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Abstract

Statistical relational models provide compact encodings of probabilistic depen-
dencies in relational domains, but result in highly intractable graphical models.
The goal of lifted inference is to carry out probabilistic inference without need-
ing to reason about each individual separately, by instead treating exchangeable,
undistinguished objects as a whole. In this paper, we study the domain recur-
sion inference rule, which, despite its central role in early theoretical results on
domain-lifted inference, has later been believed redundant. We show that this
rule is more powerful than expected, and in fact significantly extends the range
of models for which lifted inference runs in time polynomial in the number of
individuals in the domain. This includes an open problem called S4, the symmetric
transitivity model, and a first-order logic encoding of the birthday paradox. We

further identify new classes S 2FO
2 and S 2RU of domain-liftable theories, which

respectively subsume FO
2 and recursively unary theories, the largest classes of

domain-liftable theories known so far, and show that using domain recursion can
achieve exponential speedup even in theories that cannot fully be lifted with the
existing set of inference rules.

1 Introduction

Statistical relational learning (SRL) [8] aims at unifying logic and probability for reasoning and
learning in noisy domains, described in terms of individuals (or objects), and the relationships
between them. Statistical relational models [10], or template-based models [18] extend Bayesian and
Markov networks with individuals and relations, and compactly describe probabilistic dependencies
among them. These models encode exchangeability among the objects: individuals that we have the
same information about are treated similarly.

A key challenge with SRL models is the fact that they represent highly intractable, densely connected
graphical models, typically with millions of random variables. The aim of lifted inference [23] is to
carry out probabilistic inference without needing to reason about each individual separately, by instead
treating exchangeable, undistinguished objects as a whole. Over the past decade, a large number of
lifted inference rules have been proposed [5, 9, 11, 14, 20, 22, 28, 30], often providing exponential
speedups for specific SRL models. These basic exact inference techniques have applications in
(tractable) lifted learning [32], where the main task is to efficiently compute partition functions, and
in variational and over-symmetric approximations [29, 33]. Moreover, they provided the foundation
for a rich literature on approximate lifted inference and learning [1, 4, 13, 17, 19, 21, 25, 34].
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The theoretical study of lifted inference began with the complexity notion of domain-lifted infer-
ence [31] (a concept similar to data complexity in databases). Inference is domain-lifted when it runs
in time polynomial in the number of individuals in the domain. By identifying liftable classes of
models, guaranteeing domain-lifted inference, one can characterize the theoretical power of the vari-

ous inference rules. For example, the class FO2, encoding dependencies among pairs of individuals
(i.e., two logical variables), is liftable [30]. Kazemi and Poole [15] introduce a liftable class called
recursively unary, capturing hierarchical simplification rules. Beame et al. [3] identify liftable classes
of probabilistic database queries. Such results elevate the specific inference rules and examples to a
general principle, and bring lifted inference in line with complexity and database theory [3].

This paper studies the domain recursion inference rule, which applies the principle of induction on
the domain size. The rule makes one individual A in the domain explicit. Afterwards, the other
inference rules simplify the SRL model up to the point where it becomes identical to the original
model, except the domain size has decreased. Domain recursion was introduced by Van den Broeck

[31] and was central to the proof that FO2 is liftable. However, later work showed that simpler rules

suffice to capture FO
2 [27], and the domain recursion rule was forgotten.

We show that domain recursion is more powerful than expected, and can lift models that are otherwise
not amenable to domain-lifted inference. This includes an open problem by Beame et al. [3], asking
for an inference rule for a logical sentence called S4. It also includes the symmetric transitivity
model, and an encoding of the birthday paradox in first-order logic. There previously did not exist any
efficient algorithm to compute the partition function of these SRL models, and we obtain exponential
speedups. Next, we prove that domain recursion supports its own large classes of liftable models

S 2FO
2 subsuming FO

2, and S 2RU subsuming recursive unary1. All existing exact lifted inference

algorithms (e.g., [11, 15, 28]) resort to grounding the theories in S 2FO
2 or S 2RU that are not in

FO
2 or recursively unary, and require time exponential in the domain size.

These results will be established using the weighted first-order model counting (WFOMC) formulation
of SRL models [28]. WFOMC is close to classical first-order logic, and it can encode many other
SRL models, including Markov logic [24], parfactor graphs [23], some probabilistic programs [7],
relational Bayesian networks [12], and probabilistic databases [26]. It is a basic specification language
that simplifies the development of lifted inference algorithms [3, 11, 28].

