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Figure 1: Given any two unordered image collections X and Y, our algorithm learns to automatically “translate” an image from one into the other and vice
versa. Example application (bottom): using a collection of paintings of a famous artist, learn to render a user’s photograph into their style.

Abstract

Image-to-image translation is a class of vision and graph-
ics problems where the goal is to learn the mapping between
an input image and an output image using a training set of
aligned image pairs. However, for many tasks, paired train-
ing data will not be available. We present an approach for
learning to translate an image from a source domain X to a
target domain'Y in the absence of paired examples. Our goal
is to learn a mapping G : X — Y such that the distribution
of images from G(X) is indistinguishable from the distribu-
tion Y using an adversarial loss. Because this mapping is
highly under-constrained, we couple it with an inverse map-
ping F 'Y — X and introduce a cycle consistency loss to
push F(G(X)) ~ X (and vice versa). Qualitative results are
presented on several tasks where paired training data does
not exist, including collection style transfer, object transfigu-
ration, season transfer, photo enhancement, etc. Quantitative
comparisons against several prior methods demonstrate the
superiority of our approach.

1. Introduction

What did Claude Monet see as he placed his easel by the
bank of the Seine near Argenteuil on a lovely spring day in
1873 (Figure 1, top-left)? A color photograph, had it been
invented, may have documented a crisp blue sky and a glassy
river reflecting it. Monet conveyed his impression of this same
scene through wispy brush strokes and a bright palette. What
if Monet had happened upon the little harbor in Cassis on a
cool summer evening (Figure 1, bottom-left)? A brief stroll
through a gallery of Monet paintings makes it easy to imagine
how he would have rendered the scene: perhaps in pastel
shades, with abrupt dabs of paint, and a somewhat flattened
dynamic range.

We can imagine all this despite never having seen a side by
side example of a Monet painting next to a photo of the scene
he painted. Instead we have knowledge of the set of Monet
paintings and of the set of landscape photographs. We can
reason about the stylistic differences between these two sets,
and thereby imagine what a scene might look like if we were
to “translate” it from one set into the other.

* indicates equal contribution



Unpaired

Figure 2: Paired training data (left) consists of training examples
{4, yl}f\’: 1> where the y; that corresponds to each x; is given [20]. We
instead consider unpaired training data (right), consisting of a source set
{z;}X, € X and a target set {yj}j.vil € Y, with no information provided
as to which x; matches which y;.

In this paper, we present a system that can learn to do the
same: capturing special characteristics of one image collection
and figuring out how these characteristics could be translated
into the other image collection, all in the absence of any paired
training examples.

This problem can be more broadly described as image-to-
image translation [20], converting an image from one repre-
sentation of a given scene, z, to another, y, e.g., grayscale
to color, image to semantic labels, edge-map to photograph.
Years of research in computer vision, image processing, and
graphics have produced powerful translation systems in the su-
pervised setting, where example image pairs {z,y} are avail-
able (Figure 2, left), e.g., [9, 17, 20,21, 24,29, 41,52, 54, 57].
However, obtaining paired training data can be difficult and
expensive. For example, only a couple of datasets exist for
tasks like semantic segmentation (e.g., [4]), and they are rela-
tively small. Obtaining input-output pairs for graphics tasks
like artistic stylization can be even more difficult since the
desired output is highly complex, typically requiring artistic
authoring. For many tasks, like object transfiguration (e.g.,
zebra—horse, Figure 1 top-middle), the desired output is not
even well-defined.

We therefore seek an algorithm that can learn to translate
between domains without paired input-output examples (Fig-
ure 2, right). We assume there is some underlying relationship
between the domains — for example, that they are two different
renderings of the same underlying world — and seek to learn
that relationship. Although we lack supervision in the form
of paired examples, we can exploit supervision at the level of
sets: we are given one set of images in domain X and a dif-
ferent set in domain Y. We may train a mapping G : X =Y
such that the output § = G(x), € X, is indistinguishable
from images y € Y by an adversary trained to classify ¢ apart
from y. In theory, this objective can induce an output distribu-
tion over 4 that matches the empirical distribution py (y) (in
general, this requires that G be stochastic) [14]. The optimal

G thereby translates the domain X to a domain Y distributed
identically to Y. However, such a translation does not guaran-
tee that the individual inputs and outputs x and y are paired
up in a meaningful way — there are infinitely many mappings
G that will induce the same distribution over 3. Moreover, in
practice, we have found it difficult to optimize the adversarial
objective in isolation: standard procedures often lead to the
well-known problem of mode collapse, where all input images
map to the same output image and the optimization fails to
make progress [13].

