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Abstract. This paper studies a fundamental bicriteria optimization problem for variable selec-
tion in statistical learning; the two criteria are a loss/residual function and a model control (also
called regularization, penalty). The former function measures the fitness of the learning model to
data and the latter function is employed as a control of the complexity of the model. We focus on
the case where the loss function is (strongly) convex and the model control function is a difference-
of-convex (dc) sparsity measure. Our paper establishes some fundamental optimality and sparsity
properties of directional stationary solutions to a nonconvex Lagrangian formulation of the bicriteria
optimization problem, based on a specially structured dc representation of many well-known sparsity
functions that can be profitably exploited in the analysis. We relate the Lagrangian optimization
problem with the penalty constrained problem in terms of their respective d(irectional)-stationary
solutions; this is in contrast to common analysis that pertains to the (global) minimizers of the
problem which are not computable due to nonconvexity. Most importantly, we provide sufficient
conditions under which the d(irectional)-stationary solutions of the nonconvex Lagrangian formu-
lation are global minimizers (possibly restricted due to nondifferentiability), thereby filling the gap
between previous minimizer-based analysis and practical computational considerations. The estab-
lished relation allows us to readily apply the derived results for the Lagrangian formulation to the
penalty constrained formulation. Specializations of the conditions to exact and surrogate sparsity
functions are discussed, yielding optimality and sparsity results for existing nonconvex formulations
of the statistical learning problem.
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optimality, sparsity
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1. Introduction. Sparse representation [27] is a fundamental methodology of
data science in solving a broad range of problems from statistical and machine learn-
ing in artificial intelligence to physical sciences and engineering (e.g., imaging and
sensing technologies), and to medical decision making (e.g., classification of healthy
versus unhealthy patients, benign and cancerous tumors). Significant advances have
been made in the last decade on constructing intrinsically low-dimensional solutions
in high-dimensional problems via convex programming. In statistical learning, the
Least Absolute Shrinkage and Selection Operator (LASSO) [49] is an efficient lin-
ear optimization method in regression and variable selection problems based on the
minimization of the `1-norm ‖x‖1 ,

∑n
i=1 |xi| of the n-dimensional model variable

x, either subject to a certain prescribed residual constraint, leading to a constrained
optimization problem, or employing such a residual as an additional criterion to be
minimized, resulting in an unconstrained minimization problem. (Throughout this
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1638 MIJU AHN, JONG-SHI PANG, AND JACK XIN

paper, we address the case of vector optimization and leave the analysis of matrix op-
timization problems to future work.) Such a convex norm is employed as a surrogate
of the `0-function of x; i.e., ‖x‖0 ,

∑n
i=1 |xi|0, where for a scalar t, |t|0 ,

{ 1 if t 6= 0
0 if t = 0

counts the nonzero entries in the model variable x. Theoretical analysis of LASSO
and its ability for recovery of the true support of the ground truth vector was pioneered
by Candès and Tao [6, 7]. This operator has many good statistical properties such as
model selection consistency [56], estimation consistency [3, 29], and persistence prop-
erty for prediction [26]. There exist many modified versions and algorithms proposed
to improve the computational efficiency of LASSO; including adaptive LASSO [58],
Bregman Iterative Algorithms [52], the Dantzig Selector [10, 8], iteratively reweighted
LASSO [9], elastic net [59], and LARS (Least Angle Regression) [15].

Until now, due to its favorable theoretical underpinnings and many efficient so-
lution methods, convex optimization has been a principal venue for solving many
statistical learning problems. Yet there is increasing evidence supporting the use of
nonconvex formulations to enhance the realism of the models and improve their gener-
alizations. For instance, in compressed sensing and image science [13], recent findings
reported in [34, 51, 54] show that the difference of `1 and `2 norms (`1−2 for short)
and a (nonconvex) “transformed `1” surrogate outperform `1 and other known convex
penalties in sparse signal recovery when the sensing matrix is highly coherent; such
a regime occurs in superresolution imaging where one attempts to recover fine scale
structure from coarse scale data information; see [12, 5] and references therein. More
broadly, important applications in other areas such as computational statistics, ma-
chine learning, bio-informatics, and portfolio selection [28] offer promising sources of
problems for the employment of nonconvex functionals to express model loss, promote
sparsity, and enhance robustness.

