i − t).

4.5 Pass 2: Property 4.

Our task in the second pass is to verify whether each candidate recovered from T C

and {πj} is actually a k-period or not. Thus, we must simultaneously check whether

HAM (S[1, n − p], S[p + 1, n]) ≤ k for each candidate p, without using linear space. Fortu-

nately, Theorem 9 states that at most 32k2 log n + 1 unique fingerprints for substrings of

length πj are sufficient to recover the fingerprints of both S[1, n − p] and S[p + 1, n] for any

p ∈ Hj .

Before detailing, we first state a structural property, whose proof we defer to Appendix A.

This property states that the greatest common divisor of the pairwise difference of any

candidate k-periods within Hj must be a (32k2 log n + 1)-period.

I Theorem 9. For some 0 ≤ j < 2mk + 2, let

Ij = {i ∈ Hj | HAM (S[1, x], S[i + 1, i + x]) ≤ k} .

For any p1 < . . . < pm ∈ I, the greatest common divisor d of p2 − p1, p3 − p1 . . . , pm − p1

satisfies

HAM (S[1, x], S[d + 1, d + x]) ≤ 32mk2 + 1.

Observe that πj is exactly d. Moreover, each time the value of πj changes, it gets divided by

an integer factor at least equal to 2, ending up finally as a positive integer. Since πj ≤ n,

this change can occur at most log n times, and so m ≤ log n. We now show that we can

verify all candidates in sublinear space.

Ergün et. al. 23:9

I Lemma 10. Let pi be a candidate k-period for a string S, with p1 < p2 < . . . < pm all

contained within Hj . Given the fingerprints of S[1, n − p1] and S[p1 + 1, n], we can determine

whether or not S has k-period pi for any 1 ≤ i ≤ m by storing at most 32k2 log n + 1

additional fingerprints.

Proof. Consider a decomposition of S into substrings wi of length pi, so that S = w1 ◦ w2 ◦
w3 ◦ Note that each index i for which wi 6= wi+1 corresponds with at least one mismatch.

It follows from Observation 2 that there exist at most k indices i for which wi 6= wi+1. Thus,

recording the fingerprints and locations of these indices i suffice to determine whether or not

there are k mismatches for candidate period pi.

By Theorem 9, the greatest common divisor of the difference between each term in I is a

(32k2 log n + 1)-period πj . Thus, S can be decomposed S = v ◦ v1 ◦ v2 ◦ v3 ◦ . . . so that v has

length p1, and each substring vi has length πj . It follows from Observation 2 that there exist

at most 32k2 log n + 1 indices i for which vi 6= vi+1. Therefore, recording the fingerprints

and locations of these indices i allow us to recover the fingerprint of S[1, n − pi] from the

fingerprint of S[1, n − pi−1], since pi − pi−1 is a multiple of πj . Similarly, we can recover

the fingerprint of S[pi + 1, n] from the fingerprint of S[pi−1 + 1, n]. Hence, we can confirm

whether or not pi is a k-period. J

The second pass algorithm in full follows.

(To determine all the k-periods p with p ≤ n
2):

Second pass:

(1) For each t such that t ∈ T C :

a. Let j be the integer for which t is in the interval Hj =
[

jn
4(k log n+1) + 1, (j+1)n

4(k log n+1)

)

b. If πj > 0, then record up to 32k2 log n + 1 unique fingerprints of length πj and of

length t, starting from t.

c. Otherwise, record up to 32k2 log n + 1 unique fingerprints of length t, starting

from t.

d. Check if HAM (S[1, n − t], S[t + 1, n]) ≤ k and return t if this is true.

(2) For each t which is in interval Hj =
[

jn
4(k log n+1) + 1, (j+1)n

4(k log n+1)

)

for some integer j:

If there exists an index in T C ∩ Hj whose distance from t is a multiple of πj , then

check if HAM (S[1, n − t], S[t + 1, n]) ≤ k and return t if this is true.

This proves Property 4. Next, we show the correctness of the algorithm for small k-periods.

I Lemma 11. For any k-period p ≤ n
2 , the algorithm outputs p.

Proof. Since the intervals {Hj} cover
[

1, n
2

]

, then p ∈ Hj for some j. It follows from

Lemma 8 that after the first pass, p can be recovered from T and πj . Thus, the second pass

tests whether or not p is a k-period. By Lemma 10, the algorithm outputs p, as desired. J

4.6 Finding large k-periods

As in the previous discussion, we would like to pick candidate periods during our first pass.

However, if a k-period p satisfies p > n
2 , then clearly it will no longer satisfy

HAM
(

S
[

1,
n

2

]

, S
[

p + 1, p +
n

2

])

≤ k,

CVIT 2016

23:10 Streaming Periodicity with Mismatches

as p+ n
2 > n, and S

[

p + n
2

]

is undefined. Instead, recall that HAM (S[1, x] = S[p + 1, p + x]) ≤
k for all x ≤ n − p. Ideally, when choosing candidate periods p based on their satisfying this

formula, we would like to use as large an x as possible without exceeding n−p, but we cannot

do this without knowing the value of p. Instead, [12] observes we can try exponentially

decreasing values of x: we run log n instances of the algorithm sequentially, with x = n
2 , n

4 , . . .,

since one of these values of x must be the largest one that does not lead to an illegal index

of S. Therefore, the desired instance produces p, while all other instances do not.

(To determine a k-period p if p > n
2):

First pass:

(1) Initialize π
(m)
j = −1 for each 0 ≤ j < 2k log n + 2 and 0 ≤ m ≤ log n.

(2) Initialize T C
m = ∅.

(3) For each index i, let r be the largest m such that n
2 + n

4 + . . . + n
2r ≤ i. Using the

k-Mismatch algorithm, check whether

HAM
(

S
[

1,
n

2r

]

, S
[

i + 1, i +
n

2r

])

≤ k.

