


auxiliary domain input

task type gap handicap

Autoencoder [20] reconstruction no no

Denoising autoencoder [44] reconstruction suffers no

Context Encoder [35] prediction no suffers

Cross-Channel Encoder [49, 28] prediction no suffers

Split-Brain Autoencoder prediction no no

Table 1: Qualitative Comparison We summarize various

qualitative aspects inherent in several representation learn-

ing techniques. Auxiliary task type: pretext task predi-

cated on reconstruction or prediction. Domain gap: gap

between the input data during unsupervised pre-training and

testing time. Input handicap: input data is systematically

dropped out during test time.

age synthesis tasks are known to be notoriously difficult to

evaluate [36] and the loss function used in [35] may not

properly capture inpainting quality. Second, the model is

trained on images with missing chunks, but applied, at test

time, to full images. This causes a “domain gap” between

training and deployment. Third, it could simply be that the

inpainting task in [35] could be adequately solved without

high-level reasoning, instead mostly just copying low and

mid-level structure from the surround.

On the other hand, colorization turns out to be a surpris-

ingly effective pretext task for inducing strong feature rep-

resentations [49, 28]. Though colorization, like inpainting,

is a synthesis task, the spatial correspondence between the

input and output pairs may enable basic off-the-shelf loss

functions to be effective. In addition, the systematic, rather

than stochastic nature of the input corruption removes the

pre-training and testing domain gap. Finally, while inpaint-

ing may admit reasoning mainly about textural structure,

predicting accurate color, e.g., knowing to paint a school-

bus yellow, may more strictly require object-level reason-

ing and therefore induce stronger semantic representations.

Colorization is an example of what we refer to as a cross-

channel encoding objective, a task which directly predicts

one subset of data channels from another.

In this work, we further explore the space of cross-

channel encoders by systematically evaluating various

channel translation problems and training objectives.

Cross-channel encoders, however, face an inherent hand-

icap: different channels of the input data are not treated

equally, as part of the data is used for feature extraction and

another as the prediction target. In the case of colorization,

the network can only extract features from the grayscale im-

age and is blind to color, leaving the color information un-

used. A qualitative comparison of the different methods,

along with their inherent strengths and weaknesses, is sum-

marized in Table 1.

Might there be a way to take advantage of the underly-

ing principle of cross-channel encoders, while being able to

extract features from the entire input signal? We propose

an architectural modification to the autoencoder paradigm:

adding a single split in the network, resulting in two dis-

joint, concatenated, sub-networks. Each sub-network is

trained as a cross-channel encoder, predicting one subset

of channels of the input from the other. A variety of aux-

iliary cross-channel prediction tasks may be used, such as

colorization and depth prediction. For example, on RGB

images, one sub-network can solve the problem of coloriza-

tion (predicting a and b channels from the L channel in Lab

colorspace), and the other can perform the opposite (syn-

thesizing L from a, b channels). In the RGB-D domain,

one sub-network may predict depth from images, while the

other predicts images from depth. The architectural change

induces the same forced abstraction as observed in cross-

channel encoders, but is able to extract features from the

full input tensor, leaving nothing on the table.

Our contributions are as follows:

• We propose the split-brain autoencoder, which is com-

posed of concatenated cross-channel encoders, trained

using raw data as its own supervisory signal.

• We demonstrate state-of-the-art performance on sev-

eral semantic representation learning benchmarks in

the RGB and RGB-D domains.

• To gain a better understanding, we perform exten-

sive ablation studies by (i) investigating cross-channel

prediction problems and loss functions and (ii) re-

searching alternative aggregation methods for combin-

ing cross-channel encoders.