The present paper is motivated by the recent flurry of activities pertaining to the
use of nonconvex functionals for statistical learning problems. This idea dates back
more than fifteen years ago in statistics when Fan and Li [17] pointed out that LASSO
is a biased estimator and postulated several desirable statistics based properties for
a good univariate surrogate function for `0 to have; the authors then introduced a
univariate, butterfly shaped, folded concave [19], piecewise quadratic function called
SCAD for smoothly clipped absolute deviation that is symmetric with respect to the
origin and concave on R+; see also [18]. Besides SCAD and `1−2, there exist to-
day many penalized regression methods using nonconvex penalties, including the `q
(for q ∈ (0, 1)) penalty [20, 23], the related `p − `q penalty for p ≥ 1 and q ∈ [0, 1)
[11], the combination of `0 and `1 penalties [32], the smooth integration of counting
and absolute deviation (SICA) [35], the minimax concave penalty (MCP) [53], the
capped-`1 penalty [55], the logarithmic penalty [37], the truncated `1 penalty [48],
the hard thresholding penalty [57], the `1 − `2 penalty [51], and the transformed `1
[40, 35, 54] mentioned above. While there are algorithms for solving several of these
nonconvex optimization problems, such as [17, 19, 53, 37, 4], due to the nondifferen-
tiability of the minimands in these nonconvex optimization problems, it is not clear
what kind of stationary points these algorithms actually compute. Indeed, without a
clear understanding of such points, it is not possible to rigorously ascertain the sta-
tionarity, let alone minimizing, properties of the limit points of the iterates produced
by the algorithms. This will also help to close the gap between a minimizer-based
statistical analysis and a practical computational procedure, relaxing the requirement
of optimality to a more realistic stationarity property of the computational model in
such an analysis.
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DC LEARNING 1639

Our work focuses on two types of sparsity measures: one type consists of those
mentioned above that are surrogates of the `0-function; the other class of functions is
motivated by the `1−2-function; this function has the interesting property that its ze-
ros coincide with the 1-sparse vectors, i.e., ‖x‖1−‖x‖2 = 0 if and only if x has at most
one nonzero component. Generalizing this function, we examine a function whose ze-
ros are the K-sparse vectors for a given positive integer K; these are vectors with at
most K nonzero components. While this function has been used to describe the rank
of matrices [21, 25, 39], its use to express the sparsity of vectors has not received much
attention in the literature. One exception is the reference [25] that has recognized the
dc property [44, 45] of the K-sparsity function and employed it to describe cardinal-
ity constraints. All these functions are nonconvex and nondifferentiable, making the
resulting optimization problems challenging to analyze and solve. A major goal of
our study is to address these challenges, providing analysis, algorithms, and numerics
to demonstrate the properties and benefits of such nonconvex sparsity functions. The
overarching contention is that for the analysis of the resulting optimization problems,
it is essential that we focus on solutions that are computable in practice, rather than
on solutions that are not provably computable (such as global minimizers that can-
not be guaranteed to be the outcome of an algorithm). Thus, our contribution is to
provide the theoretical underpinning of what may be termed computable statistical
learning, relying on the recent work [42] where numerical algorithms supported by
convergence theories have been introduced for computing d-stationary solutions to
general nonsmooth dc programs; see also [43]. An accompanying study [1] will report
the details of computational experience of such algorithms applied to the problems
described in this paper.

With the above background and review of the literature, we are ready to sum-
marize the multifold contributions of our work whose setting is on vector problems.
The starting point of these contributions is the introduction of a unified formulation
with a piecewise-smooth dc objective function for all the sparsity measures mentioned
above. Since the concave summand of several objective functions are of the piecewise
smooth, thus nondifferentiable kind, care must be exerted in understanding the sta-
tionary solutions of the optimization problems. For this purpose, we will build on
the theory in the recent paper [42] that has identified directional stationarity as the
least restrictive concept for nonsmooth dc programs with the resulting d-stationary
points being computable by practical algorithms. Most importantly, a major contri-
bution of our work is the derivation of several theoretical results on the nonconvex
Lagrangian formulation of the bicriteria statistical learning problem, giving condi-
tions under which d-stationary solutions of the Lagrangian optimization problem are
its global minima (perhaps restricted due to nondifferentiability), and in some cases,
offering error bounds on the deviation for these solutions to an arbitrary vector, in-
cluding the ground truth to be discovered. Unlike much analysis in the statistics
literature, our approach is more in line with computational optimization by focusing
on the optimization model that is employed as the principal computational vehicle
for discovery. In this vein, our analysis is related to that in [11] which has studied
the choice of the weighing factor and derived properties of a global minimizer of the
particular “`2−`p problem”; in contrast, our general results in section 3 are applicable
to an arbitrary (strongly) convex loss function and a dc penalty function that covers
many known sparsity functions in the literature.

