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Figure 3: (a) Our model contains two mapping functions G : X → Y and F : Y → X , and associated adversarial discriminators DY and DX . DY

encourages G to translate X into outputs indistinguishable from domain Y , and vice versa for DX , F , and X . To further regularize the mappings, we

introduce two “cycle consistency losses” that capture the intuition that if we translate from one domain to the other and back again we should arrive where we

started: (b) forward cycle-consistency loss: x → G(x) → F (G(x)) ≈ x, and (c) backward cycle-consistency loss: y → F (y) → G(F (y)) ≈ y

recent approaches use a dataset of input-output examples to

learn a parametric translation function using CNNs, e.g. [29].

Our approach builds on the “pix2pix” framework of Isola et

al. [20], which uses a conditional generative adversarial net-

work [14] to learn a mapping from input to output images.

Similar ideas have been applied to various tasks such as gen-

erating photographs from sketches [40] or from attribute and

semantic layouts [22]. However, unlike these prior works, we

learn the mapping without paired training examples.

Unpaired Image-to-Image Translation Several other

methods also tackle the unpaired setting, where the goal is to

relate two data domains, X and Y . Rosales et al. [37] propose

a Bayesian framework that includes a prior based on a patch-

based Markov random field computed from a source image,

and a likelihood term obtained from multiple style images.

More recently, CoupledGANs [28] and cross-modal scene

networks [1] use a weight-sharing strategy to learn a common

representation across domains. Concurrent to our method,

Liu et al. [27] extends this framework with a combination

of variational autoencoders [23] and generative adversarial

networks. Another line of concurrent work [42, 45, 2] encour-

ages the input and output to share certain “content” features

even though they may differ in “style“. They also use adver-

sarial networks, with additional terms to enforce the output

to be close to the input in a predefined metric space, such

as class label space [2], image pixel space [42], and image

feature space [45].

Unlike the above approaches, our formulation does not rely

on any task-specific, predefined similarity function between

the input and output, nor do we assume that the input and out-

put have to lie in the same low-dimensional embedding space.

This makes our method a general-purpose solution for many

vision and graphics tasks. We directly compare against several

prior approaches in Section 5.1. Concurrent with our work, in

these same proceedings, Yi et al. [55] independently introduce

a similar objective for unpaired image-to-image translation,

inspired by dual learning in machine translation [15].

Cycle Consistency The idea of using transitivity as a way

to regularize structured data has a long history. In visual track-

ing, enforcing simple forward-backward consistency has been

a standard trick for decades [44]. In the language domain,

verifying and improving translations via “back translation and

reconsiliation” is a technique used by human translators [3]

(including, humorously, by Mark Twain [47]), as well as

by machines [15]. More recently, higher-order cycle consis-

tency has been used in structure from motion [56], 3D shape

matching [19], co-segmentation [51], dense semantic align-

ment [59, 60], and depth estimation [12]. Of these, Zhou et

al. [60] and Godard et al. [12] are most similar to our work, as

they use a cycle consistency loss as a way of using transitivity

to supervise CNN training. In this work, we are introducing a

similar loss to push G and F to be consistent with each other.

Neural Style Transfer [11, 21, 48, 10] is another way

to perform image-to-image translation, which synthesizes a

novel image by combining the content of one image with the

style of another image (typically a painting) by matching the

Gram matrix statistics of pre-trained deep features. Our main

focus, on the other hand, is learning the mapping between two

domains, rather than between two specific images, by trying

to capture correspondences between higher-level appearance

structures. Therefore, our method can be applied to other

tasks, such as painting→ photo, object transfiguration, etc.

where single sample transfer methods do not perform well.

We compare these two methods in Section 5.2.

3. Formulation

Our goal is to learn mapping functions between two do-

mains X and Y given training samples {xi}
N
i=1 ∈ X and

{yj}
M
j=1 ∈ Y . As illustrated in Figure 3 (a), our model in-

cludes two mappings G : X → Y and F : Y → X . In

addition, we introduce two adversarial discriminators DX and

DY , where DX aims to distinguish between images {x} and

translated images {F (y)}; in the same way, DY aims to dis-

criminate between {y} and {G(x)}. Our objective contains

kinds of two terms: adversarial losses [14] for matching the

distribution of generated images to the data distribution in



the target domain; and a cycle consistency loss to prevent the

learned mappings G and F from contradicting each other.

3.1. Adversarial Loss

We apply adversarial losses [14] to both mapping functions.