2. Related Work

Many unsupervised learning methods have focused on

modeling raw data using a reconstruction objective. Au-

toencoders [20] train a network to reconstruct an input

image, using a representation bottleneck to force abstrac-

tion. Denoising autoencoders [44] train a network to undo

a random iid corruption. Techniques for modeling the

probability distribution of images in deep frameworks have

also been explored. For example, variational autoencoders

(VAEs) [24] employ a variational Bayesian approach to

modeling the data distribution. Other probabilistic models

include restricted Boltzmann machines (RBMs) [41], deep

Boltzmann machines (DBMs) [38], generative adversarial

networks (GANs) [16], autoregressive models (Pixel-RNN

[43] and Pixel-CNN [32]), bidirectional GANs (BiGANs)

[9] and Adversarially Learned Inference (ALI) [10], and

real NVP [7]. Many of these methods [20, 44, 9, 10, 38]

have been evaluated for representation learning.

Another form of unsupervised learning, sometimes re-

ferred to as “self-supervised” learning [5], has recently

grown in popularity. Rather than predicting labels an-

notated by humans, these methods predict pseudo-labels

computed from the raw data itself. For example, image

colorization [49, 27] has been shown to be an effective

2



pretext task. Other methods generate pseudo-labels from

egomotion [1, 23], video [46, 30], inpainting [35], co-

occurence [22], context [8, 31], and sound [33, 6, 5]. Con-

currently, Pathak et al. [34] use motion masks extracted

from video data. Also in these proceedings, Larsson et

al. [28] provide an in-depth analysis of colorization for self-

supervision. These methods generally focus on a single su-

pervisory signal and involve some engineering effort. In

this work, we show that simply predicting raw data chan-

nels with standard loss functions is surprisingly effective,

often outperforming previously proposed methods.

The idea of learning representations from multisen-

sory signals also shows up in structure learning [2], co-

training [3], and multi-view learning [47]. Our method is

especially related to [5, 6, 42], which use bidirectional data

prediction to learn representations from two sensory modal-

ities.

A large body of additional work in computer vision and

graphics focuses on image channel prediction as an end in

itself, such as colorization [49, 27, 21], depth prediction

[11], and surface normal prediction [11, 45]. In contrast,

rather than focusing on the graphics problem, we explore

its utility for representation learning.

3. Methods

In Section 3.1, we define the paradigm of cross-channel

encoding. In Section 3.2, we propose the split-brain au-

toencoder and explore alternatives methods for aggregating

multiple cross-channel encoders into a single network.

3.1. Cross­Channel Encoders

We would like to learn a deep representation on input

data tensor X ∈ R
H×W×C , with C channels. We split

the data into X1 ∈ R
H×W×C1 and X2 ∈ R

H×W×C2 ,

where C1, C2 ⊆ C, and then train a deep representation

to solve the prediction problem X̂2 = F(X1). Function

F is learned with a CNN, which produces a layered repre-

sentation of input X1, and we refer to each layer l as F l.

By performing this pretext task of predicting X2 from X1,

we hope to achieve a representation F(X1) which contains

high-level abstractions or semantics.

This prediction task can be trained with various loss

functions, and we study whether the loss function affects

the quality of the learned representation. To begin, we ex-

plore the use of `2 regression, as shown in Equation 1.

`2(F(X1),X2) =
1

2

∑

h,w

‖X2h,w −F(X1)h,w‖
2

2
(1)

We also study the use of a classification loss. Here, the

target output X2 ∈ R
H×W×C2 is encoded with function

H into a distribution Y2 ∈ ∆
H×W×Q, where Q is the

number of elements in the quantized output space. Net-

work F is then trained to predict a distribution, Ŷ2 =

F(X1) ∈ ∆
H×W×Q. A standard cross-entropy loss be-

tween the predicted and ground truth distributions is used,

as shown Equation 2.

`cl(F(X1),X2) = −
∑

h,w

∑

q

H(X2)h,w,q log(F(X1)h,w,q)

(2)

In [49], the authors discover that classification loss is

more effective for the graphics task of automatic coloriza-

tion than regression. We hypothesize that for some tasks,

especially those with inherent uncertainty in the prediction,

the classification loss may lead to better representations as

well, as the network will be incentivized to match the whole

distribution, and not only predict the first moment.

Note that with input and output sets C1, C2 = C, and

an `2 regression loss, the objective becomes identical to the

autoencoder objective.