These issues call for adding more structure to our objective.
Therefore, we exploit the property that translation should be
“cycle consistent”, in the sense that if we translate, e.g., a
sentence from English to French, and then translate it back
from French to English, we should arrive back at the original
sentence [3]. Mathematically, if we have a translator G :
X — Y and another translator /' : Y — X, then GG and F'
should be inverses of each other, and both mappings should
be bijections. We apply this structural assumption by training
both the mapping G and F' simultaneously, and adding a
cycle consistency loss [60] that encourages F(G(z)) ~ x and
G(F(y)) ~ y. Combining this loss with adversarial losses
on domains X and Y yields our full objective for unpaired
image-to-image translation.

We apply our method to a wide range of applications, in-
cluding style transfer, object transfiguration, attribute transfer
and photo enhancement. We also compare against previous
approaches that rely either on hand-defined factorizations of
style and content, or on shared embedding functions, and show
that our method outperforms these baselines. Our code is avail-
able at https://github.com/junyanz/CycleGAN.
Check out the full version of the paper athttps://arxiv.
org/abs/1703.10593.

2. Related work

Generative Adversarial Networks (GANs) [ 14, 58] have
achieved impressive results in image generation [5, 35], image
editing [0 1], and representation learning [35, 39, 33]. Recent

methods adopt the same idea for conditional image generation
applications, such as text2image [36], image inpainting [34],
and future prediction [32], as well as to other domains like
videos [50] and 3D models [53]. The key to GANs’ success is
the idea of an adversarial loss that forces the generated images
to be, in principle, indistinguishable from real images. This
is particularly powerful for image generation tasks, as this is
exactly the objective that much of computer graphics aims to
optimize. We adopt an adversarial loss to learn the mapping
such that the translated image cannot be distinguished from
images in the target domain.

Image-to-Image Translation The idea of image-to-image
translation goes back at least to Hertzmann et al’s Im-
age Analogies [17], who employ a nonparametric texture
model [8] on a single input-output training image pair. More
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Figure 3: (a) Our model contains two mapping functions G : X — Y and F' : Y — X, and associated adversarial discriminators Dy and Dx. Dy
encourages G to translate X into outputs indistinguishable from domain Y, and vice versa for Dx, F', and X. To further regularize the mappings, we
introduce two “cycle consistency losses” that capture the intuition that if we translate from one domain to the other and back again we should arrive where we
started: (b) forward cycle-consistency loss: ¢ — G(z) — F(G(z)) ~ x, and (c) backward cycle-consistency loss: y — F'(y) — G(F(y)) =y

recent approaches use a dataset of input-output examples to
learn a parametric translation function using CNNs, e.g. [29].
Our approach builds on the “pix2pix” framework of Isola et
al. [20], which uses a conditional generative adversarial net-
work [14] to learn a mapping from input to output images.
Similar ideas have been applied to various tasks such as gen-
erating photographs from sketches [40] or from attribute and
semantic layouts [22]. However, unlike these prior works, we
learn the mapping without paired training examples.

Unpaired Image-to-Image Translation Several other
methods also tackle the unpaired setting, where the goal is to
relate two data domains, X and Y. Rosales et al. [37] propose
a Bayesian framework that includes a prior based on a patch-
based Markov random field computed from a source image,
and a likelihood term obtained from multiple style images.
More recently, CoupledGANSs [28] and cross-modal scene
networks [ 1] use a weight-sharing strategy to learn a common
representation across domains. Concurrent to our method,
Liu et al. [27] extends this framework with a combination
of variational autoencoders [23] and generative adversarial
networks. Another line of concurrent work [42, 45, 2] encour-
ages the input and output to share certain “content” features
even though they may differ in “style“. They also use adver-
sarial networks, with additional terms to enforce the output
to be close to the input in a predefined metric space, such
as class label space [2], image pixel space [42], and image
feature space [45].

Unlike the above approaches, our formulation does not rely
on any task-specific, predefined similarity function between
the input and output, nor do we assume that the input and out-
put have to lie in the same low-dimensional embedding space.
This makes our method a general-purpose solution for many
vision and graphics tasks. We directly compare against several
prior approaches in Section 5.1. Concurrent with our work, in
these same proceedings, Yi et al. [55] independently introduce
a similar objective for unpaired image-to-image translation,
inspired by dual learning in machine translation [15].

