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Abstract
This paper investigates the problem of interac-
tively learning behaviors communicated by a hu-
man teacher using positive and negative feed-
back. Much previous work on this problem has
made the assumption that people provide feed-
back for decisions that is dependent on the be-
havior they are teaching and is independent from
the learner’s current policy. We present empirical
results that show this assumption to be false—
whether human trainers give a positive or neg-
ative feedback for a decision is influenced by
the learner’s current policy. Based on this in-
sight, we introduce Convergent Actor-Critic by
Humans (COACH), an algorithm for learning
from policy-dependent feedback that converges
to a local optimum. Finally, we demonstrate that
COACH can successfully learn multiple behav-
iors on a physical robot.

1. Introduction
Programming robots is very difficult, in part because
the real world is inherently rich and—to some degree—
unpredictable. In addition, our expectations for physical
agents are quite high and often difficult to articulate. Nev-
ertheless, for robots to have a significant impact on the lives
of individuals, even non-programmers need to be able to
specify and customize behavior. Because of these complex-
ities, relying on end-users to provide instructions to robots
programmatically seems destined to fail.

Reinforcement learning (RL) from human trainer feedback
provides a compelling alternative to programming because
agents can learn complex behavior from very simple posi-
tive and negative signals. Furthermore, real-world animal
training is an existence proof that people can train complex
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behavior using these simple signals. Indeed, animals have
been successfully trained to guide the blind, locate mines
in the ocean, detect cancer or explosives, and even solve
complex, multi-stage puzzles.

Despite success when learning from environmental reward,
traditional reinforcement-learning algorithms have yielded
limited success when the reward signal is provided by hu-
mans. This failure underscores the importance that algo-
rithms for learning from humans are based on appropriate
models of human-feedback. Indeed, much human-centered
RL work has investigated and employed different mod-
els of human-feedback (Knox & Stone, 2009b; Thomaz &
Breazeal, 2006; 2007; 2008; Griffith et al., 2013; Loftin
et al., 2015). Many of these algorithms leverage the ob-
servation that people tend to give feedback that is best in-
terpreted as guidance on the policy the agent should be fol-
lowing, rather than as a numeric value to be maximized
by the agent. However, these approaches assume models
of feedback that are independent of the policy the agent
is currently following. We present empirical results that
demonstrate that this assumption is incorrect and further
demonstrate cases in which policy-independent learning al-
gorithms suffer from this assumption. Following this result,
we present Convergent Actor-Critic by Humans (COACH),
an algorithm for learning from policy-dependent human
feedback. COACH is based on the insight that the ad-
vantage function (a value roughly corresponding to how
much better or worse an action is compared to the current
policy) provides a better model of human feedback, cap-
turing human-feedback properties like diminishing returns,
rewarding improvement, and giving 0-valued feedback a
semantic meaning that combats forgetting. We compare
COACH to other approaches in a simple domain with sim-
ulated feedback. Then, to validate that COACH scales to
complex problems, we train five different behaviors on a
TurtleBot robot.

2. Background
For modeling the underlying decision-making problem of
an agent being taught by a human, we adopt the Markov
Decision Process (MDP) formalism. An MDP is a 5-tuple:
〈S,A, T,R, γ〉, where S is the set of possible states of the
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environment; A is the set of actions available to the agent;
T (s′|s, a) is the transition function, which defines the prob-
ability of the environment transitioning to state s′ when
the agent takes action a in environment state s; R(s, a, s′)
is the reward function specifying the numeric reward the
agent receives for taking action a in state s and transition-
ing to state s′; and γ ∈ [0, 1] is a discount factor specifying
how much immediate rewards are preferred to more distant
rewards.

A stochastic policy π for an MDP is a per-state action
probability distribution that defines an agent’s behavior;
π : S × A → [0, 1], where

∑
a∈A π(s, a) = 1,∀s ∈ S.