2 Background and Notation

A population is a set of constants denoting individuals (or objects). A logical variable (LV) is typed
with a population. We represent LVs with lower-case letters, constants with upper-case letters, the
population associated with a LV x with ∆x, and its cardinality with |∆x|. That is, a population ∆x is
a set of constants {X1, . . . , Xn}, and we use x ∈ ∆x as a shorthand for instantiating x with one of
the Xi. A parametrized random variable (PRV) is of the form F(t1, . . . , tk) where F is a predicate
symbol and each ti is a LV or a constant. A unary PRV contains exactly one LV and a binary PRV
contains exactly two LVs. A grounding of a PRV is obtained by replacing each of its LVs x by one
of the individuals in ∆x.

A literal is a PRV or its negation. A formula ϕ is a literal, a disjunction ϕ1 ∨ ϕ2 of formulas, a
conjunction ϕ1 ∧ ϕ2 of formulas, or a quantified formula ∀x ∈ ∆x : ϕ(x) or ∃x ∈ ∆x : ϕ(x)
where x appears in ϕ(x). A sentence is a formula with all LVs quantified. A clause is a disjunction
of literals. A theory is a set of sentences. A theory is clausal if all its sentences are clauses. An
interpretation is an assignment of values to all ground PRVs in a theory. An interpretation I is a
model of a theory T , I |= T , if given its value assignments, all sentences in T evaluate to True.

Let F(T ) be the set of predicate symbols in theory T , and Φ : F(T ) → R and Φ : F(T ) → R

be two functions that map each predicate F to weights. These functions associate a weight with
assigning True or False to ground PRVs F(C1, . . . , Ck). For an interpretation I of T , let ψTrue

be the set of ground PRVs assigned True, and ψFalse the ones assigned False. The weight of I is

given by ω(I) =
∏

F(C1,...,Ck)∈ψTrue Φ(F) ·
∏

F(C1,...,Ck)∈ψFalse Φ(F). Given a theory T and two

functions Φ and Φ, the weighted first-order model count (WFOMC) of the theory given Φ and Φ
is: WFOMC(T |Φ,Φ) =

∑

I|=T ω(I).

1All proofs can be found in the extended version of the paper at: https://arxiv.org/abs/1610.08445
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In this paper, we assume that all theories are clausal and do not contain existential quantifiers. The
latter can be achieved using the Skolemization procedure of Van den Broeck et al. [30], which
efficiently transforms a theory T with existential quantifiers into a theory T ′ without existential
quantifiers that has the same weighted model count. That is, our theories are sets of finite-domain,
function-free first-order clauses whose LVs are all universally quantified (and typed with a population).
Furthermore, when a clause mentions two LVs x1 and x2 with the same population ∆x, or a LV x
with population ∆x and a constant C ∈ ∆x, we assume they refer to different individuals.2

Example 1. Consider the theory ∀x ∈ ∆x : ¬Smokes(x) ∨ Cancer(x) having only one clause and
assume ∆x = {A,B}. The assignment Smokes(A) = True, Smokes(B) = False,Cancer(A) =
True,Cancer(B) = True is a model. Assuming Φ(Smokes) = 0.2, Φ(Cancer) = 0.8, Φ(Smokes) =
0.5 and Φ(Cancer) = 1.2, the weight of this model is 0.2 · 0.5 · 0.8 · 0.8. This theory has eight other
models. The WFOMC can be calculated by summing the weights of all nine models.

2.1 Converting Inference for SRL Models into WFOMC

For many SRL models, (lifted) inference can be converted into a WFOMC problem. As an example,
consider a Markov logic network (MLN) [24] with weighted formulae (w1 : F1, . . . , wk : Fk). For
every weighted formula wi : Fi of this MLN, let theory T have a sentence Auxi(x, . . . ) ⇔ Fi such
that Auxi is a predicate having all LVs appearing in Fi. Assuming Φ(Auxi) = exp(wi), and Φ and

Φ are 1 for the other predicates, the partition function of the MLN is equal to WFOMC(T ).