If so, let R = n
2 + n

4 + . . . + n
2r−1 and j be the integer for which i is in the interval

H
(r)
j =

[

R +
nj

2r+1(k log n + 1)
+ 1, R +

n(j + 1)

2r+1(k log n + 1)

)

a. If there exists no candidate t ∈ T C
r in the interval H

(r)
j , then add i to T C

r .

b. Otherwise, let t be the smallest candidate in T C
r and either π

(r)
j = −1 or π

(r)
j > 0.

If π
(r)
j = −1, then set π

(r)
j = i − t. Otherwise, set π

(r)
j = gcd

(

π
(r)
j , i − t

)

.

This partition of [1, n] into the disjoint intervals
[

1, n
2

]

,
[

n
2 + 1, n

2 + n
4

]

, . . . guarantees that

any k-period p is contained in one of these intervals. Moreover, the intervals {H
(r)
j } partition

[n

2
+

n

4
+ . . . +

n

2r−1
,

n

2
+ . . . +

n

2r

]

,

and so p can be recovered from T C
r and {π

(r)
j }. We now present the algorithm for the

second-pass to find all k-periods p for which p > n
2 .

Second pass:

(1) For each t and any r such that t ∈ T C
r :

a. Let R = n
2 + n

4 + . . . + n
2r−1 and j be the integer for which t is in the interval

H
(r)
j =

[

R +
nj

2r+1(k log n + 1)
+ 1, R +

n(j + 1)

2r+1(k log n + 1)

)

b. If π
(r)
j > 0, then record up to 32k2 log n + 1 unique fingerprints of length π

(r)
j and

of length t, starting from t.

c. Otherwise, record up to 32k2 log n + 1 unique fingerprints of length t, starting

from t.

d. Check if HAM (S[1, n − t], S[t + 1, n]) ≤ k and return t if this is true.

Ergün et. al. 23:11

(2) For each t which is in interval H
(r)
j =

[

R + nj
2r+1(k log n+1) + 1, R + n(j+1)

2r+1(k log n+1)

)

for some integer j:

a. If there exists an index in T C
r ∩ H

(r)
j whose distance from t is a multiple of π

(r)
j ,

then check if HAM (S[1, n − t], S[t + 1, n]) ≤ k and return t if this is true.

Since correctness follows from the same arguments as the case where p ≤ n
2 , it remains to

analyze the space complexity of our algorithm.

I Theorem 12. There exists a two-pass algorithm that outputs all the k-periods of a given

string using O
(

k4 log9 n
)

space.

Proof. In the first pass, for each Tm, we maintain a k-Mismatch algorithm which requires

O
(

k2 log8 n
)

bits of space, as in Corollary 7. Since 1 ≤ m ≤ log n, we require O
(

k2 log9 n
)

bits of space in total. In the second pass, we keep up to O
(

k2 log n
)

fingerprints for any set

of indices in Tm. Each fingerprint requires space O
(

k log6 n
)

and there may be O (k log n)

indices in Tm for each 1 ≤ m ≤ log n, for a total of O
(

k4 log7 n
)

bits of space. Thus,

O
(

k4 log9 n
)

bits of space suffice for both passes. J

5 One-Pass Algorithm to Compute k-Periods

We now give a one-pass algorithm that outputs all the k-periods smaller than n
2 . Similar to

two-pass algorithm, we have two processes running in parallel. The first process handles all

the k-periods p with p ≤ n
4 , while the second process handles the k-periods p with p > n

4 .

Both processes are designed again based on the crucial observation that all the k-periods

p must satisfy HAM (S[1, x], S[p + 1, p + x]) ≤ k for all x ≤ n − p. In the first process, we

set x = n
2 and find all indices i such that S

[

i + 1, i + n
2

]

has at most k mismatches from

S
[

1, n
2

]

.

The second process cannot use the same approach, because the k-Mismatch Algorithm

reports that index i is a candidate after reading position n
2 + i, at which point we have

already passed n − i. This means that the fingerprint of S[1, n − i] cannot be built. For

example, see Figure 2.

S
[

i + 1, i + n
2

]

S:

S[1, n − i]

1 i + 1 n − i i + n
2

Recognizes i is candidate

n

Figure 2 When i is recognized as a candidate, the algorithm has already passed n − i and cannot

build S[1, n − i].

Thus, for a fixed p in the second process, if we set x to be the largest power of two which

does not exceed n − 2p, the k-mismatch algorithm could report p. However, we cannot do

this without knowing the value of p.

Building off the ideas in [12], we run log n instances of the algorithm in parallel, with

x = 1, 2, 4, . . ., then one of these values of x must correspond to the instance of k-mismatch

algorithm that recognizes p and reports it for later verification.

CVIT 2016

23:12 Streaming Periodicity with Mismatches

5.1 Finding small k-periods

We consider all the k-periods p with p ≤ n
4 for this subsection. Run the k-Mismatch algorithm

to find

T =
{

i
∣

∣

∣
i ≤ n

4
, HAM

(

S
[

1,
n

2

]

, S
[

i + 1, i +
n

2

])

≤ k
}

.

Upon finding an index i ∈ T , the algorithm uses the fingerprint for S
[

i + 1, i + n
2

]

to

continue building S[i + 1, n]. Simultaneously, it builds S[1, n − i], and checks whether

HAM (S[1, n − i], S[i + 1, n]) ≤ k. The algorithm identifies that i ∈ T upon reading character

i + n
2 − 1. Since i ≤ n

4 , then i + n
2 − 1 < 3n

4 ≤ n − i. Thus, the algorithm can identify i in

time to build S[1, n − i]. By Theorem 9, these entries can be computed from a sequence of

compressed fingerprints.