Cycle Consistency The idea of using transitivity as a way

to regularize structured data has a long history. In visual track-
ing, enforcing simple forward-backward consistency has been
a standard trick for decades [44]. In the language domain,
verifying and improving translations via “back translation and
reconsiliation” is a technique used by human translators [3]
(including, humorously, by Mark Twain [47]), as well as
by machines [15]. More recently, higher-order cycle consis-
tency has been used in structure from motion [56], 3D shape
matching [19], co-segmentation [51], dense semantic align-
ment [59, 60], and depth estimation [12]. Of these, Zhou et
al. [60] and Godard et al. [12] are most similar to our work, as
they use a cycle consistency loss as a way of using transitivity
to supervise CNN training. In this work, we are introducing a
similar loss to push G and F' to be consistent with each other.

Neural Style Transfer [11, 21, 48, 10] is another way
to perform image-to-image translation, which synthesizes a
novel image by combining the content of one image with the
style of another image (typically a painting) by matching the
Gram matrix statistics of pre-trained deep features. Our main
focus, on the other hand, is learning the mapping between two
domains, rather than between two specific images, by trying
to capture correspondences between higher-level appearance
structures. Therefore, our method can be applied to other
tasks, such as painting— photo, object transfiguration, etc.
where single sample transfer methods do not perform well.
We compare these two methods in Section 5.2.

3. Formulation

Our goal is to learn mapping functions between two do-
mains X and Y given training samples {z;}~, € X and
{y;}}L, € Y. As illustrated in Figure 3 (a), our model in-
cludes two mappings G : X — Yand F : Y — X. In
addition, we introduce two adversarial discriminators D x and
Dy, where Dx aims to distinguish between images {x} and
translated images {F'(y) }; in the same way, Dy aims to dis-
criminate between {y} and {G(z)}. Our objective contains
kinds of two terms: adversarial losses [14] for matching the
distribution of generated images to the data distribution in



the target domain; and a cycle consistency loss to prevent the
learned mappings G and F' from contradicting each other.

3.1. Adversarial Loss

We apply adversarial losses [ 14] to both mapping functions.
For the mapping function G : X — Y and its discriminator
Dy, we express the objective as:

‘CGAN(G> DY7 X7 Y) :Eywpdm(y) [log DY (y>]

T pia () [108(1 = Dy (G(2))],
(1

where G tries to generate images G(x) that look similar to im-
ages from domain Y, while Dy aims to distinguish between
translated samples G(x) and real samples y. We introduce a
similar adversarial loss for the mapping function F' : ¥ — X
and its discriminator Dx as well: i.e. Lgan(F, Dx,Y, X).

3.2. Cycle Consistency Loss

Adversarial training can, in theory, learn mappings G and
F' that produce outputs identically distributed as target do-
mains Y and X respectively (strictly speaking, this requires
G and F to be stochastic functions) [13]. However, with large
enough capacity, a network can map the same set of input
images to any random permutation of images in the target
domain, where any of the learned mappings can induce an out-
put distribution that matches the target distribution. To further
reduce the space of possible mapping functions, we argue that
the learned mapping functions should be cycle-consistent: as
shown in Figure 3 (b), for each image x from domain X, the
image translation cycle should be able to bring  back to the
original image, i.e. z — G(z) — F(G(x)) = x. We call this
forward cycle consistency. Similarly, as illustrated in Figure 3
(c), for each image y from domain Y, G and F’ should also sat-
isfy backward cycle consistency: y — F(y) — G(F(y)) = y.
We can incentivize this behavior using a cycle consistency
loss:

Leye(G, F) =Eppy (o) [IF(G (@) — 2][1]
AEypaa () (IG(E W) —yla]. (@)
In preliminary experiments, we also tried replacing the L1
norm in this loss with an adversarial loss between F'(G(x))
and z, and between G(F(y)) and y, but did not observe im-

proved performance. The behavior induced by the cycle con-
sistency loss can be observed in the arXiv version.

3.3. Full Objective
Our full objective is:
L(G,F,Dx,Dy) =Lcan(G, Dy, X,Y)
+ Loan(F, Dx, Y, X)

+ Moy (G, F), 3)

where A controls the relative importance of the two objectives.
We aim to solve:

max L(G,F,Dx,Dy). )

G*,F* = argmin
G, z, Dy

Notice that our model can be viewed as training two “au-
toencoders” [18]: we learn one autoencoder F'o G : X — X
jointly with another G o F' : Y — Y. However, these autoen-
coders each have special internal structure: they map an image
to itself via an intermediate representation that is a transla-
tion of the image into another domain. Such a setup can also
be seen as a special case of “adversarial autoencoders” [30],
which use an adversarial loss to train the bottleneck layer
of an autoencoder to match an arbitrary target distribution.
In our case, the target distribution for the X — X autoen-
coder is that of domain Y. In Section 5.1.3, we compare our
method against ablations of the full objective, and empiri-
cally show that both objectives play critical roles in arriving
at high-quality results.