3.2. Split­Brain Autoencoders as Aggregated Cross­
Channel Encoders

We can train multiple cross-channel encoders, F1,

F2, on opposite prediction problems, with loss functions

L1, L2, respectively, described in Equation 3.

F∗
1
= argmin

F1

L1(F1(X1),X2)

F∗
2
= argmin

F2

L2(F2(X2),X1)
(3)

By concatenating the representations layer-wise, F l =
{F l

1
,F l

2
}, we achieve a representation F which is pre-

trained on full input tensor X. Example split-brain au-

toencoders in the image and RGB-D domains are shown in

Figures 2(a) and (b), respectively. If F is a CNN of a de-

sired fixed size, e.g., AlexNet [26], we can design the sub-

networks F1,F2 by splitting each layer of the network F in

half, along the channel dimension. Concatenated represen-

tation F will then have the appropriate dimensionality, and

can be simply implemented by setting the group param-

eter to 2 in most deep learning libraries. As each channel

in the representation is only connected to half of the chan-

nels in the preceding layer, the number of parameters in the

network is actually halved, relative to a full network.

Note that the input and the output to the network F is the

full input X, the same as an autoencoder. However, due to

the split nature of the architecture, the network F is trained

to predict X = {X1,X2}, rather than simply reconstruct

it from the input. In essence, an architectural change in the

autoencoder framework induces the same forced abstraction

achieved by cross-channel encoding.

Alternative Aggregation Technique We found the

split-brain autoencoder, which aggregates cross-channel en-

coders through concatenation, to be more effective than sev-

eral alternative strategies. As a baseline, we also explore

an alternative: the same representation F can be trained to

perform both mappings simultaneously. The loss function

is described in Equation 4, with a slight abuse of notation:
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Task Generalization on ImageNet Classification [37]

Method conv1 conv2 conv3 conv4 conv5

ImageNet-labels [26] 19.3 36.3 44.2 48.3 50.5

Gaussian 11.6 17.1 16.9 16.3 14.1

Krähenbühl et al. [25] 17.5 23.0 24.5 23.2 20.6
1Noroozi & Favaro [31] 19.2 30.1 34.7 33.9 28.3

Doersch et al. [8] 16.2 23.3 30.2 31.7 29.6

Donahue et al. [9] 17.7 24.5 31.0 29.9 28.0

Pathak et al. [35] 14.1 20.7 21.0 19.8 15.5

Zhang et al. [49] 13.1 24.8 31.0 32.6 31.8

Lab→Lab 12.9 20.1 18.5 15.1 11.5

Lab(drop50)→Lab 12.1 20.4 19.7 16.1 12.3

L→ab(cl) 12.5 25.4 32.4 33.1 32.0

L→ab(reg) 12.3 23.5 29.6 31.1 30.1

ab→L(cl) 11.6 19.2 22.6 21.7 19.2

ab→L(reg) 11.5 19.4 23.5 23.9 21.7

(L,ab)→(ab,L) 15.1 22.6 24.4 23.2 21.1

(L,ab,Lab)→(ab,L,Lab) 15.4 22.9 24.0 22.0 18.9

Ensembled L→ab 11.7 23.7 30.9 32.2 31.3

Split-Brain Auto (reg,reg) 17.4 27.9 33.6 34.2 32.3

Split-Brain Auto (cl,cl) 17.7 29.3 35.4 35.2 32.8

Table 2: Task Generalization on ImageNet Classification

To test unsupervised feature representations, we train linear

logistic regression classifiers on top of each layer to perform

1000-way ImageNet classification, as proposed in [49]. All

weights are frozen and feature maps spatially resized to be

∼9000 dimensions. All methods use AlexNet variants [26],

and were pre-trained on ImageNet without labels, except

for ImageNet-labels. Note that the proposed split-brain au-

toencoder achieves the best performance on all layers across

unsupervised methods.

Single cross-channel encoders are ablations of our main

method. We systematically study combinations of loss

functions and cross-channel prediction problems.

• L→ab(reg): Automatic colorization using an `2 loss.