5.2 Finding large k-periods

Now, consider all the k-periods p with n
4 < p ≤ n

2 . Let Im =
[

n
2 − 2m + 1, n

2 − 2m−1
]

and

for 1 ≤ m ≤ log n − 1, define

Tm = {i |i ∈ Im, HAM (S[1, 2m], S[i + 1, i + 2m]) ≤ k} .

Let πm be a k-period of S[1, 2m]. We first consider the case where πm ≥ 2m

4 and then the

case where πm < 2m

4 .

I Observation 13. [7] If p is a k-period for S[1, n/2], then each i such that

HAM
(

S
[

1,
n

2

]

, S
[

i + 1, i +
n

2

])

≤ k

2

must be at least p symbols apart.

By Observation 13, if πm ≥ 2m

4 , then |Tm| ≤ 4. Moreover, we can detect whether i ∈ Tm

by index n
2 − 2m−1 + 2m. On the other hand, n − i ≥ n

2 + 2m + 1, and so we can properly

build S[1, n − i].

Now, suppose πm < 2m

4 . Since Tm may be linear in size, we use the same trick to obtain

a succinct representation, whose properties satisfy those in Section 4, while including a few

additional indices. Let S[2m + 1, 2m+1] = w1w2 . . . wtw
′, where each wi has length πm and

for 0 ≤ d ≤ 3k, let xd be the largest index such that S[1, 2m] ◦ w1 ◦ w2 ◦ · · · ◦ wx has d-period

πm.

Let Tm = i1, i2, . . . , ir in increasing order. Let S
[

ir + 2m + 1, n
2 + 2m

]

= v1v2 . . . vsv′,

where each vi has length πm and let y be the largest index such that S[ir + 1, ir + 2m] ◦ v1 ◦
v2 ◦ · · · ◦ vy has 3k-period πm.

If y = s, then at most k of the substrings vi can be unique by Observation 2. Moreover,

by storing the fingerprints and positions of O
(

k2 log n
)

substrings, as well as v′, we can

recover the fingerprint of each S[n − ij+1, n − ij] by Lemma 10. Thus, we keep the fingerprint

of S
[

n
2 + 1, n − ir

]

, and can construct the fingerprint of each S
[

n
2 + 1, n − ij

]

On the other hand if y 6= s, then for each ij , let ∆ be the number of indices z such that

ij ≤ z ≤ ir and S[z] 6= S[z + πm]. That is, ∆ = |{z|ij ≤ z ≤ ir, S[z] 6= S[z + πm]}|. Since πm

is a k-period of S[1, 2m], HAM (S[1, 2m], S[ij + 1, ij + 2m]) ≤ k, and each mismatch between

S[1, 2m] and S[ij + 1, ij + 2m] can cause up to two indices z such that S[z] 6= S[z + πm], then

it follows that 0 ≤ ∆ ≤ 3k. Then if y + |r − j| 6= x3k−∆, then ij /∈ Tm, since x3k−∆ is the

largest index with (3k − ∆)-period πm, while y is the largest index with 3k-period πm.

Thus, for each 0 ≤ ∆ ≤ 2k, there is at most one index j with y + |r − j| 6= x2k+∆. Again

by Lemma 10, we can compute the fingerprint of S
[

n
2 + 1, n − ij

]

by storing the fingerprints

and positions of O
(

k2 log n
)

substrings.

Ergün et. al. 23:13

Computing each xd requires determining πm and the fingerprint of S[2m − πm + 1, 2m].

Since πm ≤ 2m

4 , the algorithm determines πm by position πm + 2m < 2m − πm + 1. Thus,

the algorithm knows πm in time to start creating the fingerprint of S[2m − πm + 1, 2m].

To compute y, we compute the fingerprint of S[ir + 1, ir + πm]. We then compute the

fingerprint of each non-overlapping substring of length πm starting from ir +πm, and compare

the fingerprint to the previous fingerprint. We only record the fingerprint of the most recent

substring, but keep a running count of the number of mismatches.

I Theorem 14. There exists a one-pass algorithm that outputs all the k-periods p of a given

string with p ≤ n
2 , and uses O

(

k4 log9 n
)

bits of space.

Proof. The process for small k-periods uses O
(

k2 log8 n
)

bits of space determining T .

Verifying whether an index in T is actually a k-period requires the fingerprints of O
(

k2 log n
)

substrings, each using O
(

k log6 n
)

bits of space (Theorem 5). This adds up to a total of

O
(

k3 log7 n
)

bits of space.

The process for large k-periods has log n parallel instances of the k-Mismatch algorithm

to compute Tm for 1 ≤ m ≤ log n, using O
(

k2 log9 n
)

bits of space. To reconstruct the

fingerprint of S[1, n − i] for each i ∈ Tm the algorithm needs to store the fingerprints of at

most O
(

k2 log n
)

unique substrings (Lemma 10). Each fingerprint uses O
(

k log6 n
)

bits of

space (Theorem 5) and there can be up to O (k log n) indices in Tm. This adds up to a total

of O
(

k4 log9 n
)

bits of space.

Thus, O
(

k4 log9 n
)

bits of space suffice for both processes. J

6 Lower Bounds

6.1 Lower Bounds for General Periods

Recall the following variant of the Augmented Indexing Problem, denoted INDn,δ, where

Alice is given a string S ∈ Σn. Bob is given an index i ∈ [n], as well as S[1, i − 1], and must

output S[i] correctly with probability at least 1 − δ.

I Lemma 15. [24] The one-way communication complexity of INDn,δ is Ω((1 − δ)n log |Σ|).

I Theorem 16. Any one-pass streaming algorithm which computes the smallest k-period of

an input string S requires Ω(n) space.