For the mapping function G : X → Y and its discriminator

DY , we express the objective as:

LGAN(G,DY , X, Y ) =Ey∼pdata(y)[logDY (y)]

+Ex∼pdata(x)[log(1−DY (G(x))],

(1)

where G tries to generate images G(x) that look similar to im-

ages from domain Y , while DY aims to distinguish between

translated samples G(x) and real samples y. We introduce a

similar adversarial loss for the mapping function F : Y → X

and its discriminator DX as well: i.e. LGAN(F,DX , Y,X).

3.2. Cycle Consistency Loss

Adversarial training can, in theory, learn mappings G and

F that produce outputs identically distributed as target do-

mains Y and X respectively (strictly speaking, this requires

G and F to be stochastic functions) [13]. However, with large

enough capacity, a network can map the same set of input

images to any random permutation of images in the target

domain, where any of the learned mappings can induce an out-

put distribution that matches the target distribution. To further

reduce the space of possible mapping functions, we argue that

the learned mapping functions should be cycle-consistent: as

shown in Figure 3 (b), for each image x from domain X , the

image translation cycle should be able to bring x back to the

original image, i.e. x → G(x) → F (G(x)) ≈ x. We call this

forward cycle consistency. Similarly, as illustrated in Figure 3

(c), for each image y from domain Y , G and F should also sat-

isfy backward cycle consistency: y → F (y) → G(F (y)) ≈ y.

We can incentivize this behavior using a cycle consistency

loss:

Lcyc(G,F ) =Ex∼pdata(x)[‖F (G(x))− x‖1]

+Ey∼pdata(y)[‖G(F (y))− y‖1]. (2)

In preliminary experiments, we also tried replacing the L1

norm in this loss with an adversarial loss between F (G(x))
and x, and between G(F (y)) and y, but did not observe im-

proved performance. The behavior induced by the cycle con-

sistency loss can be observed in the arXiv version.

3.3. Full Objective

Our full objective is:

L(G,F,DX , DY ) =LGAN(G,DY , X, Y )

+ LGAN(F,DX , Y,X)

+ λLcyc(G,F ), (3)

where λ controls the relative importance of the two objectives.

We aim to solve:

G∗, F ∗ = argmin
G,F

max
Dx,DY

L(G,F,DX , DY ). (4)

Notice that our model can be viewed as training two “au-

toencoders” [18]: we learn one autoencoder F ◦G : X → X

jointly with another G ◦ F : Y → Y . However, these autoen-

coders each have special internal structure: they map an image

to itself via an intermediate representation that is a transla-

tion of the image into another domain. Such a setup can also

be seen as a special case of “adversarial autoencoders” [30],

which use an adversarial loss to train the bottleneck layer

of an autoencoder to match an arbitrary target distribution.

In our case, the target distribution for the X → X autoen-

coder is that of domain Y . In Section 5.1.3, we compare our

method against ablations of the full objective, and empiri-

cally show that both objectives play critical roles in arriving

at high-quality results.

4. Implementation

Network Architecture We adapt the architecture for our

generative networks from Johnson et al. [21] who have

shown impressive results for neural style transfer and super-

resolution. This network contains two stride-2 convolutions,

several residual blocks [16], and two 1
2 -strided convolutions.

Similar to Johnson et al. [21], we use instance normaliza-

tion [49]. For the discriminator networks we use 70×70 Patch-

GANs [20, 26, 25], which aim to classify whether 70 × 70
overlapping image patches are real or fake. Such a patch-level

discriminator architecture has fewer parameters than a full-

image discriminator, and can be applied to arbitrarily-sized

images in a fully convolutional fashion [20].

Training details We apply two techniques from recent

works to stabilize our model training procedure. First, for

LGAN (Equation 1), we replace the negative log likelihood

objective by a least square loss [31]. This loss performs more

stably during training and generates higher quality results.

Equation 1 then becomes:

LLSGAN(G,DY , X, Y ) =Ey∼pdata(y)[(DY (y)− 1)2]

+Ex∼pdata(x)[DY (G(x))2], (5)

Second, to reduce model oscillation [13], we follow Shri-

vastava et al’s strategy [42] and update the discriminators DX

and DY using a history of generated images rather than the

ones produced by the latest generative networks. We keep an

image buffer that stores the 50 previously generated images.

Please refer to our arXiv paper for more details about the

datasets, architectures and training procedures.
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Figure 4: Different methods for mapping labels→photos trained on

cityscapes. From left to right: input, BiGAN/ALI [6, 7], CoGAN [28],

CycleGAN (ours), pix2pix [20] trained on paired data, and ground truth.
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Figure 5: Different methods for mapping aerial photos↔maps on Google

Maps. From left to right: input, BiGAN/ALI [6, 7], CoGAN [28], CycleGAN

(ours), pix2pix [20] trained on paired data, and ground truth.