• L→ab(cl): Automatic colorization using a classifica-

tion loss. We follow the quantization procedure pro-

posed in [49]: the output ab space is binned into grid

size 10×10, with a classification loss over the 313 bins

that are within the ab gamut.

• ab→L(reg): Grayscale prediction using an `2 loss.

• ab→L(cl): Grayscale prediction using a classification

loss. The L channel, which has values between 0 and

100, is quantized into 50 bins of size 2 and encoded.

• Lab→Lab: Autoencoder objective, reconstructing

Lab from itself using an `2 regression loss, with the

same architecture as the cross-channel encoders.

• Lab(drop50)→Lab: Same as above, with 50% of the

input randomly dropped out during pre-training. This

is similar to denoising autoencoders [44].

We compare to the following methods, which all use

variants of Alexnet [26]. For additional details, refer to Ta-

ble 3 in [49]. Note that one of these modifications resulted

in a large deviation in feature map size1.

1The method from [31] uses stride 2 instead of 4 in the conv1 layer,

Dataset & Task Generalization on Places Classification [50]

Method conv1 conv2 conv3 conv4 conv5

Places-labels [50] 22.1 35.1 40.2 43.3 44.6

ImageNet-labels [26] 22.7 34.8 38.4 39.4 38.7

Gaussian 15.7 20.3 19.8 19.1 17.5

Krähenbühl et al. [25] 21.4 26.2 27.1 26.1 24.0
1Noroozi & Favaro [31] 23.0 32.1 35.5 34.8 31.3

Doersch et al. [8] 19.7 26.7 31.9 32.7 30.9

Wang & Gupta [46] 20.1 28.5 29.9 29.7 27.9

Owens et al. [33] 19.9 29.3 32.1 28.8 29.8

Donahue et al. [9] 22.0 28.7 31.8 31.3 29.7

Pathak et al. [35] 18.2 23.2 23.4 21.9 18.4

Zhang et al. [49] 16.0 25.7 29.6 30.3 29.7

L→ab(cl) 16.4 27.5 31.4 32.1 30.2

L→ab(reg) 16.2 26.5 30.0 30.5 29.4

ab→L(cl) 15.6 22.5 24.8 25.1 23.0

ab→L(reg) 15.9 22.8 25.6 26.2 24.9

Split-Brain Auto (cl,cl) 21.3 30.7 34.0 34.1 32.5

Table 3: Dataset & Task Generalization on Places Clas-

sification We train logistic regression classifiers on top of

frozen pre-trained representations for 205-way Places clas-

sification. Note that our split-brain autoencoder achieves

the best performance among unsupervised learning meth-

ods from conv2-5 layers.

• ImageNet-labels [26]: Trained on ImageNet labels for

the classification task in a fully supervised fashion.

• Gaussian: Random Gaussian initialization of weights.

• Krähenbühl et al. [25]: A stacked k-means initializa-

tion method.

• Doersch et al. [8], Noroozi & Favaro [31], Pathak et

al. [35], Donahue et al. [9], and Zhang et al. [49] all

pre-train on the 1.3M ImageNet dataset [37].

• Wang & Gupta [46] and Owens et al. [33] pre-train

on other large-scale data.

4.1.1 Transfer Learning Tests

How well does the pre-text task of cross-channel prediction

generalize to unseen tasks and data? We run various estab-

lished large-scale representation learning benchmarks.

ImageNet [26] As proposed in [49], we test the task

generalization of the representation by freezing the weights

and training multinomial logistic regression classifiers on

top of each layer to perform 1000-way ImageNet classifi-

cation. Note that each classifier is a single learned linear

layer, followed by a softmax. To reduce the effect of differ-

ences in feature map sizes, we spatially resize feature maps

through bilinear interpolation, so that the flattened feature

maps have approximately equal dimensionality (9600 for

resulting in 4× denser feature maps throughout all convolutional layers.