4. Implementation

Network Architecture We adapt the architecture for our
generative networks from Johnson et al. [21] who have
shown impressive results for neural style transfer and super-
resolution. This network contains two stride-2 convolutions,
several residual blocks [16], and two %—sm’ded convolutions.
Similar to Johnson et al. [21], we use instance normaliza-
tion [49]. For the discriminator networks we use 70 x 70 Patch-
GANss [20, 26, 25], which aim to classify whether 70 x 70
overlapping image patches are real or fake. Such a patch-level
discriminator architecture has fewer parameters than a full-
image discriminator, and can be applied to arbitrarily-sized
images in a fully convolutional fashion [20].

Training details We apply two techniques from recent
works to stabilize our model training procedure. First, for
Lcan (Equation 1), we replace the negative log likelihood
objective by a least square loss [31]. This loss performs more
stably during training and generates higher quality results.
Equation | then becomes:

Lisoan (G, Dy, X,Y) =y [(Dy (y) = 1)%]

FE poaa(a) [Py (G(2))?],  (5)

Second, to reduce model oscillation [ 3], we follow Shri-
vastava et al’s strategy [42] and update the discriminators D x
and Dy using a history of generated images rather than the
ones produced by the latest generative networks. We keep an
image buffer that stores the 50 previously generated images.

Please refer to our arXiv paper for more details about the
datasets, architectures and training procedures.
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Figure 4: leferent methods for mapping labels—photos trained on
cityscapes. From left to right: input, BIGAN/ALI [6, 7], CoGAN [28],
CycleGAN (ours), pix2pix [20] trained on paired data, and ground truth.
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Figure 5: Different methods for mapping aerial photos<+maps on Google
Maps. From left to right: input, BIGAN/ALI [0, 7], CoGAN [28], CycleGAN
(ours), pix2pix [20] trained on paired data, and ground truth.

5. Results

We first compare our approach against recent methods for
unpaired image-to-image translation on paired datasets where
ground truth input-output pairs are available for evaluation.
We then study the importance of both the adversarial loss
and the cycle consistency loss, and compare our full method
against several variants. Finally, we demonstrate the gener-
ality of our algorithm on a wide range of applications where
paired data does not exist. For brevity, we refer to our method
as CycleGAN.

5.1. Evaluation

Using the same evaluation datasets and metrics as
“pix2pix” [20], we compare our method against several base-
lines both qualitatively and quantitatively. We also perform
ablation study on the full loss function.

5.1.1 Baselines

CoGAN [28] This method learns one GAN generator for
domain X and one for domain Y, with shared weights on the
first few layers for shared latent representation. Translation
from X to Y can be achieved by finding a latent represen-
tation that generates image X and then rendering this latent
representation into style Y.

Pixel loss + GAN [42] Like our method, Shrivastava et
al. [42] uses an adversarial loss to trgin a translation from X
to Y. The regularization term || X — Y'||; was used to penalize
making large changes at pixel level.

Feature loss + GAN We also test a variant of [42] where
the L1 loss is computed over deep image features using a
pretrained network (VGG-16 relud_2 [43]), rather than over

Map — Photo Photo — Map
Loss % Turkers labeled real % Turkers labeled real
CoGAN [28] 0.6% + 0.5% 0.9% + 0.5%
BiGAN/ALI [7, 6] 2.1% + 1.0% 1.9% + 0.9%
Pixel loss + GAN [42] 0.7% =+ 0.5% 2.6% + 1.1%
Feature loss + GAN 1.2% =+ 0.6% 0.3% + 0.2%
CycleGAN (ours) 26.8% + 2.8% 23.2% + 3.4%

Table 1: AMT “real vs fake” test on maps<+aerial photos.

Loss Per-pixel acc.  Per-class acc. Class IOU
CoGAN [28] 0.40 0.10 0.06
BiGAN/ALI [7, 6] 0.19 0.06 0.02
Pixel loss + GAN [42] 0.20 0.10 0.04
Feature loss + GAN 0.06 0.04 0.01
CycleGAN (ours) 0.52 0.17 0.11
pix2pix [20] 0.71 0.25 0.18

Table 2: FCN-scores for different methods, evaluated on Cityscapes
labels—photos.