The analysis in the present paper is related to that in two recent articles [31, 33].
There are several differences, however. Perhaps the main one is the respective foci
of the cited papers and ours. In [31], where there are results connecting the sparsity
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1640 MIJU AHN, JONG-SHI PANG, AND JACK XIN

minimization problems formulated using the original `0 objective and those using its
surrogates, the emphasis therein is on the application of the dc algorithm to the latter
surrogate formulations, linking them to existing machine learning schemes. In [33],
the analysis is more from a statistical perspective while ours is more from a practical
optimization perspective. Specifically, the goal in [33] is to gain a deep understand-
ing of how the solution to a regularized optimization problem can “recover” a true
minimizer of the expected loss function (the so-called ground truth), where the former
problem is constructed by minimizing the sum of the loss function plus a “regular-
ization term” and with the constraint that the support of the variables is contained
in that of the ground truth. Under extensive assumptions on the parameter choices,
the analysis therein is quite detailed and covers many loss and regularization func-
tions known in the literature. Nevertheless, besides the support constraint imposed
in the optimization problem, two restrictions were required of the regularizer, i.e.,
the penalty function: separability and differentiability (except at the origin); these
restrictions rule out several important classes of sparsity functions, such as the exact
K-sparse functions (see section 5) and the family of piecewise smooth functions such
as the capped `1-function and the piecewise linear approximation of the `2-function
in the `1−2-function. The exact K-sparsity function is nonseparable; both classes of
functions have nontrivial manifolds of nondifferentiable points that are potentially
the limit points of iterates computed by an optimization procedure. In contrast, our
theory is applicable to all these functions. More importantly, we aim to address the
following issue, which from a computational perspective is of more practical signif-
icance. Namely, given a loss function and a regularizing/penalty function, can one
identify suitable weights combining these two criteria so that a d-stationary solution
of the resulting nonconvex, nonsmooth optimization problem has some minimizing
properties? Once this is done, the latter property then allows further analysis of the
solution that includes error bounds from the ground truth in terms of some known
statistical estimates. Our analysis is supported by numerical algorithms that can
compute such a stationary solution, based on the recent work of [42]. Throughout,
the dc property of the functions involved is the backbone of our results. Although
this property is not explicitly stated in [33], one of the assumptions imposed therein
on the univariate regularizer implies that it is a dc function.

In summary, while there exists previous analysis of the bicriteria optimization
problem with sparsity functions, our work contributes to a deeper understanding of
the problem, particularly for nondifferentiable sparsity functions. The principal goal
of our analysis is to address the optimality and sparsity properties of a directional
stationary solution of the problem that can be computed in practice using a dc-
based optimization algorithm [42]. Another noteworthy point is that we attempt to
deal with an analysis sufficiently broad that is applicable to a host of loss and penalty
functions, rather than focusing on specialized problems whose generalizations to other
formulations may not be immediate.

2. The unified DC program of statistical learning. We consider the fol-
lowing Lagrangian form of the bicriteria statistical learning optimization problem for
selecting the model variable w ∈ Rm:

(1) minimize
w∈W

Zγ(w) , `(w) + γ P (w),

where γ is a positive scalar parameter balancing the loss (or residual) function `(w)
and the model control (also called penalty) function P (w) and W is a closed convex
(typically polyhedral) set in Rm constraining the model variable w. The unconstrained
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DC LEARNING 1641

case where W = Rm is of significant interest in many applications. Throughout the
paper, we assume that
(A0) `(w) is a convex function on the closed convex set W and P (w) is a difference-
of-convex (dc) function given by

(2) P (w) , g(w)− h(w), with h(w) , max
1≤i≤I

hi(w), for some integer I > 0,

where g is convex but not necessarily differentiable and each hi is convex and differ-
entiable.

Thus the concave summand of P (w), i.e., −h(w), is the negative of a pointwise
maximum of finitely many convex differentiable functions; as such h(w) is piecewise
differentiable (PC1) according to the definition of such a piecewise smooth function
[16, Definition 4.5.1]. (Specifically, a continuous function f(w) is PC1 on an open
domain Ω if there exist finite many C1 functions {fi}Mi=1 for some positive integer
M such that f(w) ∈ {fi(w)}Mi=1 for all w ∈ Ω. If each fi is an affine function, we
say that f is piecewise affine on Ω.) In many (inexact) surrogate sparsity functions,
the function P (w) is separable in its arguments; i.e., P (w) =

∑m
i=1 pi(wi), where

each pi(wi) is a univariate dc function whose concave summand is the negative of a
pointwise maximum of finitely many convex differentiable (univariate) functions; i.e.,
the univariate analog of (2).