Proof. Consider the following communication game between Alice and Bob, who are given

strings A and B respectively. Both A and B have length n, and the goal is to compute

the smallest k-period of a ◦ b. Then we show that any one-way protocol which successfully

computes the smallest k-period of a ◦ b requires Ω(n) communication by a reduction from

the augmented indexing problem.

Suppose Alice gets a string S ∈ {0, 1}n, while Bob gets an index i ∈ [n − 1] and

S[1, i − 1]. Let u be the binary negation of S[1], i.e., u = 1 − S[1]. Then Alice sets

A = (S[1])k(S[2])k . . . (S[n])k and Bob sets B = uk(n−i) ◦ (S[1])k(S[2])k . . . (S[i − 1])k ◦ 1k

so that both A and B have length kn. Moreover, the smallest k-period of A ◦ B is k(2n − i)

if and only if S[i] = 1. J

6.2 Lower Bounds for Small Periods

We now show that for k = o(
√

n), even given the promise that the smallest k-period is at

most n
2 , any randomized algorithm which computes the smallest k-period with probability at

CVIT 2016

23:14 Streaming Periodicity with Mismatches

least 1 − 1
n requires Ω(k log n) space. By Yao’s Minimax Principle [28], it suffices to show a

distribution over inputs such that every deterministic algorithm using less than k log n
6 bits of

memory fails with probability at least 1
n .

Define an infinite string 110112021303 . . ., as in [16], and let ν be the prefix of length n
4 . Let

X be the set of binary strings of length n
4 at Hamming distance k

2 from ν. Given x ∈ X, let

Yx be the set of binary strings of length n
4 with either HAM (x, y) = k

2 or HAM (x, y) = k
2 + 1.

We pick (x, y) uniformly at random from (X, Yx).

I Theorem 17. Given an input x ◦ y, any deterministic algorithm D that uses less than
k log n

6 bits of memory cannot correctly output whether HAM (x, y) = k
2 or HAM (x, y) > k

2

with probability at least 1 − 1
n , for k = o(

√
n).

Proof. Note that |X| =
(

n/4
k/2

)

. By Stirling’s approximation, |X| ≥
(

n
2k

)k/2 ≥
(

n
4

)k/4
for

k = o(
√

n).

Because D uses less than k log n
6 bits of memory, then D has at most 2

k log n

6 = nk/6 unique

memory configurations. Since |X| ≥
(

n
4

)k/4
, then there are at least 1

2 (|X| − nk/6) ≥ |X|
4

pairs x, x′ such that D has the same configuration after reading x and x′. We show that D
errs on a significant fraction of these pairs x, x′.

Let I be the positions where either x or x′ differ from ν, so that k
2 + 1 ≤ |I| ≤ k. Observe

that if HAM (x, y) = k
2 , but x and y do not differ in any positions of I, then HAM (x′, y) > k

2 .

Recall that D has the same configuration after reading x and x′, so then D has the same

configuration after reading x ◦ y and x′ ◦ y. But since HAM (x, y) = k
2 and HAM (x′, y) > k

2 ,

then the output of D is incorrect for either x ◦ y or x′ ◦ y.

For each pair (x, x′), there are
(

n/4−|I|
k/2

)

≥
(

n/4−k
k/2

)

such y with HAM (x, y) = k
2 , but x

and y do not differ in any positions of I. Hence, there are |X|
4

(

n/4−k
k/2

)

strings S(x, y) for

which D errs. Recall that y satisfies either HAM (x, y) = k
2 or HAM (x, y) = k

2 + 1 so that

there are |X|
(

(

n/4
k/2

)

+
(

n/4
k/2+1

)

)

strings x ◦ y in total. Thus, the probability of error is at least

|X|
4

(

n/4−k
k/2

)

|X|
(

(

n/4
k/2

)

+
(

n/4
k/2+1

)

) =
1

4
·

(

n/4−k
k/2

)

(

n/4+1
k/2+1

)
=

(k/2 + 1)

4

(n/4 − 3k/2 + 1) . . . (n/4 − k)

(n/4 − k/2 + 1) . . . (n/4 + 1)

≥ k/2 + 1

n + 4

(

n/4 − 3k/2 + 1

n/4 − k/2 + 1

)k/2

=
k + 2

2n + 8

(

1 − k

n/4 − k/2 + 1

)k/2

≥ k + 2

2n + 8

(

1 − k2

n/2 − k + 2

)

≥ 1

n

where the last line holds for large n, from Bernoulli’s Inequality and k = o(
√

n). J

I Lemma 18. For k = o(
√

n), any k-period of the string S(x, y) = x ◦ y ◦ x ◦ x is at least n
4 .

Proof. We show that stronger result that if p < n
4 , k > 2, and n > 4(18k + 1)(18k + 2), then

|{z|S[z] 6= S[z + p]}| >
√

n
8 > k, for k = o(

√
n).

Let T = ν ◦ ν ◦ x ◦ x and for each z, consider T [z] and T [z + p]. For each j > 0, some

position z + p in 12j02j12j+102j+1 in the second ν corresponds with a mismatch in z. Since

HAM (x, ν) = k
2 and HAM (x, y) ≤ k

2 + 1, then HAM
(

S
[

1, n
2

]

, T
[

1, n
2

])

≤ 3k
2 + 1. Each

mismatch between S and T can cause at most two indices z for which T [z] 6= T [z + p]

but S[z] = S[z + p]. Thus, by setting j = 6k > 2
(

3k
2 + 1

)

+ 2k, we have that for n
4 >

(12k + 1)(12k + 2), there are at least 6k indices z for which T [z] 6= T [z + p], and thus at least

2k indices for which S[z] 6= S[z + p]. J

Ergün et. al. 23:15

I Corollary 19. If HAM (x, y) = k
2 , then the string S(x, y) = x ◦ y ◦ x ◦ x has period n

4 . On

the other hand, if HAM (x, y) = k
2 + 1, then S(x, y) has period greater than n

4 .