Loss Per-pixel acc.  Per-class acc. Class IOU
CoGAN [28] 0.45 0.11 0.08
BiGAN/ALI [7, 6] 0.41 0.13 0.07
Pixel loss + GAN [42] 0.47 0.11 0.07
Feature loss + GAN 0.50 0.10 0.06
CycleGAN (ours) 0.58 0.22 0.16
pix2pix [20] 0.85 0.40 0.32

Table 3: Classification performance of photo—labels for different methods
on cityscapes.

RGB pixel values.

BiGAN/ALI [7, 6] Unconditional GANs [14] learn a gen-
erator G : Z — X, that maps random noise Z to images X.
The BiGAN [7] and ALI [6] propose to also learn the inverse
mapping function F' : X — Z. Though they were originally
designed for mapping a latent vector z to an image z, we
implemented the same objective for mapping a source image
x to a target image y.

pix2pix [20] We also compare against pix2pix [20], which
is trained on paired data, to see how close we can get to this

“upper bound” without using paired data.

For fair comparison, we implement all the baselines using
the same architecture and details as our method except for
CoGAN [28]. We use the public implementation of CoOGAN
due to fundametal differences in architecture !

5.1.2 Comparison against baselines

As can be seen in Figure 4 and Figure 5, we were unable to
achieve compelling results with any of the baselines. Our
method, on the other hand, is able to produce translations that
are often of similar quality to the fully supervised pix2pix.
We exclude pixel loss + GAN and feature loss + GAN in
the figures, as both of the methods fail to produce results at
all close to the target domain (full results can be viewed at
https://junyanz.github.io/CycleGAN/).

In addition, our method and the baselines are quantitatively
compared in three ways. First, we run “real vs fake” study on
Amazon Mechanical Turk (AMT) workers to assess percep-
tual realism [20]. Second, we train photo—label task on the

Uhttps://github.com/mingyuliutw/CoGAN



Figure 6: Different variants of our method for mapping labels<>photos trained on cityscapes. From left to right: input, cycle-consistency loss alone,
adversarial loss alone, GAN + forward cycle-consistency loss (F/(G(x)) ~ x), GAN + backward cycle-consistency loss (G(F(y)) = y), CycleGAN (our
full method), and ground truth. Both Cycle alone and GAN + backward fail to produce images similar to the target domain. GAN alone and GAN + forward
suffer from mode collapse, producing identical label maps regardless of the input photo.

Cityscapes dataset, and compare the output label images with
the ground truth using the standard metrics on the Cityscapes
benchmark [4]. Lastly, we train label—photo task on the same
dataset and evaluate the output photos using an off-the-shelf
fully-convolutional semantic segmentation network [29]. We
find that our method significantly outperforms the baselines
in all three experiments. Table 1 reports performance on the
AMT perceptual realism task. Here, we see that our method
can fool participants on around a quarter of trials, in both
the map—photo direction and the photo—map direction. All
baselines almost never fooled participants. Table 2 and Ta-
ble 3 assess the performance of the label<+photo task on the
Cityscapes. In both cases, our method again outperforms the
baselines. Detailed procedures and results of each experiment
can be found in our arXiv version.

5.1.3 Ablation Study

We compare against ablations of our full loss. Figure 6
shows several qualitative examples. Removing the GAN loss
substantially degrades results, as does removing the cycle-
consistency loss. We therefore conclude that both terms are
critical to our results. We also evaluate our method with
the cycle loss in only one direction: GAN+forward cycle
loss By py(2) | F(G(2)) — ||1], or GAN+backward cycle
1088 By pa () [IIG(F(y)) — yll1] (Equation 2) and find that
it often incurs training instability and causes mode collapse,
especially for the direction of the mapping that was removed.
We also quantitatively measured the ablations on Cityscapes
photos—label, whose results can be found in our arXiv ver-
sion.

5.2. Applications

We demonstrate our method on several applications where
paired training data does not exist.We observe that translations
on training data are often more appealing than those on test

data, and full results of all applications on both training and
test data can be viewed on our project website.

Object transfiguration (Figure 7) The model is trained to
translate one object class from Imagenet [38] to another (each
class contains around 1000 training images). Turmukham-
betov et al.[46] proposes a subspace model to translate one
object into another object of the same category, while our
method focuses on object transfiguration between two visu-
ally similar categories.