In the MDP setting, the goal is to find the optimal pol-
icy π∗, which maximizes the expected future discounted
reward when the agent selects actions in each state ac-
cording to π∗; π∗ = argmaxπ E[

∑∞
t=0 γ

trt|π], where
rt is the reward received at time t. Two important con-
cepts in MDPs are the value function (V π) and action–
value function (Qπ). The value function defines the ex-
pected future discounted reward from each state when fol-
lowing some policy and the action–value function defines
the expected future discounted reward when an agent takes
some action in some state and then follows some policy π
thereafter. These equations can be recursively defined via
the Bellman equation: V π(s) =

∑
a π(s, a)Qπ(s, a) and

Qπ(s, a) =
∑
s′ T (s′|s, a) [R(s, a, s′) + γV π(s′)]. For

shorthand, the value functions for the optimal policies are
usually denoted V ∗ and Q∗.

In reinforcement learning (RL), an agent interacts with an
environment modeled as an MDP, but does not have di-
rect access to the transition function or reward function
and instead must learn a policy from environment obser-
vations. A common class of RL algorithms are actor-
critic algorithms. Bhatnagar et al. (2009) provide a gen-
eral template for these algorithms. Actor-critic algorithms
are named for the two main components of the algorithms:
The actor is a parameterized policy that dictates how the
agent selects actions; the critic estimates the value func-
tion for the actor and provides critiques at each time step
that are used to update the policy parameters. Typically,
the critique is the temporal difference (TD) error: δt =
rt + γV (st)− V (st−1), which describes how much better
or worse a transition went than expected.

3. Human-centered Reinforcement Learning
In this work, a human-centered reinforcement-learning
(HCRL) problem is a learning problem in which an agent
is situated in an environment described by an MDP but in
which rewards are generated by a human trainer instead of
from a stationary MDP reward function that the agent is
meant to maximize. The trainer has a target policy π∗ they
are trying to teach the agent. The trainer communicates this

policy by giving numeric feedback as the agent acts in the
environment. The goal of the agent is to learn the target
policy π∗ from the feedback.

To define a learning algorithm for this problem, we first
characterize how human trainers typically use numeric
feedback to teach target policies. If feedback is stationary
and intended to be maximized, it can be treated as a re-
ward function and standard RL algorithms used. Although
this approach has had some success (Pilarski et al., 2011;
Isbell et al., 2001), there are complications that limit its ap-
plicability. In particular, a trainer must take care that the
feedback they give contains no unanticipated exploits, con-
straining the feedback strategies they can use. Indeed, prior
research has shown that interpreting human feedback like
a reward function often induces positive reward cycles that
lead to unintended behaviors (Knox, 2012; Ho et al., 2015).

The issues with interpreting feedback as reward have led
to the insight that human feedback is better interpreted as
commentary on the agent’s behavior; for example, positive
feedback roughly corresponds to “that was good” and neg-
ative feedback roughly corresponds to “that was bad.” In
the next section, we review existing HCRL approaches that
build on this insight.

4. Related Work
A number of existing approaches to HCRL and RL that
includes human feedback has been explored in the past.
The most similar to ours, and a primary inspiration for
this work, is the TAMER framework (Knox, 2012). In
TAMER, trainers provide interactive numeric feedback as
the learner takes actions. The learner attempts to estimate
a target reward function by interpreting trainer feedback as
exemplars of this function. When the agent makes rapid
decisions, TAMER divides the feedback among the recent
state–action pairs according to a probability distribution.
TAMER makes decisions by myopically choosing the ac-
tion with the highest reward estimate. Because the agent
myopically maximizes reward, the feedback can also be
thought of as exemplars of Q∗. Later work also investi-
gated non-myopically maximizing the learned reward func-
tion with a planning algorithm (Knox & Stone, 2013), but
this approach requires a model of the environment and spe-
cial treatment of termination conditions.

Two other closely related approaches are SABL (Loftin
et al., 2015) and Policy Shaping (Griffith et al., 2013). Both
of these approaches treat feedback as discrete probabilis-
tic evidence of the trainer’s target parameterized policy.
SABL’s probabilistic model additionally includes (learn-
able) parameters for describing how often a trainer is ex-
pected to give explicit positive or negative feedback.