5. Results

We first compare our approach against recent methods for

unpaired image-to-image translation on paired datasets where

ground truth input-output pairs are available for evaluation.

We then study the importance of both the adversarial loss

and the cycle consistency loss, and compare our full method

against several variants. Finally, we demonstrate the gener-

ality of our algorithm on a wide range of applications where

paired data does not exist. For brevity, we refer to our method

as CycleGAN.

5.1. Evaluation

Using the same evaluation datasets and metrics as

“pix2pix” [20], we compare our method against several base-

lines both qualitatively and quantitatively. We also perform

ablation study on the full loss function.

5.1.1 Baselines

CoGAN [28] This method learns one GAN generator for

domain X and one for domain Y , with shared weights on the

first few layers for shared latent representation. Translation

from X to Y can be achieved by finding a latent represen-

tation that generates image X and then rendering this latent

representation into style Y .

Pixel loss + GAN [42] Like our method, Shrivastava et

al. [42] uses an adversarial loss to train a translation from X

to Y . The regularization term ‖X− Ŷ ‖1 was used to penalize

making large changes at pixel level.

Feature loss + GAN We also test a variant of [42] where

the L1 loss is computed over deep image features using a

pretrained network (VGG-16 relu4 2 [43]), rather than over

Map → Photo Photo → Map

Loss % Turkers labeled real % Turkers labeled real

CoGAN [28] 0.6% ± 0.5% 0.9% ± 0.5%

BiGAN/ALI [7, 6] 2.1% ± 1.0% 1.9% ± 0.9%

Pixel loss + GAN [42] 0.7% ± 0.5% 2.6% ± 1.1%

Feature loss + GAN 1.2% ± 0.6% 0.3% ± 0.2%

CycleGAN (ours) 26.8% ± 2.8% 23.2% ± 3.4%

Table 1: AMT “real vs fake” test on maps↔aerial photos.

Loss Per-pixel acc. Per-class acc. Class IOU

CoGAN [28] 0.40 0.10 0.06

BiGAN/ALI [7, 6] 0.19 0.06 0.02

Pixel loss + GAN [42] 0.20 0.10 0.04

Feature loss + GAN 0.06 0.04 0.01

CycleGAN (ours) 0.52 0.17 0.11

pix2pix [20] 0.71 0.25 0.18

Table 2: FCN-scores for different methods, evaluated on Cityscapes

labels→photos.

Loss Per-pixel acc. Per-class acc. Class IOU

CoGAN [28] 0.45 0.11 0.08

BiGAN/ALI [7, 6] 0.41 0.13 0.07

Pixel loss + GAN [42] 0.47 0.11 0.07

Feature loss + GAN 0.50 0.10 0.06

CycleGAN (ours) 0.58 0.22 0.16

pix2pix [20] 0.85 0.40 0.32

Table 3: Classification performance of photo→labels for different methods

on cityscapes.

RGB pixel values.

BiGAN/ALI [7, 6] Unconditional GANs [14] learn a gen-

erator G : Z → X , that maps random noise Z to images X .

The BiGAN [7] and ALI [6] propose to also learn the inverse

mapping function F : X → Z. Though they were originally

designed for mapping a latent vector z to an image x, we

implemented the same objective for mapping a source image

x to a target image y.

pix2pix [20] We also compare against pix2pix [20], which

is trained on paired data, to see how close we can get to this

“upper bound” without using paired data.

For fair comparison, we implement all the baselines using

the same architecture and details as our method except for

CoGAN [28]. We use the public implementation of CoGAN

due to fundametal differences in architecture 1.

5.1.2 Comparison against baselines

As can be seen in Figure 4 and Figure 5, we were unable to

achieve compelling results with any of the baselines. Our

method, on the other hand, is able to produce translations that

are often of similar quality to the fully supervised pix2pix.

We exclude pixel loss + GAN and feature loss + GAN in

the figures, as both of the methods fail to produce results at

all close to the target domain (full results can be viewed at

https://junyanz.github.io/CycleGAN/).

In addition, our method and the baselines are quantitatively

compared in three ways. First, we run ”real vs fake” study on

Amazon Mechanical Turk (AMT) workers to assess percep-

tual realism [20]. Second, we train photo→label task on the

1https://github.com/mingyuliutw/CoGAN
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