I Theorem 20. For k = o(
√

n) with k > 2, any one-pass streaming algorithm which computes

the smallest k-period of an input string S with probability at least 1 − 1
n requires Ω(k log n)

space, even under the promise that the k-period is at most n
2 .

Proof. By Theorem 17, any algorithm using less than k log n
6 bits of memory cannot distinguish

between HAM (x, y) = k
2 and HAM (x, y) = k

2 + 1 with probability at least 1 − 1/n. Thus, no

algorithm can distinguish whether the period of S(x, y) is n
4 with probability at least 1 − 1/n

while using less than k log n
6 bits of memory. J

Acknowledgements. Funda Ergün’s research is supported by NSF CCF-1619081; Elena

Grigorescu’s and Samson Zhou’s research is supported by NSF CCF-1649515.

References

1 Amihood Amir, Estrella Eisenberg, and Avivit Levy. Approximate periodicity. Algorithms

and Computation, pages 25–36, 2010.

2 Alexandr Andoni, Assaf Goldberger, Andrew McGregor, and Ely Porat. Homomorphic

fingerprints under misalignments: sketching edit and shift distances. In Proceedings of the

forty-fifth annual ACM symposium on Theory of computing, pages 931–940, 2013.

3 Alberto Apostolico and Zvi Galil, editors. Pattern Matching Algorithms. Oxford University

Press, Oxford, UK, 1997.

4 Petra Berenbrink, Funda Ergün, Frederik Mallmann-Trenn, and Erfan Sadeqi Azer. Palin-

drome recognition in the streaming model. In 31st International Symposium on Theoretical

Aspects of Computer Science (STACS), pages 149–161, 2014.

5 Raphaël Clifford, Klim Efremenko, Ely Porat, and Amir Rothschild. From coding theory to

efficient pattern matching. In Proceedings of the twentieth Annual ACM-SIAM Symposium

on Discrete Algorithms, pages 778–784, 2009.

6 Raphaël Clifford, Allyx Fontaine, Ely Porat, Benjamin Sach, and Tatiana A. Starikovskaya.

Dictionary matching in a stream. In Algorithms - ESA 23rd Annual European Symposium,

Proceedings, pages 361–372, 2015.

7 Raphaël Clifford, Allyx Fontaine, Ely Porat, Benjamin Sach, and Tatiana A. Starikovskaya.

The k-mismatch problem revisited. In Proceedings of the Twenty-Seventh Annual ACM-

SIAM Symposium on Discrete Algorithms, SODA, pages 2039–2052, 2016.

8 Raphaël Clifford, Markus Jalsenius, Ely Porat, and Benjamin Sach. Space lower bounds

for online pattern matching. Theoretical Computer Science, 483:68–74, 2013.

9 Michael S. Crouch and Andrew McGregor. Periodicity and cyclic shifts via linear sketches.

In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Tech-

niques - 14th International Workshop, APPROX, and 15th International Workshop, RAN-

DOM. Proceedings, pages 158–170, 2011.

10 Mohamed G. Elfeky, Walid G. Aref, and Ahmed K. Elmagarmid. STAGGER: periodicity

mining of data streams using expanding sliding windows. In Proceedings of the 6th IEEE

International Conference on Data Mining (ICDM), pages 188–199, 2006.

11 Funda Ergün, Elena Grigorescu, Erfan Sadeqi Azer, and Samson Zhou. Streaming

periodicity with mismatches, 2017. URL: http://homes.soic.indiana.edu/fergun/

PUBLICATIONS/mismatchperiodicity.pdf.

12 Funda Ergün, Hossein Jowhari, and Mert Saglam. Periodicity in streams. In Approximation,

Randomization, and Combinatorial Optimization. Algorithms and Techniques, 13th Inter-

national Workshop, APPROX 2010, and 14th International Workshop, RANDOM 2010.

Proceedings, pages 545–559, 2010.

CVIT 2016

23:16 Streaming Periodicity with Mismatches

13 Funda Ergün, S. Muthukrishnan, and Süleyman Cenk Sahinalp. Periodicity testing with

sublinear samples and space. ACM Trans. Algorithms, 6(2):43:1–43:14, 2010.

14 Zvi Galil and Joel Seiferas. Time-space-optimal string matching. Journal of Computer and

System Sciences, 26(3):280–294, 1983.

15 Pawel Gawrychowski. Optimal pattern matching in lzw compressed strings. ACM Trans-

actions on Algorithms (TALG), 9(3):25, 2013.

16 Pawel Gawrychowski, Oleg Merkurev, Arseny M. Shur, and Przemyslaw Uznanski. Tight

tradeoffs for real-time approximation of longest palindromes in streams. In 27th Annual

Symposium on Combinatorial Pattern Matching, CPM, pages 18:1–18:13, 2016.

17 Shay Golan, Tsvi Kopelowitz, and Ely Porat. Streaming Pattern Matching with d Wild-

cards. In 24th Annual European Symposium on Algorithms (ESA), pages 44:1–44:16, 2016.

18 Elena Grigorescu, Erfan Sadeqi Azer, and Samson Zhou. Streaming for aibohphobes:

Longest palindrome with mismatches. CoRR, abs/1705.01887, 2017. URL: http://arxiv.

org/abs/1705.01887.

19 Piotr Indyk, Nick Koudas, and S. Muthukrishnan. Identifying representative trends in

massive time series data sets using sketches. In VLDB, Proceedings of 26th International

Conference on Very Large Data Bases, pages 363–372, 2000.