Season transfer (Figure 7) The model is trained on the
winter and summer photos of Yosemite on Flickr.

Collection style transfer (Figure 8) We train the model
on landscape photographs downloaded from Flickr and
WikiArt. Note that unlike recent work on “neural style trans-
fer” [11], our method learns to mimic the style of an entire
set of artworks (e.g. Van Gogh), rather than transferring the
style of a single selected piece of art (e.g. Starry Night). In
Figure 5.2, we compare our results with [11].

Photo generation from paintings (Figure 9) For
painting—photo, we find that it is helpful to introduce an
additional loss to encourage the mapping to preserve color
composition between the input and output. In particular, we
adopt the technique of Taigman et al. [45] and regularize
the generator to be near an identity mapping when real sam-
ples of the target domain are provided as the input to the
generator: i.e. Ligeniity (G, F) = By I1G(y) — yll1] +
B ~paa(a) 1 F () = 2][1].

Without Ligeniity, the generator G and F' are free to change
the tint of input images when there is no need to. For example,
when learning the mapping between Monet’s paintings and
Flickr photographs, the generator often maps paintings of
daytime to photographs taken during sunset, because such a
mapping may be equally valid under the adversarial loss and
cycle consistency loss. The effect of this identity mapping
loss can be found in our arXiv paper.

In Figure 9, we show additional results translating Monet
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Figure 7: Results on several translation problems. These images are relatively successful results — please see our website for more comprehensive results.
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Figure 8: We transfer input images into different artistic styles. Please see our website for additional examples.

paintings to photographs. This figure shows results on paint-
ings that were included in the training set, whereas for all
other experiments in the paper, we only evaluate and show test
set results. Because the training set does not include paired
data, coming up with a plausible translation for a training set
painting is a nontrivial task. Indeed, since Monet is no longer
able to create new paintings, generalization to unseen, “test
set”, paintings is not a pressing problem.

Photo enhancement (Figure 7) We show that our method
can be used to generate photos with shallower depth of field.
We train the model on flower photos downloaded from Flickr.
The source domain consists of photos of flower taken by
smartphones, which usually have deep depth of field due to
a small aperture. The target photos were taken with DSLRs
with a larger aperture. Our model successfully generates

photos with shallower depth of field from the photos taken by
smartphones.

6. Limitations and Discussion

Although our method can achieve compelling results in
many cases, the results are far from uniformly positive. Sev-
eral typical failure cases are shown in Figure 12. On transla-
tion tasks that involve color and texture changes, like many
of those reported above, the method often succeeds. We have
also explored tasks that require geometric changes, with little
success. For example, on the task of dog—cat transfigura-
tion, the learned translation degenerates to making minimal
changes to the input (Figure 12). Handling more varied and
extreme transformations, especially geometric changes, is an
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Figure 9: Results on mapping Monet paintings to photographs. Please see our website for additional examples.
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Figure 10: Photo enhancement: mapping from a set of iPhone snaps to
professional DSLR photographs, the system often learns to produce shallow
focus. Here we show some of the most successful results in our test set —
average performance is considerably worse. Please see our website for more
comprehensive and random examples.

important problem for future work.

Some failure cases are caused by the distribution character-
istic of the training datasets. For example, the horse — zebra
task of Figure 12 has completely failed, because our model
was trained on the wild horse, zebra synsets of ImageNet,
which does not contain images of a person riding horse or
zebra.

We also observe a lingering gap between the results achiev-
able with paired training data and those achieved by our un-
paired method. In some cases, this gap may be very hard — or
even impossible — to close: for example, our method some-
times permutes the labels for tree and building in the output
of the photos—labels task. To resolve this ambiguity may
require some form of weak semantic supervision. Integrating
weak or semi-supervised data may lead to substantially more
powerful translators, still at a fraction of the annotation cost
of the fully-supervised systems.

Nonetheless, in many cases completely unpaired data is
plentifully available and should be made use of. This paper
pushes the boundaries of what is possible in this “unsuper-
vised” setting.

Input CycleGAN

Gatys et al. (image) Gatys et al. (collection)
= = 5 o

photo - Cezanne
CycleGAN

Gatys et al. (image) Gatys et al. (collection)
- — — -

horse — zebra

Figure 11: We compare our method with neural style transfer [ 1]. Left to
right: input images, results from [ 1] using single representative image as a
style image, results from [ 1] using all the images from the target domain,
and CycleGAN (ours)

apple — orange
b‘ "
m “

dog - cat horse — zebra

Figure 12: Some failure cases of our method.
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