While it is unclear how this change affects representational quality, exper-

iments from Larsson et al. [28] indicate that changes in architecture can

result in large changes in transfer performance, even given the same train-

ing task. The network uses the same number of parameters, but 5.6× the

memory and 7.4× the run-time.
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Task and Data Generalization on PASCAL VOC [12]

Classification [25] Detection [15] Seg. [29]

(%mAP) (%mAP) (%mIU)

frozen layers conv5 none none none

fine-tuned layers Ref fc6-8 all Ref all Ref all

ImageNet labels [26] [49] 78.9 79.9 [25] 56.8 [29] 48.0

Gaussian [35] – 53.3 [35] 43.4 [35] 19.8

Autoencoder [9] 16.0 53.8 [35] 41.9 [35] 25.2

Krähenbühl et al. [25] [9] 39.2 56.6 [25] 45.6 [9] 32.6

Jayaraman & Grauman [23] – – – [23] 41.7 – –

Agrawal et al. [1] [25] – 52.9 [25] 41.8 – –

Agrawal et al. [1]† [9] 31.0 54.2 [25] 43.9 – –

Wang & Gupta [46] [25] – 62.8 [25] 47.4 – –

Wang & Gupta [46]† [25] – 63.1 [25] 47.2 – –

Doersch et al. [8] [25] – 55.3 [25] 46.6 – –

Doersch et al. [8]† [9] 55.1 65.3 [25] 51.1 – –

Pathak et al. [35] [35] – 56.5 [35] 44.5 [35] 29.7

Donahue et al. [9]† [9] 52.3 60.1 [9] 46.9 [9] 35.2

Misra et al. [30] – – – [30] 42.4 – –

Owens et al. [33] . 54.6 54.4 [33] 44.0 – –

Owens et al. [33]† . 52.3 61.3 – – – –

Zhang et al. [49]† [49] 61.5 65.9 [49] 46.9 [49] 35.6

Larsson et al. [28]� [28] – 65.9 – – [28] 38.4

Pathak et al. [34]� [34] – 61.0 [34] 52.2 – –

Split-Brain Auto (cl,cl)† . 63.0 67.1 . 46.7 . 36.0

Table 4: Task and Dataset Generalization on PASCAL

VOC Classification and detection on PASCAL VOC 2007

[13] and segmentation on PASCAL VOC 2012 [14], using

mean average precision (mAP) and mean intersection over

union (mIU) metrics for each task, with publicly available

testing frameworks from [25], [15], [29]. Column Ref doc-

uments the source for a value obtained from a previous pa-

per. Character . indicates that value originates from this

paper. †indicates that network weights have been rescaled

with [25] before fine-tuning, as is common practice. Char-

acter � indicates concurrent work in these proceedings.

wise labeling of the object class, either one of the 20 objects

of interest or background. Here, the representation is fine-

tuned through multiple layers of the network, rather than

frozen. Prior to fine-tuning, we follow common practice

and use the rescaling method from [25], which rescales the

weights so that the layers learn at the same “rate”, using the

ratio of expected gradient magnitude over feature activation

magnitude as a heuristic.

4.1.2 Split-Brain Autoencoder Performance

Our primary result is that the proposed method, Split-Brain

Auto (cl,cl), achieves state-of-the-art performance on al-

most all established self-supervision benchmarks, as seen

in the last row on Tables 2, 3, 4, over previously pro-

posed self-supervision methods, as well as our ablation

baselines. Figures 3(a) and (b) shows our split brain autoen-

coder method compared to previous self-supervised meth-

ods [8, 46, 35, 49, 9, 33] on the ImageNet and Places classi-

fication tests, respectively. We especially note the straight-

forward nature of our proposed method: the network simply

predicts raw data channels from other raw data channels, us-

ing a classification loss with a basic 1-hot encoding scheme.

As seen in Figure 4(a) and Table 2, the autoencoder

objective by itself, Lab→Lab, does not lead to a strong

representation. Performance is near Gaussian initialization

through the initial layers, and actually falls below in the

conv5 layer. Dropping 50% of the data from the input

randomly during training, Lab(drop50)→Lab, in the style

of denoising autoencoders, adds a small performance boost

of approximately 1%. A large performance boost is ob-

served by adding a split in the architecture, Split-Brain

Auto (reg,reg), even with the same regression objective.