There have also been some domains in which treating hu-
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man feedback as reward signals to maximize has had some
success, such as in shaping the control for a prosthetic
arm (Pilarski et al., 2011) and learning how to interact in
an online chat room from multiple users’ feedback (Isbell
et al., 2001). Some complications with how people give
feedback have been reported, however.

Some research has also examined combining human feed-
back with more traditional environmental rewards (Knox
& Stone, 2010; Tenorio-Gonzalez et al., 2010; Clouse &
Utgoff, 1992; Maclin et al., 2005). A challenge in this
context in practice is that rewards do not naturally come
from the environment and must be programmatically de-
fined. However, it is appealing because the agent can learn
in the absence of an active trainer. We believe our approach
to HCRL could also straightforwardly incorporate learning
from environmental reward as well, but we leave this inves-
tigation for future work.

Finally, a related research area is learning from demonstra-
tion (LfD), in which a human provides examples of the de-
sired behavior. There are a number of different approaches
to solving this problem surveyed by Argall et al. (2009).
We see these approaches as complementary to HCRL be-
cause it is not always possible, or convenient, to provide
demonstrations. LfD approaches that learn a parameter-
ized policy could also operate with COACH, allowing the
agent to have their policy seeded by demonstrations, and
then fine tuned with interactive feedback.

Note that the policy-dependent feedback we study here
is viewed as essential in behavior analysis reinforcement
schedules (Miltenberger, 2011). Trainers are taught to
provide diminishing returns (gradual decreases in posi-
tive feedback for good actions as the agent adopts those
actions), differential feedback (varied magnitude of feed-
backs depending on the degree of improvement or deterio-
ration in behavior), and policy shaping (positive feedback
for suboptimal actions that improve behavior and then neg-
ative feedback after the improvement has been made), all
of which are policy dependent.

5. Policy-dependent Feedback
A common assumption of existing HCRL algorithms is that
feedback depends only on the quality of an agent’s action
selection. An alternative hypothesis is that feedback also
depends on the agent’s current policy. That is, an action se-
lection may be more greatly rewarded or punished depend-
ing on how often the agent would typically be inclined to
select it. For example, more greatly rewarding the agent for
improving its performance than maintaining the status quo.
We call the former model of feedback policy-independent
and the latter policy-dependent. If people are more nat-
urally inclined toward one model of feedback, algorithms

Figure 1. The training interface shown to AMT users.

based on the wrong assumption may result in unexpected
responses to feedback. Consequently, we were interested
in investigating which model better fits human feedback.

Despite existing HCRL algorithms assuming policy-
independent feedback, evidence of policy-dependent feed-
back can be found in prior works with these algorithms.
For example, it was often observed that trainers taper their
feedback over the course of learning (Ho et al., 2015; Knox
et al., 2012; Isbell et al., 2001). Although diminishing feed-
back is a property that is explained by people’s feedback
being policy-dependent—as the learner’s performance im-
proves, trainer feedback is decreased—an alternative expla-
nation is simply trainer fatigue. To further make the case
for human feedback being policy dependent, we provide a
stronger result showing that trainers—for the same state–
action pair—choose positive or negative feedback depend-
ing on their perception of the learner’s behavior.

5.1. Empirical Results

We had Amazon Mechanical Turk (AMT) participants
teach an agent in a simple sequential task, illustrated in Fig-
ure 1. Participants were instructed to train a virtual dog to
walk to the yellow goal location in a grid world as fast as
possible but without going through the green cells. They
were additionally told that, as a result of prior training,
their dog was already either “bad,” “alright,” or “good” at
the task and were shown examples of each behavior before
training. In all cases, the dog would start in the location
shown in Figure 1. “Bad” dogs walked straight through the
green cells to the yellow cell. “Alright” dogs first moved
left, then up, and then to the goal, avoiding green but not
taking the shortest route. “Good” dogs took the shortest
path to yellow without going through green.

During training, participants saw the dog take an action
from one tile to another and then gave feedback after ev-
ery action using a continuous labeled slider as shown. The
slider always started in the middle of the scale on each
trial, and several points were labeled with different levels
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of reward (praise and treats) and punishment (scolding and
a mild electric shock). Participants went through a brief
tutorial using this interface. Responses were coded as a
numeric value from −50 to 50, with “Do Nothing” as the
zero-point.