2.2 Calculating the WFOMC of a Theory

We now describe a set of rules R that can be applied to a theory to find its WFOMC efficiently;
for more details, readers are directed to [28], [22] or [11]. We use the following theory T with two
clauses and four PRVs (S(x,m), R(x,m), T(x) and Q(x)) as our running example:

∀x ∈ ∆x,m ∈ ∆m : Q(x) ∨ R(x,m) ∨ S(x,m) ∀x ∈ ∆x,m ∈ ∆m : S(x,m) ∨ T(x)

Lifted Decomposition Assume we ground x in T . Then the clauses mentioning an arbitrary
Xi ∈ ∆x are ∀m ∈ ∆m : Q(Xi) ∨ R(Xi,m) ∨ S(Xi,m) and ∀m ∈ ∆m : S(Xi,m) ∨ T(Xi).
These clauses are totally disconnected from clauses mentioning Xj ∈ ∆x (j 6= i), and are the
same up to renaming Xi to Xj . Given the exchangeability of the individuals, we can calculate
the WFOMC of only the clauses mentioning Xi and raise the result to the power of the number of
connected components (|∆x|). Assuming T1 is the theory that results from substituting x with Xi,

WFOMC(T ) = WFOMC(T1)
|∆x|.

Case-Analysis The WFOMC of T1 can be computed by a case analysis over different assignments
of values to a ground PRV, e.g., Q(Xi). Let T2 and T3 represent T1 ∧ Q(Xi) and T1 ∧ ¬Q(Xi)
respectively. Then, WFOMC(T1) = WFOMC(T2) + WFOMC(T3). We follow the process for
T3 (the process for T2 will be similar) having clauses ¬Q(Xi), ∀m ∈ ∆m : Q(Xi) ∨ R(Xi,m) ∨
S(Xi,m) and ∀m ∈ ∆m : S(Xi,m) ∨ T(Xi).

Unit Propagation When a clause in the theory has only one literal, we can propagate the effect
of this clause through the theory and remove it3. In T3, ¬Q(Xi) is a unit clause. Having this
unit clause, we can simplify the second clause and get the theory T4 having clauses ∀m ∈ ∆m :
R(Xi,m) ∨ S(Xi,m) and ∀m ∈ ∆m : S(Xi,m) ∨ T(Xi).

Lifted Case-Analysis Case-analysis can be done for PRVs having one logical variable in a lifted
way. Consider the S(Xi,m) in T4. Due to the exchangeability of the individuals, we do not have
to consider all possible assignments to all ground PRVs of S(Xi,m), but only the ones where the
number of individuals M ∈ ∆m for which S(Xi,M) is True (or equivalently False) is different.
This means considering |∆m|+ 1 cases suffices, corresponding to S(Xi,M) being True for exactly

j = 0, . . . , |∆m| individuals. Note that we must multiply by
(

|∆m|
j

)

to account for the number

2Equivalently, we can disjoin x1 = x2 or x = C to the clause.
3Note that unit propagation may remove clauses and random variables from the theory. To account for them,

smoothing multiplies the WFOMC by 2#rv , where #rv represents the number of removed variables.
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of ways one can select j out of |∆m| individuals. Let T4j represent T4 with two more clauses:
∀m ∈ ∆mT

: S(Xi,m) and ∀m ∈ ∆mF
: ¬S(Xi,m), where ∆mT

represents the j individuals
in ∆m for which S(Xi,M) is True, and ∆mF

represents the other |∆m| − j individuals. Then

WFOMC(T4) =
∑|∆m|
j=0

(

|∆m|
j

)

WFOMC(T4j).

Shattering In T4j , the individuals in ∆m are no longer exchangeable: we know different things
about those in ∆mT

and those in ∆mF
. We need to shatter every clause having individuals coming

from ∆m to make the theory exchangeable. To do so, the clause ∀m ∈ ∆m : R(Xi,m)∨S(Xi,m) in
T4j must be shattered to ∀m ∈ ∆mT

: R(Xi,m)∨S(Xi,m) and ∀m ∈ ∆mF
: R(Xi,m)∨S(Xi,m)

(and similarly for the other formulae). The shattered theory T5j after unit propagation will have
clauses ∀m ∈ ∆mF

: R(Xi,m) and ∀m ∈ ∆mF
: T(Xi).

Decomposition, Caching, and Grounding In T5j , the two clauses have different PRVs, i.e., they
are disconnected. In such cases, we apply decomposition, i.e., find the WFOMC of each connected
component separately and return the product. The WFOMC of the theory can be found by continuing
to apply the above rules. In all the above steps, after finding the WFOMC of each (sub-)theory, we
store the results in a cache so we can reuse them if the same WFOMC is required again. By following
these steps, one can find the WFOMC of many theories in polynomial time. However, if we reach a
point where none of the above rules are applicable, we ground one of the populations which makes
the process exponential in the number of individuals.