This achieves 5% to 20% higher performance throughout

the network, state-of-the-art compared to previous unsu-

pervised methods. A further boost of approximately 1-2%

throughout the network observed using a classification loss,

Split-Brain Auto (cl,cl), instead of regression.

4.1.3 Cross-Channel Encoding Objectives

Figure 4(b) compares the performance of the different

cross-channel objectives we tested on the ImageNet classifi-

cation benchmark. As shown in [49] and further confirmed

here, colorization, L→ab(cl), leads to a strong represen-

tation on classification transfer tasks, with higher perfor-

mance than other unsupervised representations pre-trained

on ImageNet, using inpainting [35], relative context [8], and

adversarial feature networks [9] from layers from conv2

to pool5. We found that the classification loss produced

stronger representations than regression for colorization,

consistent with the findings from concurrent work from

Larsson et al. [28].

Interestingly, the task of predicting grayscale from color

can also learn representations. Though colorization lends

itself closely to a graphics problem, the application of

grayscale prediction from color channels is less obvious. As

seen in Tables 2 and 3 and Figure 4(b), grayscale prediction

objectives ab→L(cl) and ab→L(reg) can learn represen-

tations above the Gaussian baseline. Though the learned

representation by itself is weaker than other self-supervised

methods, the representation is learned on a and b channels,

which makes it complementary to the colorization network.

For grayscale prediction, regression results in higher per-

formance than classification. Choosing the appropriate loss

function for a given channel prediction problem is an open

problem. However, note that the performance difference is

typically small, indicating that the cross-channel prediction

problem is often times an effective method, even without

careful engineering of the objective.

4.2. Split­Brain Autoencoders on RGB­D

We also test the split-brain autoencoder method on reg-

istered images and depth scans from NYU-D [39]. Because

RGB and depth images are registered spatially, RGB-D data

can be readily applied in our proposed framework. We split

the data by modality, predicting RGB from D and vice-

versa. Previous work in the video and audio domain [6]
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Method Data Label RGB D RGB-D

Gupta et al. [18] 1M ImNet [37] X 27.8 41.7 47.1

Gupta et al. [17] 1M ImNet [37] X 27.8 34.2 44.4

Gaussian None – 28.1 –

Krähenbühl et al. [25] 20 NYU-D [39] 12.5 32.2 34.5

Split-Brain Autoencoder 10k NYU-D [39] 18.9 33.2 38.1

Table 5: Split-Brain Autoencoder Results on RGB-D

images We perform unsupervised training on 10k RGB-D

keyframes from the NYU-D [39] dataset, extracted by [18].

We pre-train representations on RGB images using `2 loss

on depth images in HHA space. We pre-train HHA repre-

sentations on L and ab channels using `2 and classification

loss, respectively. We show performance gains above Gaus-

sian and Krähenbühl et al. [25] initialization baselines. The

methods proposed by Gupta et al. [17, 18] use 1.3M labeled

images for supervised pre-training. We use the test proce-

dure from [18]: Fast R-CNN [15] networks are first trained

individually in the RGB and D domains separately, and then

ensembled together by averaging (RGB-D).

suggest that separating modalities, rather than mixing them,

provides more effective splits. This choice also provides

easy comparison to the test procedure introduced by [17].

Dataset & Detection Testbed The NYUD dataset con-

tains 1449 RGB-D labeled images and over 400k unla-

beled RGB-D video frames. We use 10k of these unlabeled

frames to perform unsupervised pre-training, as extracted

from [18]. We evaluate the representation on the 1449 la-

beled images for the detection task, using the framework

proposed in [18]. The method first trains individual detec-

tors on the RGB and D domains, using the Fast R-CNN

framework [15] on an AlexNet architecture, and then late-

fuses them together through ensembling.

Unsupervised Pre-training We represent depth images

using the HHA encoding, introduced in [17]. To learn im-

age representation FHHA, we train an Alexnet architecture

to regress from RGB channels to HHA channels, using an

`2 regression loss.