It is important to note that while it has been recognized in the literature (e.g.,
[22, 24, 31, 50]) that several classes of sparsity functions can be formulated as dc
functions, the particular form (2) of the function h(w) has not been identified in
the general dc approach to the sparsity optimization. Our work herein exploits this
piecewise structure profitably. Since every convex function can be represented as the
pointwise maximum of a family of affine functions, possibly a continuum of them, it is
natural to ask if the results in our work can be extended to a general convex function
h. A full treatment of this question is regrettably beyond the scope of this paper
which is aimed at addressing problems in sparsity optimization and not for general
dc programs.

2.1. A model-control constrained formulation. With two criteria, the loss
`(w) and model control P (w), there are two alternative optimization formulations for
the choice of the model variable w; one of these two alternative formulations constrains
the latter function while minimizing the former; this is in contrast to balancing the
two criteria using a weighing parameter γ into a single combined objective function
to be minimized. Specifically, given a prescribed scalar β > 0, consider

(3) minimize
w∈W

`(w) subject to P (w) ≤ β,

which we call the model control-constrained version of (1). Since both (1) and (3) are
nonconvex problems and involve nondifferentiable functions, the connections between
them are not immediately clear. For one thing, from a computational point of view,
it is not practical to relate the two problems via their global minima; the reason is
simple: such minima are computationally intractable. Instead, one needs to relate
these problems via their respective computable solutions. Toward this end, it seems
reasonable to relate the d(irectional)-stationary solutions of (1) to the B(ouligand)-
stationary solutions of (3) as both kinds of solutions can be computed by the ma-
jorization/linearization algorithms described in [42] and they are the “sharpest” kind
of stationary solutions for directionally differentiable optimization problems. Before
presenting the details of this theory relating the two problems (1) and (3), we note
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1642 MIJU AHN, JONG-SHI PANG, AND JACK XIN

that a third formulation can be introduced wherein one minimizes the penalty function
P (w) while constraining the loss function `(w) not to exceed a prescribed tolerance.
As the loss function `(w) is assumed to be convex in our treatment, the latter formu-
lation is a convex constrained dc program; this is unlike (3) that is a dc constrained
dc program, a problem that is considerably more challenging than a convex con-
strained program. Thus we will omit this loss function constrained formulation and
focus only on relating the Lagrangian formulation (1) and the penalty constrained
formulation (3).

2.2. Stationary solutions. WithW being a closed convex set, a vector w∗ ∈ W
is formally a d-stationary solution of (1) if the directional derivative

Z ′γ(w∗;w − w∗) , lim
τ↓0

Zγ(w∗ + τ(w − w∗))− Zγ(w∗)
τ

≥ 0 ∀w ∈ W.

Letting Ŵβ , {w ∈ W | P (w) ≤ β} be the (nonconvex) feasible set of (3), we say
that a vector w̄ ∈ Ŵβ is a B-stationary solution of this problem if ` ′(w̄; dw) ≥ 0
for all dw ∈ T (Ŵβ ; w̄), where T (Ŵβ ; w̄) is the tangent cone of Ŵβ at w̄; the latter
cone consists of all vector dw for which there exist a sequence of vectors {wk} ⊂
Ŵβ converging to w̄ and a sequence of positive scalars {τk} converging to zero such
that dw = limk→∞

wk−w̄
τk

. This paper focuses on the derivation of optimality and
sparsity properties of directional stationary solutions to the problem (1). Through
the connections with the constrained formulation (3) established below, the obtained
results for (1) can be adopted to the former problem.

A natural question arises why we choose to focus on directional stationary solu-
tions rather than stationary solutions of other kinds, such as that of a critical point for
dc programs [24, 31, 44, 45]. For reasons given in [42, section 3.3] (see, in particular,
the summary of implications therein), directional stationary solutions are the sharpest
kind among stationary solutions of other kinds in the sense a directional stationary
solution must be stationary according to other definitions of stationarity. Moreover,
as shown in Proposition 2.1 below and Proposition 3.1 later, d-stationary solutions
possess minimizing properties that are not in general satisfied by stationary solutions
of other kinds. In essence, the reason for the sharpness of d-stationarity is because it
captures all the active pieces as described by the index set A(w∗) at the point under
consideration w∗; see (4). In contrast, a critical point of a dc program fails to capture
all the active pieces. Thus any property that a critical point might have may not be
applicable to all the active pieces.