2.3 Domain-Liftability

The following notions allow us to study the power of a set of lifted inference rules.

Definition 1. A theory is domain-liftable [31] if calculating its WFOMC is polynomial in
|∆x1

|, |∆x2
|, . . . , |∆xk

| where x1, x2, . . . , xk represent the LVs in the theory. A class C of the-
ories is domain-liftable if ∀T ∈ C, T is domain-liftable.

So far, two main classes of domain-liftable theories have been recognized: FO
2 [30, 31] and

recursively unary [15, 22].

Definition 2. A theory is in FO
2 if all its clauses have up to two LVs.

Definition 3. A theory T is recursively unary (RU) if for every theory T ′ resulting from applying
rules in R except for lifted case analysis to T , until no more rules apply, there exists some unary PRV
in T ′ and a generic case of lifted case-analysis on this unary PRV is itself RU.

Note that the time needed to check whether a theory is in FO
2 or RU is independent of the domain

sizes in the theory. For FO2, the membership check can be done in time linear in the size of the

theory, whereas for RU, only a worst-case exponential procedure is known. Thus, FO2 currently

offers a faster membership check than RU, but as we show later, RU subsumes FO2. This gives rise to
a trade-off between fast membership checking and modeling power for, e.g., lifted learning purposes.

3 The Domain Recursion Rule

Van den Broeck [31] considered another rule called domain recursion in the set of rules for calculating
the WFOMC of a theory. The intuition behind domain recursion is that it modifies a domain ∆x by
making one element explicit: ∆x = ∆x′ ∪ {A} with A 6∈ ∆x′ . Next, clauses are rewritten in terms
of ∆x′ and A while removing ∆x from the theory entirely. Then, by applying standard rules in R
on this modified theory, the problem is reduced to a WFOMC problem on a theory identical to the
original one, except that ∆x is replaced by the smaller domain ∆x′ . This lets us compute WFOMC
using dynamic programming. We refer to R extended with the domain recursion rule as RD.

Example 2. Suppose we have a theory whose only clause is ∀x, y ∈ ∆p : ¬Friend(x, y) ∨
Friend(y, x), stating if x is friends with y, y is also friends with x. One way to calculate the
WFOMC of this theory is by grounding only one individual in ∆p and then using R. Let A be an
individual in ∆p and let ∆p′ = ∆p − {A}. We can (using domain recursion) rewrite the theory
as: ∀x ∈ ∆p′ : ¬Friend(x,A) ∨ Friend(A, x), ∀y ∈ ∆p′ : ¬Friend(A, y) ∨ Friend(y,A), and
∀x, y ∈ ∆p′ : ¬Friend(x, y)∨Friend(y, x). Lifted case-analysis on Friend(p′, A) and Friend(A, p′),
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shattering and unit propagation give ∀x, y ∈ ∆p′ : ¬Friend(x, y) ∨ Friend(y, x). This theory is
equivalent to our initial theory, with the only difference being that the population of people has
decreased by one. By keeping a cache of the values of each sub-theory, one can verify that this
process finds the WFOMC of the above theory in polynomial time.

Note that the theory in Example 2 is in FO
2 and as proved in [27], its WFOMC can be computed

without using the domain recursion rule4. This proof has caused the domain recursion rule to be
forgotten in the lifted inference community. In the next section, we revive this rule and identify a
class of theories that are only domain-liftable when using the domain recursion rule.

4 Domain Recursion Makes More Theories Domain-Liftable

In this section, we show three example theories that are not domain-liftable when using R, yet
become domain-liftable with domain recursion.

S4 Clause: Beame et al. [3] identified a clause (S4) with four binary PRVs having the same predicate
and proved that, even though the rules R in Section 2.2 cannot calculate the WFOMC of that clause,
there is a polynomial-time algorithm for finding its WFOMC. They concluded that this set of rules R
for finding the WFOMC of theories does not suffice, asking for new rules to compute their theory.
We prove that adding domain recursion to the set achieves this goal.

Proposition 1. The theory consisting of the S4 clause ∀x1, x2 ∈ ∆x, y1, y2 ∈ ∆y : S(x1, y1) ∨
¬S(x2, y1) ∨ S(x2, y2) ∨ ¬S(x1, y2) is domain-liftable using RD.