During the training phase, participants trained a dog for
three episodes that all started in the same position and
ended at the goal. The dog’s behavior was pre-programmed
in such a way that the first step of the final episode would
reveal if feedback was policy dependent. Each user was
placed into one of three different conditions: improving,
steady, or degrading. For all three conditions, the dog’s
behavior in the final episode was “alright,” regardless of
any prior feedback. The conditions differed in terms of the
behavior users observed in the first two episodes. In the
first two episodes, users observed bad behavior in the im-
proving condition (improving to alright); alright behavior
in the steady condition; and good behavior in the degrad-
ing condition. If feedback is policy-dependent, we would
expect more positive feedback in the final episode for the
improving condition, but not for policy-independent feed-
back since it was the same final behavior for all conditions.

Figure 2 shows boxplots and individual responses for the
first step of the final episode under each of the three con-
ditions. These results indicate that the sign of feedback is
sensitive to the learner’s policy, as predicted. The mean and
median feedback under the improving condition is slightly
positive (Mean = 9.8, Median = 24, S.D. = 22.2; planned
Wilcoxon one-sided signed-rank test: Z = 1.71, p <
0.05), whereas it is negative for the steady condition (Mean
= −18.3, Median = −23.5, S.D. = 24.6; planned Wilcoxon
two-sided signed-rank test: Z = −3.15, p < 0.01) and
degrading condition (Mean = −10.8, Median = −18.0,
S.D. = 20.7; planned Wilcoxon one-sided signed-rank test:
Z = −2.33, p < 0.05). There was a main effect across
the three conditions (p < 0.01, Kruskal-Wallace Test), and
pairwise comparisons indicated that only the improving
condition differed from steady and degrading conditions
(p < 0.01 for both, Bonferroni-corrected, Mann-Whitney
Pairwise test).

6. Convergent Actor-Critic by Humans
In this section, we introduce Convergent Actor-Critic by
Humans (COACH), an actor-critic-based algorithm capa-
ble of learning from policy-dependent feedback. COACH
is based on the insight that the advantage function is a good
model of human feedback and that actor–critic algorithms
update a policy using the critic’s TD error, which is an unbi-
ased estimate of the advantage function. Consequently, an
agent’s policy can be directly modified by human feedback
without a critic component. We first define the advantage
function and its interpretation as trainer feedback. Then,
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Figure 2. The feedback distribution for first step of the final
episode for each condition. Feedback tended to be positive for
improving behavior, but negative otherwise.

we present the general update rule for COACH and its con-
vergence. Finally, we present Real-time COACH, which in-
cludes mechanisms for providing variable magnitude feed-
back and learning in problems with a high-frequency deci-
sion cycle.

6.1. The Advantage Function and Feedback

The advantage function (Baird, 1995) Aπ is defined as

Aπ(s, a) = Qπ(s, a)− V π(s). (1)

Roughly speaking, the advantage function describes how
much better or worse an action selection is compared to
the agent’s performance under policy π. The function is
closely related to the update used in policy iteration (Put-
erman, 1994): defining π′(s) = argmaxaA

π(s, a) is guar-
anteed to produce an improvement over π whenever π is
suboptimal. It can also be used in policy gradient meth-
ods to gradually improve the performance of a policy, as
described later.

It is worth nothing that feedback produced by the advan-
tage function is consistent with that recommended in be-
havior analysis. It trivially results in differential feedback
since it is defined as the magnitude of improvement of
an action over its current policy. It induces diminishing
returns because, as π improves opportunities to improve
on it decrease. Indeed, once π is optimal, all advantage-
function-based feedback is zero or negative. Finally, ad-
vantage function feedback induces policy shaping in that
whether feedback is positive or negative for an action de-
pends on whether it is a net improvement over the current
behavior.