To learn depth representations, we train an Alexnet on

HHA encodings, using `2 loss on L and classification loss

on ab color channels. We chose this combination, as these

objectives performed best for training individual cross-

channel encoders in the image domain. The network ex-

tracts features up to the conv5 layer, using an Alexnet

architecture, and then splits off into specific branches for

the L and ab channels. Each branch contains AlexNet-

type fc6-7 layers, but with 512 channels each, evaluated

fully convolutionally for pixel prediction. The loss on the

ab term was weighted 200× with respect to the L term,

so the gradient magnitude on the pool5 representation

from channel-specific branches were approximately equal

throughout training.

Across all methods, weights up to the conv5 layer are

copied over during fine-tuning time, and fc6-7 layers are

randomly initialized, following [17].

Results The results are shown in Table 5 for detec-

tors learned in RGB and D domains separately, as well

as the ensembled result. For a Gaussian initialization, the

RGB detector did not train using default settings, while the

depth detector achieved performance of 28.1%. Using the

stacked k-means initialization scheme from Krähenbühl et

al. [25], individual detectors on RGB and D perform at

12.5% and 32.2%, while achieving 34.5% after ensembling.

Pre-training with our method reaches 18.9% and 33.2% on

the individual domains, above the baselines. Our RGB-D

ensembled performance was 38.1%, well above the Gaus-

sian and Krähenbühl et al. [25] baselines. These results

suggest that split-brain autoencoding is effective not just on

Lab images, but also on RGB-D data.

5. Discussion

We present split-brain autoencoders, a method for un-

supervised pre-training on large-scale data. The split-brain

autoencoder contains two disjoint sub-networks, which are

trained as cross-channel encoders. Each sub-network is

trained to predict one subset of raw data from another. We

test the proposed method on Lab images, and achieve state-

of-the-art performance relative to previous self-supervised

methods. We also demonstrate promising performance on

RGB-D images. The proposed method solves some of the

weaknesses of previous self-supervised methods. Specifi-

cally, the method (i) does not require a representational bot-

tleneck for training, (ii) uses input dropout to help force

abstraction in the representation, and (iii) is pre-trained on

the full input data.

An interesting future direction of is exploring the con-

catenation of more than 2 cross-channel sub-networks.

Given a fixed architecture size, e.g. AlexNet, dividing the

network into N disjoint sub-networks results in each sub-

network becoming smaller, less expressive, and worse at

its original task. To enable fair comparisons to previous

large-scale representation learning methods, we focused on

learning weights for a fixed AlexNet architecture. It would

also be interesting to explore the regime of fixing the sub-

network size and allowing the full network to grow with

additional cross-channel encoders.
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Appendix

In Section A, we provide additional analysis. In Section B,

we provide implementation details.

A. Additional analysis

Cross-Channel Encoder Aggregation Analysis In Figure

4(c), we show variations on aggregated cross-channel en-

coders. To begin, we hypothesize that the performance

improvement of split-brain autoencoders Split-Brain Auto

(cl,cl) over single cross-channel encoders L→ab is due to

the merging of complementary signals, as each sub-network

in Split-Brain Auto has been trained on different portions

of the input space. However, the improvement could be

simply due to an ensembling effect. To test this, we train

a split-brain autoencoder, comprising of two L→ab net-

works, Ensemble L→ab. As seen in Figure 4(c) and Table

2, the ensembled colorization network achieves lower per-

formance than the split-brain autoencoder, suggesting that

concatenating signals learned on complementary informa-

tion is beneficial for representation learning.

We find that combining cross-channel encoders through

concatenation is effective. We also test alternative ag-

gregation techniques. As seen in Figure 4(c), training

a single network to perform multiple cross-channel tasks

(L,ab)→(ab,L) is not effective for representation learning

on full Lab images. Adding in the autoencoder objective

during training, (L,ab,Lab)→(ab,L,Lab), in fact lowers

performance in higher layers.

Our proposed methods outperform these alternatives,

which indicates that (i) our choice of aggregating comple-

mentary signals improves performance (ii) concatenation

is an appropriate choice of combining cross-channel en-

coders.