20 Richard M. Karp and Michael O. Rabin. Efficient randomized pattern-matching algorithms.

IBM Journal of Research and Development, 31(2):249–260, 1987.

21 Donald E Knuth, James H Morris, Jr, and Vaughan R Pratt. Fast pattern matching in

strings. SIAM journal on computing, 6(2):323–350, 1977.

22 Donald E. Knuth, James H. Morris Jr., and Vaughan R. Pratt. Fast pattern matching in

strings. SIAM J. Comput., 6(2):323–350, 1977.

23 Oded Lachish and Ilan Newman. Testing periodicity. Algorithmica, 60(2):401–420, 2011.

24 Peter Bro Miltersen, Noam Nisan, Shmuel Safra, and Avi Wigderson. On data structures

and asymmetric communication complexity. In Proceedings of the Twenty-Seventh Annual

ACM Symposium on Theory of Computing, pages 103–111, 1995.

25 Benny Porat and Ely Porat. Exact and approximate pattern matching in the streaming

model. In 50th Annual IEEE Symposium on Foundations of Computer Science, FOCS,

pages 315–323, 2009.

26 Ely Porat and Ohad Lipsky. Improved sketching of hamming distance with error correcting.

In Annual Symposium on Combinatorial Pattern Matching, pages 173–182, 2007.

27 Jakub Radoszewski and Tatiana Starikovskaya. Streaming k-mismatch with data recovery

and applications. arXiv preprint arXiv:1607.05626, 2016.

28 Andrew Chi-Chih Yao. Probabilistic computations: Toward a unified measure of complexity

(extended abstract). In 18th Annual Symposium on Foundations of Computer Science,

FOCS, pages 222–227, 1977.

A Structural Properties of k-Periodic Strings

In this section, we show several steps towards proving Theorem 9. We defer the detailed

proofs to the full version [11].

We first show Theorem 23, which assumes there are only two candidate k-periods and

both are small. We then relax these conditions and prove Theorem 30, which does not

restrict the number of candidate k-periods, but still assumes that their magnitudes are small.

Theorem 9 considers all candidate k-periods in some interval. We use the fact that the

difference between these candidates is small, thus meeting the conditions of Theorem 30,

although with an increase in the number of mismatches.

To show that the greatest common divisor d of any two reasonably small candidates p < q

for k-periods is also a (16k2 + 1)-period (Theorem 23), we consider the cases where either

Ergün et. al. 23:17

all candidates are less than (2k + 1)d (Lemma 24) or some candidate is at least (2k + 1)d

(Lemma 25).

In the first case, where all candidate period are less than (2k + 1)d, we partition the

string into disjoint intervals of a certain length, followed by partitioning the intervals further

into congruence classes. We show in Lemma 22 that any partition which contains an index i

such that S[i] 6= S[i + d] must also contain an index j which is a mismatch from some symbol

p or q distance away. Since there are at most 2k indices j, we can then bound the number of

such partitions, and then extract an upper bound on the number of such indices i.

In the second case, where some candidate is at least (2k + 1)d, our argument relies on

forming a grid (such as in Figure 3) where adjacent points are indices which either differ by

p or q. We include 2k + 1 rows and columns in this grid. Since q
d ≥ 2k + 1, then no index in

S is represented by multiple points in the grid. We call an edge between adjacent points

“bad” if the two corresponding indices form a mismatch.

I Observation 21. S[i] 6= S[i + d] only if each path between i and i + d contains a bad

edge.

Our grid contains at most 2k bad edges, since p and q are both k-periods, and each index is

represented at most once. We then show that for all but at most (16k2 + 1) indices i, there

exists a path between indices i and i + d that avoids bad edges. Therefore, there are at most

(16k2 + 1) indices i such that S[i] 6= S[i + d], which shows that d is an (16k2 + 1)-period.

Before proving Lemma 24, we first show a number theoretic result that given integers

i, p, q, we can repeatedly hop by distance p or q, starting from i, ending at i + gcd (p, q), all

the while staying in a “small” interval.

I Lemma 22. Suppose p < q are two positive integers with gcd (p, q) = d. Let i be an integer

such that 1 ≤ i ≤ p + q − d. Then there exists a sequence of integers i = t0, . . . , tm = i + d

where |ti − ti+1| is either p or q, and 1 ≤ ti < p + q. Furthermore, each integer is congruent

to i (mod d). In other words, any interval of length p + q which contains indices i, i + d such

that S[i] 6= S[i+d] also contains an index j such that either S[j] 6= S[j +p] or S[j] 6= S[j + q].

Proof. Since d is the greatest common divisor of p and q, then there exist integers a, b such

that ap + bq = d. Suppose a > 0. Then consider the sequence ti = ti−1 + p if 1 ≤ ti−1 ≤ q.

Otherwise, if ti−1 > q, let ti = ti−1 − q. Then clearly, each |ti − ti+1| is either p or q, and

1 ≤ ti < p + q. That is, each ti either increases the coefficient of p by one, or decreases the

coefficient of q by one. Thus, at the last time the coefficient of p is a, ti = ap + bq = d,

since any other coefficient of q would cause either ti > q or ti < 1. Hence, terminating the

sequence at this step produces the desired output, and a similar argument follows if b > 0

instead of a > 0. Since p ≡ q ≡ 0 (mod d), then all integers in these sequence are congruent

to i (mod d). J

We now prove that the greatest common divisor d of any two reasonably small candidates

p, q for k-periods is also a (16k2 + 1)-period.

I Theorem 23. For any 1 ≤ x ≤ n
2 , let I =

{

i
∣

∣

∣
i ≤ x

4k+2 , HAM (S[1, x], S[i + 1, i + x]) ≤ k
}

.