6.2. Convergence and Update Rule

Given a performance metric ρ, Sutton et al. (1999) derive a
policy gradient algorithm of the form: ∆θ = α∇θρ. Here,
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θ represents the parameters that control the agent’s behav-
ior and α is a learning rate. Under the assumption that ρ
is the discounted expected reward from a fixed start state
distribution, they show that

∇θρ =
∑
s

dπ(s)
∑
a

∇θπ(s, a)Qπ(s, a),

where dπ(s) is the component of the (discounted) station-
ary distribution at s. A benefit of this form of the gradient
is that, given that states are visited according to dπ(s) and
actions are taken according to π(s, a), the update at time t
can be made as:

∆θt = αt∇θπ(st, at)
ft+1

π(st, at)
, (2)

where E[ft+1] = Qπ(st, at) − v(s) for any action-
independent function v(s).

In the context of the present paper, ft+1 represents the
feedback provided by the trainer. It follows trivially that
if the trainer chooses the policy-dependent feedback ft =
Qπ(st, at), we obtain a convergent learning algorithm that
(locally) maximizes discounted expected reward. In addi-
tion, feedback of the form ft = Qπ(st, at) − V π(st) =
Aπ(st, at) also results in convergence. Note that for the
trainer to provide feedback in the form of Qπ or Aπ , they
would need to “peer inside” the learner and observe its pol-
icy. In practice, the trainer estimates π by observing the
agent’s actions.

6.3. Real-time COACH

There are challenges in implementing Equation 2 for real-
time use in practice. Specifically, the interface for provid-
ing variable magnitude feedback needs to be addressed, and
the question of how to handle sparseness and the timing of
feedback needs to be answered. Here, we introduce Real-
time COACH, shown in Algorithm 1, to address these is-
sues.

For providing variable magnitude reward, we use reward
aggregation (Knox & Stone, 2009b). In reward aggrega-
tion, a trainer selects from a discrete set of feedback values
and further raises or lowers the numeric value by giving
multiple feedbacks in succession that are summed together.

While sparse feedback is not especially problematic (be-
cause no feedback results in no change in policy), it may
slow down learning unless the trainer is provided with a
mechanism to allow feedback to affect a history of actions.
We use eligibility traces (Barto et al., 1983) to help apply
feedback to the relevant transitions. An eligibility trace is
a vector that keeps track of the policy gradient and decays
exponentially with a parameter λ. Policy parameters are
then updated in the direction of the trace, allowing feed-
back to affect earlier decisions. However, a trainer may not

Algorithm 1 Real-time COACH
Require: policy πθ0 , trace set λ, delay d, learning rate α

Initialize traces eλ ← 0 ∀λ ∈ λ
observe initial state s0
for t = 0 to∞ do

select and execute action at ∼ πθt(st, ·)
observe next state st+1, sum feedback ft+1, and λ
for λ′ ∈ λ do
eλ′ ← λ′eλ′ + 1

πθt (st−d,at−d)
∇θt

πθt
(st−d, at−d)

end for
θt+1 ← θt + αft+1eλ

end for

always want to influence a long history of actions. Conse-
quently, Real-time COACH maintains multiple eligibility
traces with different temporal decay rates and the trainer
chooses which eligibility trace to use for each update. This
trace choice may be handled implicitly with the feedback
value selection or explicitly.

Due to reaction time, human feedback is typically delayed
by about 0.2 to 0.8 seconds from the event to which they
meant to give feedback (Knox, 2012). To handle this delay,
feedback in Real-time COACH is associated with events
from d steps ago to cover the gap. Eligibility traces further
smooth the feedback to older events.

Finally, we note that just as there are numerous variants of
actor-critic update rules, similar variations can be used in
the context of COACH.

7. Comparison of Update Rules
To understand the behavior of COACH under different
types of trainer feedback strategies, we carried out a con-
trolled comparison in a simple grid world. The domain is
essentially an expanded version of the dog domain used in
our human-subject experiment. It is a 8 × 5 grid in which
the agent starts in 0, 0 and must get to 7, 0, which yields +5
reward. However, from 1, 0 to 6, 0 are cells the agent needs
to avoid, which yield −1 reward.

7.1. Learning Algorithms and Feedback Strategies

Three types of learning algorithms were tested. Each main-
tains an internal data structure, which it updates with feed-
back of the form 〈s, a, f, s′〉, where s is a state, a is an
action taken in that state, f is the feedback received from
the trainer, and s′ is the resulting next state. The algorithm
also must produce an action for each state encountered.