Symmetric Transitivity: Domain-liftable calculation of WFOMC for the transitivity formula is
a long-standing open problem. Symmetric transitivity is easier as its model count corresponds to
the Bell number, but solving it using general-purpose rules has been an open problem. Consider
clauses ∀x, y, z ∈ ∆p : ¬F(x, y)∨¬F(y, z)∨ F(x, z) and ∀x, y ∈ ∆p : ¬F(x, y)∨ F(y, x) defining
a symmetric transitivity relation. For example, ∆p may indicate the population of people and F may
indicate friendship.

Proposition 2. The symmetric-transitivity theory is domain-liftable using RD.

Birthday Paradox: The birthday paradox problem [2] is to compute the probability that in a set
of n randomly chosen people, two of them have the same birthday. A first-order encoding of this
problem requires computing the WFOMC for a theory with clauses ∀p ∈ ∆p, ∃d ∈ ∆d : Born(p, d),
∀p ∈ ∆p, d1, d2 ∈ ∆d : ¬Born(p, d1) ∨ ¬Born(p, d2), and ∀p1, p2 ∈ ∆p, d ∈ ∆d : ¬Born(p1, d) ∨
¬Born(p2, d), where ∆p and ∆d represent the population of people and days. The first two clauses
impose the condition that every person is born in exactly one day, and the third clause states the “no
two people are born on the same day” query.

Proposition 3. The birthday-paradox theory is domain-liftable using RD.

5 New Domain-Liftable Classes: S2
FO

2 and S
2
RU

In this section, we identify new domain-liftable classes, enabled by the domain recursion rule.

Definition 4. Let α(S) be a clausal theory that uses a single binary predicate S, such that each clause
has exactly two different literals of S. Let α = α(S1)∧α(S2)∧· · ·∧α(Sn) where the Si are different
binary predicates. Let β be a theory where all clauses contain at most one Si literal, and the clauses

that contain an Si literal contain no other literals with more than one LV. Then, S 2FO
2 and S 2RU

are the classes of theories of the form α ∧ β where β ∈ FO
2 and β ∈ RU respectively.

Theorem 1. S 2FO
2 and S 2RU are domain-liftable using RD.

Proof. The case where α = ∅ is trivial. Let α = α(S1) ∧ α(S2) ∧ · · · ∧ α(Sn). Once we remove
all PRVs having none or one LV by (lifted) case-analysis, the remaining clauses can be divided into
n+ 1 components: the i-th component in the first n components only contains Si literals, and the

4This can be done by realizing that the theory is disconnected in the grounding for every pair (A,B) of
individuals and applying the lifted case-analysis.
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(n+ 1)-th component contains no Si literals. These components are disconnected from each other,
so we can consider each of them separately. The (n + 1)-th component comes from clauses in β
and is domain-liftable by definition. The following two Lemmas prove that the clauses in the other
components are also domain-liftable. The proofs of both lemmas rely on domain recursion.

Lemma 1. A clausal theory α(S) with only one predicate S where all clauses have exactly two
different literals of S is domain-liftable.

Lemma 2. Suppose {∆p1 ,∆p2 , . . . ,∆pn} are mutually exclusive subsets of ∆x and
{∆q1 ,∆q2 , . . . ,∆qm} are mutually exclusive subsets of ∆y. We can add any unit clause of the
form ∀pi ∈ ∆pi , qj ∈ ∆qj : S(pi, qj) or ∀pi ∈ ∆pi , qj ∈ ∆qj : ¬S(pi, qj) to the theory α(S) in
Lemma 1 and the theory is still domain-liftable.

Therefore, theories in S 2FO
2 and S 2RU are domain-liftable.

It can be easily verified that membership checking for S 2FO
2 and S 2RU is not harder than for FO2

and RU , respectively.