For any two p, q ∈ I with p < q, their greatest common divisor, d = gcd (p, q) satisfies

HAM (S[1, x], S[d + 1, d + x]) ≤ (16k2 + 1).

We now proceed to the proof of Theorem 23 for the case q < (2k + 1)d.

I Lemma 24. Theorem 23 holds when q < (2k + 1)d.

CVIT 2016

23:18 Streaming Periodicity with Mismatches

Proof. If x ≤ 16k2, then clearly there are at most 16k2 indices i such that S[i] 6= S[i + d],

and so d is a (16k2 +1)-period. Otherwise, suppose x > 16k2 +1, and by way of contradiction,

that there are at least 16k2 + 1 indices i such that S[i] 6= S[i + d].

Consider the following two classes of intervals of length p+q
2 : I1 =

[

1, p+q
2

]

,
[

p + q + 1, 3(p+q)
2

]

,
[

2(p + q) + 1, 5(p+q)
2

]

, . . . and I2 =
[

p+q
2 + 1, p + q

]

,
[

3(p+q)
2 + 1, 2(p + q)

]

,
[

5(p+q)
2 + 1, 3(p + q)

]

,

. . .. If there are at least 16k2 + 1 indices i such that S[i] 6= S[i + d], then either I1 or I2

contains at least 8k2 + 1 of these indices.

Suppose I1 has at least 8k2+1 indices i such that S[i] 6= S[i+d]. Now, consider the disjoint

intervals of length p+q: [1, p+q], [p+q +1, 2(p+q)], [2(p+q)+1, 3(p+q)], Furthermore,

for each of these intervals, consider the congruence classes modulo d. Since x > 16k2 + 1

and each of these congruence classes within an intervals have p+q
d < 2q

d ≤ 2(2k) = 4k indices,

then S[1, x] certainly contains at least 2k + 1 of these congruence classes.

If I1 has at least 8k2 + 1 indices i such that S[i] 6= S[i + d] and each congruence class

within an interval contains less than 4k indices, then there are at least 2k + 1 congruence

classes containing such an index i. Because each of these indices occur within I1, it follows

that both i and i + d are contained within the interval (and therefore, the same congruence

class). By Lemma 22, each congruence class within an interval containing indices i and i + d

S[i] 6= S[i + d] also contains an index j such that either S[j] 6= S[j + p] or S[j] 6= S[j + q].

Since there are at least 2k + 1 congruence classes within intervals, then there are at least

2k + 1 such indices j. This either contradicts that there are at most k indices j such that

S[j] 6= S[j + p] or there are at most k indices j such that S[j] 6= S[j + q].

The proof for the case where I2 has at least 8k2 + 1 indices i such that S[i] 6= S[i + d] is

symmetric. J

The following lemma considers the case where at least one of candidate periods p or q is at

least (2k + 1)d. Without loss of generality, assume q ≥ (2k + 1)d. We form a grid, such as in

Figure 3, where adjacent points in the grid correspond to indices which either differ by p or q.

An edge between adjacent points is “bad” if the two corresponding indices form a mismatch.

From Observation 21, S[i] 6= S[i + d] only if each path between i and i + d contains

a bad edge. Thus, if S[i] 6= S[i + d], then the point in the grid corresponding to i must

be contained in some region whose boundary is formed by bad edges. We partition the

indices into congruence classes modulo d, count the number of mismatches in each class, and

aggregate the results.

That is, in a particular congruence class, we assume p is a k1-period, and q is a k2-period,

where k1, k2 ≤ k. Then the grid contains at most k1 + k2 bad edges, which bounds the

perimeter of the regions. From this, we deduce a generous bound of (16k1k2 + 1) on the

number of points inside these regions, which is equivalent to the number of indices i such

that S[i] 6= S[i + d] in the congruence class. We then aggregate over all congruence classes to

show that d is a (16k2 + 1)-period.

I Lemma 25. Let p ≤ q and k be positive integers with q ≥ (2k + 1)d and let d = gcd (p, q).

Given a string S and an integer 0 ≤ m < d, let there be k1 > 0 indices i ≡ m (mod d) such

that S[i] 6= S[i + p] and k2 > 0 indices i ≡ m (mod d), not necessarily disjoint, such that

S[i] 6= S[i + q] and k1, k2 ≤ k. If d = gcd (p, q), then there exist at most 8k1k2 + 1 indices

i ≡ m (mod d) such that S[i] 6= S[i + d].

Proof. Consider a pair of indices (i, i + d) with S[i] 6= S[i + d] in congruence class m

(mod d). We ultimately want to build a grid of “large” size around i, but this may result

in illegal indices if i is too small or too large. Therefore, we first consider the case where

Ergün et. al. 23:19

k(p + q) ≤ i ≤ x − k(p + q), where we can place i in the center of the grid. We then describe

a similar argument with modifications for i < k(p + q) or i > x − k(p + q), when we must

place i near the periphery of the grid.

Given index i with k(p + q) ≤ i ≤ x − k(p + q), we define a grid on a subset of indices of

S[1, x]. The node at the center is i and for any node j, the nodes j + p, j + q, j − p and j − q

are the top, right, bottom and left neighbors of j, respectively. See Figure 3 for example of

such a grid.

We include (2k + 1) rows and columns in this grid, where i is the intersection of the

middle row and the middle column. Note that since k(p + q) ≤ i ≤ x − k(p + q), all points in

the grid correspond to indices of S.

I Claim 26. No indices of S correspond to multiple points in the grid.

Proof. Suppose, by way of contradiction, there exists some index j which is represented

by multiple points in the grid. That is, j = i + a1p + b1q = i + a2p + b2q with a1 6= a2.