The first algorithm, Q learning (Watkins & Dayan, 1992),
represents a standard value-function-based RL algorithm
designed for reward maximization under delayed feedback.
It maintains a data structure Q(s, a), initially 0. Its update
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rule has the form:

∆Q(s, a) = α[f + γmax
a′

Q(s′, a′)−Q(s, a)]. (3)

Actions are chosen using the rule: argmaxaQ(s, a), where
ties are broken randomly. We tested a handful of parame-
ters and used the best values: discount factor γ = 0.99 and
learning rate α = 0.2.

In TAMER (Knox & Stone, 2009a), a trainer provides inter-
active numeric feedback that is interpreted as an exemplar
of the reward function for the demonstrated state–action
pair as the learner takes actions. We assumed that each
feedback applies to the last action, and thus used a simpli-
fied version of the algorithm that did not attempt to spread
updates over multiple transitions. TAMER maintains a data
structure RH(s, a) for the predicted reward in each state,
initially 0. It is updated by: ∆RH(s, a) = αf . We used
α = 0.2. Actions are chosen via an ε-greedy rule on
RH(s, a) with ε = 0.2.

Lastly, we examined COACH, which is also designed to
work well with human-generated feedback. We used a soft-
max policy with a single λ = 0 trace. The parameters were
a matrix of values θ(s, a), initially zero. The stochastic
policy defined by these parameters was

π(s, a) = eβθ(s,a)/
∑
a

eβθ(s,a),

with β = 1. Parameters were updated via

∆θ = α∇θπ(s, a)
f

π(s, a)
, (4)

where α is a learning rate. We used α = 0.05.

In effect, each of these learning rules makes an assump-
tion about the kind of feedback it expects trainers to use.
We wanted to see how they would behave with feedback
strategies that matched these assumptions and those that
did not. The first feedback strategy we studied is the clas-
sical task-based reward function (“task”) where the feed-
back is sparse: +5 reward when the agent reaches the goal
state, −1 for avoidance cells, and 0 for all other transi-
tions. Q-learning is known to converge to optimal behav-
ior with this type of feedback. The second strategy pro-
vides policy-independent feedback for each state–action
pair (“action”): +5 when the agent reaches termination,
+1 reward when the selected action matches an optimal
policy, −1 for reaching an avoidance cell, and 0 other-
wise. This type of feedback serves TAMER well. The
third strategy (“improvement”) used feedback defined by
the advantage function of the learner’s current policy π,
Aπ(s, a) = Qπ(s, a) − V π(s), where the value functions
are defined based on the task rewards. This type of feed-
back is very well suited to COACH.

7.2. Results

Each combination of algorithm and feedback strategy was
run 99 times with the median value of the number of steps
needed to reach the goal reported. Episodes were ended
after 1, 000 steps if the goal was not reached.

Figure 3(a) shows the steps needed to reach the goal for
the three algorithms trained with task feedback. The figure
shows that TAMER can fail to learn in this setting. COACH
also performs poorly with λ = 0, which prevents feedback
from influencing earlier decisions. We did a subsequent ex-
periment (not shown) with λ = 0.9 and found that COACH
converged to reasonable behavior, although not as quickly
as Q learning. This result helps justify using traces to com-
bat the challenges of delayed feedback.

Figure 3(b) shows results with action feedback. This time,
Q learning fails to perform well, a consequence of this feed-
back strategy inducing positive behavior cycles as it tries to
avoid ending the trial, the same kind of problem that HCRL
algorithms have been designed to avoid. Both TAMER and
COACH perform well with this feedback strategy. TAMER
performs slightly better than COACH, as this is precisely
the kind of feedback TAMER was designed to handle.

Figure 3(c) shows the results of the three algorithms with
improvement feedback, which is generated via the advan-
tage function defined on the learner’s current policy. These
results tells a different story. Here, COACH performs the
best. Q-learning largely flounders for most of the time,
but with enough training sometimes start to converge. (Al-
though, 14% of the time, Q learning fails to do well even
after 100 training episodes). TAMER, on the other hand,
performs very badly at first. While the median score in the
plot shows TAMER suddenly performing more compara-
bly to COACH after about 10 episodes, 29% of our training
trials completely failed to improve and timed-out across all
100 episodes.