B. Implementation Details

Here, we describe the pre-training and feature evaluation

architectures. For pre-training, we use an AlexNet architec-

ture [26], trained fully convolutionally [29]. The network

is trained with 180×180 images, cropped from 256 × 256
resolution, and predicts values at a heavily downsampled

12×12 resolution. One can add upsampling-convolutional

layers or use a trous [4]/dilated [48] convolutions to predict

full resolution images at the expense of additional memory

and run-time, but we found predicting at a lower resolu-

tion to be sufficient for representation learning. See Table

6 for feature map and parameter sizes during pre-training

time. We remove LRN layers and add BatchNorm lay-

ers after every convolution layer. After pre-training, we re-

move BatchNorm layers by absorbing the parameters into

the preceding conv layers. The pre-training network pre-

dicts a downsampled version of the desired output, which

we found to be adequate for feature learning.

During feature evaluation time (such as the ImageNet

[26], Places [50], and PASCAL [12] tests), the parame-

ters are copied into an AlexNet classification architecture,

shown in Table 7. During the linear classification tests, we

downsample feature maps spatially, so that each layer has

approximately the same number of features.

Quantization procedure Zhang et al. [49] use a class-

Fully Convolutional AlexNet [26] Architecture

Layer X C K S D P

data 180 * – – – –

conv1 45 96 11 4 1 5

pool1 23 96 3 2 1 1

conv2 23 256 5 1 1 2

pool2 12 256 3 2 1 1

conv3 12 384 3 1 1 1

conv4 12 384 3 1 1 1

conv5 12 256 3 1 1 1

pool5 12 256 3 1 1 1

fc6 12 4096 6 1 2 6

fc7 12 4096 1 1 1 0

fc8 12 * 1 1 1 0

Table 6: Fully Convolutional AlexNet architecture used

for pre-training. X spatial resolution of layer, C number

of channels in layer; K conv or pool kernel size; S com-

putation stride; D kernel dilation [4, 48]; P padding; * first

and last layer channel sizes are dependent on the pre-text

task, last layer is removed during transfer evaluation.

AlexNet Classification [26] Architecture

Layer X Xd C Fd K S D P

data 227 – * – – – – –

conv1 55 10 96 9600 11 4 1 0

pool1 27 10 96 9600 3 2 1 0

conv2 27 6 256 9216 5 1 1 2

pool2 13 6 256 9216 3 2 1 0

conv3 13 5 384 9600 3 1 1 1

conv4 13 5 384 9600 3 1 1 1

conv5 13 6 256 9216 3 1 1 1

pool5 6 6 256 9216 3 2 1 0

fc6 1 – 4096 – 6 1 1 0

fc7 1 – 4096 – 1 1 1 0

Table 7: AlexNet architecture used for feature evalua-

tion. X spatial resolution of layer, Xd downsampled spatial

resolution for feature evaluation, C number of channels in

layer; Fd = X2

dC downsampled feature map size for fea-

ture evaluation (kept approximately constant throughout),

K conv or pool kernel size; S computation stride; D ker-

nel dilation [4, 48]; P padding; * first layer channel size

is dependent on the pre-text task e.g., 3 for the split-brain

autoencoder or 1 for the L → ab(cl) cross-channel encoder
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rebalancing term, to over-sample rare colors in the train-

ing set, and a soft-encoding scheme for H. These choices

were made from a graphics perspective, to produce more

vibrant colorizations. In our classification colorization net-

work, L→ab(cl), our objective is more straightforward, as

we do not use class-rebalancing. In addition, we use a

1-hot encoding representation of classes, rather than soft-

encoding. The simplification in the objective function

achieves higher performance on ImageNet and Places clas-

sification, as shown on Tables 2 and 3.

C. Change Log

v1 Initial Release.

v2 Paper accepted to CVPR 2017. Updated Table 4 with

results for Misra et al. [30] and Donahue et al. [9] with

112× 112 resolution model. Updated Table 2, rows L→ab

(cl) and Zhang et al. [49] with corrected values. Supple-

mental material added.

v3 CVPR 2017 Camera Ready. Added references to con-

current work [34, 28]. Various changes to text.
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