Since d = gcd (p, q), there exist integers r, s with p = rd, q = sd, and gcd (r, s) = 1. Then

(a1 − a2)p = (b2 − b1)q so (a1 − a2)r = (b2 − b1)s. Because gcd (r, s) = 1, it follows that

(a1 − a2) is divisible by s = q
d ≥ 2k + 1. Therefore, |a1 − a2| ≥ 2k + 1, and so a1 and a2 are

at least 2k + 1 columns apart. However, this contradicts both points being in the grid, since

the grid contains exactly 2k + 1 columns. J

I Claim 27. There exist at least k + 1 rows and k + 1 columns in the grid that do not

contain any bad edge.

Proof. Since HAM (S[1, x], S[α + 1, α + x]) ≤ k, for α = p, q, there are at most k indices i

for which S[i] 6= S[i + p] or S[i] 6= S[i + q]. By Claim 26, each index is represented at most

once. Hence, there are at most k vertical bad edges and at most k horizontal bad edges in

this grid. Because the grid contains 2k + 1 rows and columns, then there exist at least k + 1

rows and columns in the grid that do not contain any bad edge. J

We call these rows and columns no-change.

I Claim 28. If there exists a path between i and a no-change row or column in a grid

containing i avoiding bad edges, and a path between i + d and a no-change row or column

in a grid containing i + d avoiding bad edges, then there exists a path between i and i + d

avoiding bad edges.

Proof. Notice that some no-change row in the grid centered at i must also be a no-change

row in the grid centered at i + q, since there are at least k + 1 no-change rows in each grid,

but the two grids overlap in 2k + 1 rows. Similarly, some no-change column in the grid

centered at i must also be a no-change row in the grid centered at i + p. These common

no-change rows and columns allow traversal between grids, as we can freely traverse between

any no-change rows and columns while avoiding bad edges. Thus, if we can traverse from i

to any no-change row in the first grid, we can ultimately reach any no-change row in the

final grid containing i + d while avoiding all bad edges. Finally, if we can traverse between

i + d and any no-change row in the final grid, then there exists a path between i and i + d

without any bad edges. J

This construction describes a possible path from i to i + d with the help of these no-change

rows and columns between grids. Notice that it is possible that there is no path from i to

i + d simply because a lot of bad edges have surrounded node i or i + d. (This is a necessary

but not sufficient condition.)

CVIT 2016

23:20 Streaming Periodicity with Mismatches

We use the term isolated node, to describe any node which is in a region enclosed by

bad edges. Note that points in such enclosed regions are also possibly part of mismatched

indices (j, j + d). We argue that the most number of unique indices which can enclosed with

k1 vertical edges and k2 horizontal edges is k1k2

2 + 2k1 + 2k2, even on an extended grid with

no boundaries and multiple vertices/edges which correspond to the same index.

I Claim 29. The number of isolated nodes is at most k1k2

2 + 2k1 + 2k2.

We sketch the details of the proof of Claim 29, with full details provided in [11]. The total

area of regions enclosed by at most k1 vertical bad edges and at most k2 horizontal bad edges

is at most k1k2

4 . Thus, the number of isolated nodes cannot exceed k1k2

4 .

The number of (i, i + d) mismatches is at most double the number of isolated nodes (if i

is isolated, both (i, i + d) and (i − d, i) may be mismatches) plus the number of mismatched

edges. The former is bounded by k1k2

4 , the latter by k1 + k2. See Figure 3 for example. We

i i + q i + 2qi − q

i + p

i + 2p

i − p

Figure 3 The dashed lines are bad edges. The total area of the enclosed regions can be at most

k2 if the perimeter is at most 4k.

defer the casework for i < k(p + q) and i > x − k(p + q) to the full version [11]. J

The proof of Theorem 23 follows by aggregating each congruence class with mismatched

indices, handled in Lemma 25.

We generalize Theorem 23 by showing that the greatest common divisor of any m ≥ 2

reasonably small candidates for k-periods is also a (2mk2 + 1)-period. We emphasize that it

is sufficient for m ≤ log n, since the greatest common divisor can change at most log n times.

I Theorem 30. Let I =
{

i
∣

∣

∣
i ≤ x

2(mk+1) , HAM (S[1, x], S[i + 1, i + x]) ≤ k
}

. The greatest

common divisor of any p1, . . . , pm ∈ I, d = gcd (p1, . . . , pm), satisfies

HAM (S[1, x], S[d + 1, d + x]) ≤ 8mk2 + 1.

Although the pairwise greatest common divisor between two candidates pi and pj is no

longer d, considering δ = gcd (p1, pm) suffices for the analysis. If pm

δ < 2k + 1, then the proof

is similar to that of Lemma 24. Otherwise if pm

δ ≥ 2k + 1, the proof is similar to that of

Lemma 25. We show a k2 bound on the volume of an enclosed region, whose surface area

is at most mk, within a hypergrid. This yields a related bound on the number of isolated

nodes.

Observe that Theorem 9 relaxes the constraints of Theorem 30. The full details for the

proof of Theorem 23, Theorem 30, and Theorem 9 are provided in [11].

	Introduction
	Our Results
	Related Work

	Preliminaries
	The k-Mismatch Algorithm

	Our Approach
	Two-Pass Algorithm to Compute k-Periods
	Finding small k-periods
	Pass 1: [prop:1]Property 1.
	Pass 1: [prop:2]Property 2.
	Pass 1: [prop:3]Property 3.
	Pass 2: [prop:4]Property 4.
	Finding large k-periods

	One-Pass Algorithm to Compute k-Periods
	Finding small k-periods
	Finding large k-periods

	Lower Bounds
	Lower Bounds for General Periods
	Lower Bounds for Small Periods

	Structural Properties of k-Periodic Strings