8. Robotics Case Study
In this section, we present qualitative results on Real-time
COACH applied to a TurtleBot robot. The goal of this
study was to test that COACH can scale to a complex do-
main involving multiple challenges, including training an
agent that operates on a fast decision cycle (33ms), noisy
non-Markov observations from a camera, and agent per-
ception that is hidden from the trainer. To demonstrate the
flexibility of COACH, we trained it to perform five differ-
ent behaviors involving a pink ball and cylinder with an
orange top using the same parameter selections. We dis-
cuss these behaviors below. We also contrast the results to
training with TAMER. We chose TAMER as a comparison
because, to our knowledge, it is the only HCRL algorithm
with success on a similar platform (Knox et al., 2013).
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(a) Task feedback

(b) Action feedback

(c) Improvement feedback

Figure 3. Steps to goal for Q learning (blue), TAMER (red), and
COACH (yellow) in Cliff world under different feedback strate-
gies. The y-axis is on a logarithmic scale.

The TurtleBot is a mobile base with two degrees of freedom
that senses the world from a Kinect camera. We discretized
the action space to five actions: forward, backward, rotate
clockwise, rotate counterclockwise, and do nothing. The
agent selects one of these actions every 33ms. To deliver
feedback, we used a Nintendo Wii controller to give +1,
+4, or −1 numeric feedback, and pause and continue train-
ing. For perception, we used only the RGB image chan-
nels from the Kinect. Because our behaviors were based
around a relocatable pink ball and a fixed cylinder with an
orange top, we hand constructed relevant image features to
be used by the learning algorithms. These features were
generated using techniques similar to those used in neural
network architectures. The features were constructed by
first transforming the image into two color channels asso-
ciated with the colors of the ball and cylinder. Sum pool-
ing to form a lower-dimensional 8 × 8 grid was applied to
each color channel. Each sum-pooling unit was then passed
through three different normalized threshold units defined
by Ti(x) = min( x

φi
, 1), where φi specifies the saturation

point. Using multiple saturation parameters differentiates
the distance of objects, resulting in three “depth” scales per
color channel. Finally, we passed these results through a
2× 8 max-pooling layer with stride 1.

The five behaviors we trained were push–pull, hide, ball
following, alternate, and cylinder navigation. In push–pull,
the TurtleBot is trained to navigate to the ball when it is far,
and back away from it when it is near. The hide behavior
has the TurtleBot back away from the ball when it is near
and turn away from it when it is far. In ball following, the
TurtleBot is trained to navigate to the ball. In the alternate
task, the TurtleBot is trained to go back and forth between
the cylinder and ball. Finally, cylinder navigation involves
the agent navigating to the cylinder. We further classify
training methods for each of these behaviors as flat, involv-
ing the push–pull, hide, and ball following behaviors; and
compositional, involving the alternate and cylinder naviga-
tion behaviors.

In all cases, our human trainer (one of the co-authors) used
differential feedback and diminishing returns to quickly re-
inforce behaviors and restrict focus to the areas needing
tuning. However, in alternate and cylinder navigation, they
attempted more advanced compositional training methods.
For alternate, the agent was first trained to navigate to the
ball when it sees it, and then turn away when it is near.
Then, the same was independently done for the cylinder.
After training, introducing both objects would cause the
agent to move back and forth between them. For cylin-
der navigation, they attempted to make use of an animal-
training method called lure training in which an animal is
first conditioned to follow a lure object, which is then used
to guide it through more complex behaviors. In cylinder
navigation, they first trained the ball to be a lure, used it to
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guide the TurtleBot to the cylinder, and finally gave a +4
reward to reinforce the behaviors it took when following
the ball (turning to face the cylinder, moving toward it, and
stopping upon reaching it). The agent would then navigate
to the cylinder without requiring the ball to be present.