Example 3. Suppose we have a set ∆j of jobs and a set ∆v of volunteers. Every volunteer must
be assigned to at most one job, and every job requires no more than one person. If the job involves
working with gas, the assigned volunteer must be a non-smoker. And we know that smokers are most
probably friends with each other. Then we will have the following first-order theory:

∀v1, v2 ∈ ∆v, j ∈ ∆j : ¬Assigned(v1, j) ∨ ¬Assigned(v2, j)
∀v ∈ ∆v, j1, j2 ∈ ∆j : ¬Assigned(v, j1) ∨ ¬Assigned(v, j2)

∀v ∈ ∆v, j ∈ ∆j : InvolvesGas(j) ∧ Assigned(v, j) ⇒ ¬Smokes(v)
∀v1, v2 ∈ ∆v : Aux(v1, v2) ⇔ (Smokes(v1) ∧ Friends(v1, v2) ⇒ Smokes(v2))

Predicate Aux is added to capture the probability assigned to the last rule (as in MLNs). This theory

is not in FO
2, not in RU , and is not domain-liftable using R. However, the first two clauses are

of the form described in Lemma 1, the third and fourth are in FO
2 (and also in RU ), and the third

clause, which contains Assigned(v, j), has no other PRVs with more than one LV. Therefore, this

theory is in S 2FO
2 (and also in S 2RU ) and domain-liftable based on Theorem 1.

Example 4. Consider the birthday paradox introduced in Section 4. After Skolemization [30] for
removing the existential quantifier, the theory contains ∀p ∈ ∆p, ∀d ∈ ∆d : S(p) ∨ ¬Born(p, d),
∀p ∈ ∆p, d1, d2 ∈ ∆d : ¬Born(p, d1) ∨ ¬Born(p, d2), and ∀p1, p2 ∈ ∆p, d ∈ ∆d : ¬Born(p1, d) ∨
¬Born(p2, d), where S is the Skolem predicate. This theory is not in FO

2, not in RU , and is not
domain-liftable using R. However, the last two clauses belong to clauses in Lemma 1, the first one is

in FO
2 (and also in RU ) and has no PRVs with more than one LV other than Born. Therefore, this

theory is in S 2FO
2 (and also in S 2RU ) and domain-liftable based on Theorem 1.

Proposition 4. FO
2 ⊂ RU , FO2 ⊂ S 2FO

2, FO2 ⊂ S 2RU , RU ⊂ S 2RU , S 2FO
2 ⊂ S 2RU .

Proof. Let T ∈ FO
2 and T ′ be any of the theories resulting from exhaustively applying rules in

R except lifted case analysis on T . If T initially contains a unary PRV with predicate S, either it
is still unary in T ′ or lifted decomposition has replaced the LV with a constant. In the first case,
we can follow a generic branch of lifted case-analysis on S, and in the second case, either T ′ is
empty or all binary PRVs in T have become unary in T ′ due to applying the lifted decomposition
and we can follow a generic branch of lifted case-analysis for any of these PRVs. The generic

branch in both cases is in FO
2 and the same procedure can be followed until all theories become

empty. If T initially contains only binary PRVs, lifted decomposition applies as the grounding of
T is disconnected for each pair of individuals, and after lifted decomposition all PRVs have no
LVs. Applying case analysis on all PRVs gives empty theories. Therefore, T ∈ RU . The theory

∀x, y, z ∈ ∆p : F(x, y) ∨ F(y, z) ∨ F(x, y, z) is an example of a RU theory that is not in FO
2,

showing RU 6⊂ FO
2. FO

2 and RU are special cases of S 2FO
2 and S 2RU respectively, where

α = ∅, showing FO
2 ⊂ S 2FO

2 and RU ⊂ S 2RU . However, Example 3 is both in S 2FO
2

and S 2RU but is not in FO
2 and not in RU, showing S 2FO

2 6⊂ FO
2 and S 2RU 6⊂ RU . Since

FO
2 ⊂ RU and the class of added α(S) clauses are the same, S 2FO

2 ⊂ S 2RU .
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Figure 1: Run-times for calculating the WFOMC of (a) the theory in Example 3, (b) the S4 clause, and
(c) symmetric transitivity, using the WFOMC-v3.0 software (which only uses R) and comparing it to
the case where we use the domain recursion rule, referred to as Domain Recursion in the diagrams.

6 Experiments and Results

In order to see the effect of using domain recursion in practice, we find the WFOMC of three theories
with and without using the domain recursion rule: (a) the theory in Example 3, (b) the S4 clause, and
(c) the symmetric-transitivity theory. We implemented the domain recursion rule in C++ and compiled
the codes using the g++ compiler. We compare our results with the WFOMC-v3.0 software5. Since
this software requires domain-liftable input theories, for the first theory we grounded the jobs, for
the second we grounded ∆x, and for the third we grounded ∆p. For each of these three theories,
assuming |∆x| = n for all LVs x in the theory, we varied n and plotted the run-time as a function
of n. All experiments were done on a 2.8GH core with 4GB RAM under MacOSX. The run-times
are reported in seconds. We allowed a maximum of 1000 seconds for each run.