For COACH parameters, we used a softmax parameterized
policy, where each action preference value was a linear
function of the image features, plus tanh(θa), where θa
is a learnable parameter for action a, providing a prefer-
ence in the absence of any stimulus. We used two eligi-
bility traces with λ = 0.95 for feedback +1 and −1, and
λ = 0.9999 for feedback +4. The feedback-action delay
d was set to 6, which is 0.198 seconds. Additionally, we
used an actor-critic parameter-update rule variant in which
action preference values are directly modified (along its
gradient), rather than by the gradient of the policy (Sut-
ton & Barto, 1998). This variant more rapidly commu-
nicates stimulus–response preferences. For TAMER, we
used typical parameter values for fast decision cycle prob-
lems: delay-weighted aggregate TAMER with uniform dis-
tribution credit assignment over 0.2 to 0.8 seconds, εp = 0,
and cmin = 1 (Knox, 2012). (See prior work for parameter
meaning.) TAMER’s reward-function approximation used
the same representation as COACH.

8.1. Results and Discussion

COACH was able to successfully learn all five behaviors
and a video showing its learning is available online at
https://vid.me/3h2s. Each of these behaviors were
trained in less than two minutes, including the time spent
verifying that a behavior worked. Differential feedback
and diminishing returns allowed only the behaviors in need
of tuning to be quickly reinforced or extinguished without
any explicit division between training and testing. More-
over, the agent successfully benefited from the composi-
tional training methods, correctly combining subbehaviors
for alternate, and quickly learning cylinder navigation with
the lure.

TAMER only successfully learned the behaviors using the
flat training methodology and failed to learn the composi-
tionally trained behaviors. In all cases, TAMER tended to
forget behavior, requiring feedback for previous decisions
it learned to be resupplied after it learned a new decision.
For the alternate behavior, this forgetting led to failure: af-
ter training the behavior for the cylinder, the agent forgot
some of the ball-related behavior and ended up drifting off
course when it was time to go to the ball. TAMER also
failed to learn from lure training because TAMER does not
allow reinforcing a long history of behaviors.

We believe TAMER’s forgetting is a result of interpret-
ing feedback as reward-function exemplars in which new
feedback in similar contexts can change the target. To il-

lustrate this problem, we constructed a well-defined sce-
nario in which TAMER consistently unlearns behavior. In
this scenario, the goal was for the TurtleBot to always stay
whenever the ball was present, and move forward if just the
cylinder was present. We first trained TAMER to stay when
the ball alone was present using many rapid rewards (yield-
ing a large aggregated signal). Next, we trained it to move
forward when the cylinder alone was present. We then in-
troduced both objects, and the TurtleBot correctly stayed.
After rewarding it for staying with a single reward (weaker
than the previously-used many rapid rewards), the Turtle-
Bot responded by moving forward—the positive feedback
actually caused it to unlearn the rewarded behavior. This
counter-intuitive response is a consequence of the small re-
ward decreasing its reward-function target for the stay ac-
tion to a point lower than the value for moving forward.
Roughly, because TAMER does not treat zero reward as
special, a positive reward can be a negative influence if
it is less than expected. COACH does not exhibit this
problem—any positive reward for staying will strengthen
the behavior.

9. Conclusion
In this work, we presented empirical results that show
that the numeric feedback people give agents in an inter-
active training paradigm is influenced by the agent’s cur-
rent policy and argued why such policy-dependent feed-
back enables useful training strategies. We then intro-
duced COACH, an algorithm that, unlike existing human-
centered reinforcement-learning algorithms, converges to a
local optimum when trained with policy-dependent feed-
back. We showed that COACH learns robustly in the
face of multiple feedback strategies and finally showed that
COACH can be used in the context of robotics with ad-
vanced training methods.

There are a number of exciting future directions to ex-
tend this work. In particular, because COACH is built on
the actor-critic paradigm, it should be possible to combine
it straightforwardly with learning from demonstration and
environmental rewards, allowing an agent to be trained in
a variety of ways. Second, because people give policy-
dependent feedback, investigating how people model the
current policy of the agent and how their model differs from
the agent’s actual policy may produce even greater gains.
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