Obtained results can be viewed in Fig. 1. These results are consistent with our theory and indicate
the clear advantage of using the domain recursion rule in practice. In Fig. 1(a), the slope of the
diagram for domain recursion is approximately 4 which indicates the degree of the polynomial for
the time complexity. Similar analysis can be done for the results on the S4 clause and the symmetric-
transitivity clauses represented in Fig. 1(b), (c). The slope of the diagram in these two diagrams is
around 5 and 2 respectively, indicating that the time complexity for finding their WFOMC are n5 and
n2 respectively, where n is the size of the population.

7 Discussion

We can categorize theories with respect to the domain recursion rule as: (1) theories proved to be

domain-liftable using domain recursion (e.g., S4, symmetric transitivity, and theories in S 2FO
2),

(2) theories that are domain-liftable using domain recursion, but we have not identified them yet
as such, and (3) theories that are not domain-liftable even when using domain recursion. We leave
discovering and characterizing the theories in category 2 and 3 as future work. But here we show that
even though the theories in category 3 are not domain-liftable using domain recursion, this rule may
still result in exponential speedups for these theories.

Consider the (non-symmetric) transitivity rule: ∀x, y, z ∈ ∆p : ¬Friend(x, y) ∨ ¬Friend(y, z) ∨
Friend(x, z). Since none of the rules in R apply to the above theory, the existing lifted inference
engines ground ∆p and calculate the weighted model count (WMC) of the ground theory. By
grounding ∆p, these engines lose great amounts of symmetry. Suppose ∆p = {A,B,C} and assume
we select Friend(A,B) and Friend(A,C) as the first two random variables for case-analysis. Due to
the exchangeability of the individuals, the case where Friend(A,B) and Friend(A,C) are assigned to
True and False respectively has the same WMC as the case where they are assigned to False and True.
However, the current engines fail to exploit this symmetry as they consider grounded individuals
non-exchangeable.

By applying domain recursion to the above theory instead of fully grounding it, one can exploit the
symmetries of the theory. Suppose ∆p′ = ∆p − {P}. Then we can rewrite the theory as follows:

∀y, z ∈ ∆p′ : ¬Friend(P, y) ∨ ¬Friend(y, z) ∨ Friend(P, z)

5Available at: https://dtai.cs.kuleuven.be/software/wfomc
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∀x, z ∈ ∆p′ : ¬Friend(x, P ) ∨ ¬Friend(P, z) ∨ Friend(x, z)
∀x, y ∈ ∆p′ : ¬Friend(x, y) ∨ ¬Friend(y, P ) ∨ Friend(x, P )
∀x, y, z ∈ ∆p′ : ¬Friend(x, y) ∨ ¬Friend(y, z) ∨ Friend(x, z)

Now if we apply lifted case analysis on Friend(P, y) (or equivalently on Friend(P, z)), we do not
get back the same theory with reduced population and calculating the WFOMC is still exponential.
However, we only generate one branch for the case where Friend(P, y) is True only once. This
branch covers both the symmetric cases mentioned above. Exploiting these symmetries reduces the
time-complexity exponentially.

This suggests that for any given theory, when the rules in R are not applicable one may want to try
the domain recursion rule before giving up and resorting to grounding a population.

8 Conclusion

We identified new classes of domain-liftable theories called S 2FO
2 and S 2RU by reviving the

domain recursion rule. We also demonstrated how this rule is useful for theories outside these
classes. Our work opens up a future research direction for identifying and characterizing larger
classes of theories that are domain-liftable using domain recursion. It also helps us get closer to
finding a dichotomy between the theories that are domain-liftable and those that are not, similar to
the dichotomy result of Dalvi and Suciu [6] for query answering in probabilistic databases.

It has been shown [15, 16] that compiling the WFOMC rules into low-level programs (e.g., C++
programs) offers a (approx.) 175x speedup compared to other approaches. While compiling the
previously known rules to low-level programs was straightforward, compiling the domain recursion
rule to low-level programs without using recursion might be tricky as it relies on the population size
of the logical variables. A future research direction would be finding if the domain recursion rule can
be efficiently compiled into low-level programs, and measuring the amount of speedup it offers.
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