Our first result is a characterization of a d-stationary solution of (1).

Proposition 2.1. Under assumption (A0), a vector w∗ ∈ W is a d-stationary
solution of (1) if and only if

(4) w∗ ∈ argmin
w∈W

 `(w) + γ
{
g(w)− ∇hi(w∗)T (w − w∗ )

}︸ ︷︷ ︸
convex function in w

 ∀ i ∈ A(w∗),

where A(w∗) , { i | hi(w∗) = h(w∗) }. Moreover, if the function h is piecewise affine,
then any such d-stationary solution must be a local minimizer of Zγ on W.

Proof. It suffices to note that h ′(w∗; dw) = maxi∈A(w∗) ∇hi(w∗)T dw for all vec-
tors dw ∈ Rm. The last assertion about the local minimizing property follows readily
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DC LEARNING 1643

from the fact [16, Exercise 4.8.10] that we have h(w) = h(w∗) + h′(w∗;w − w∗) for
any piecewise affine function h, provided that w is sufficiently near w∗.

Remark. The last assertion in the above proposition generalizes a result in [30]
where an additional differentiability assumption was assumed.

The characterization of a B-stationary point of (3) is less straightforward, the
reason being the nonconvexity of the feasible set Ŵβ that makes it difficult to unveil
the structure of the tangent cone T (Ŵβ ; w̄). If P (w̄) < β, then T (Ŵβ ; w̄) = T (W; w̄).
The following result shows that this case is not particularly interesting when it pertains
to the stationarity analysis of w̄.

Proposition 2.2. Under assumption (A0), if w̄ ∈ Wβ is a B-stationary point of
(3) such that P (w̄) < β, then w̄ is a global minimizer of (3).

Proof. As noted above, the fact that P (w̄) < β implies T (Ŵβ ; w̄) = T (W; w̄);
hence w̄ satisfies ` ′(w̄; dw) ≥ 0 for all dw ∈ T (W; w̄). Since ` is a convex function
and W is a convex set, it follows that w̄ is a global minimizer of ` on W. In turn, this
implies that w̄ is a global minimizer of ` on Ŵβ because Ŵβ is a subset of W.

To understand the cone T (Ŵβ ; w̄) when P (w̄) = β, we need certain constraint
qualifications (CQs), under which it becomes possible to obtain a necessary and suffi-
cient condition for a B-stationary point of (3) similar to that in Proposition 2.1 for a
d-stationary point of (1). We list two such CQs as follows, one of which is a pointwise
condition while the other one pertains to the entire set Ŵβ :
• The pointwise Slater CQ is said to hold at w̄ ∈ Ŵβ satisfying P (w̄) = β if d̄ ∈
T (Wβ ; w̄) exists such that g ′(w̄; d̄) < ∇hj(w̄)T d̄ for all j ∈ A(w̄).
• The piecewise affine CQ (PACQ) is said to hold for Ŵβ if W is a polyhedron and
the function g is piecewise affine. (This CQ implies neither the convexity nor the
piecewise polyhedrality of Ŵβ because no linearity is assumed for the functions hi.)

Under these CQs, we have the following characterization of a B-stationary point
of the penalty constrained problem (3). See [42] for a proof.

Proposition 2.3. Under assumption (A0), if either the pointwise Slater CQ
holds at w̄ or the PACQ holds for the set Ŵβ, then w̄ is a B-stationary point of (3) if
and only if ` ′(w̄; dw) ≥ 0 for all dw ∈ Ĉ j(w̄) ,

{
d ∈ T (W; w̄) | g ′(w̄; d) ≤ ∇hj(w̄)T d

}
and every j ∈ A(w∗).

With the above two propositions, we can formally relate the two problems (1)
and (3) as follows.

Proposition 2.4. Under assumption (A0), the following two statements hold.
(a) If w∗ is a d-stationary solution of (1) for some γ ≥ 0, and if the pointwise Slater

CQ holds at w∗ for the set Ŵβ where β ≥ P (w∗), then w∗ is a B-stationary
solution of (3).

(b) If w̄ is a B-stationary solution of (3) for some β > 0, and if the pointwise Slater
CQ holds at w̄ for the set Ŵβ, then the following two statements hold:

• for each j ∈ A(w̄), a scalar γj ≥ 0 exists such that w̄ is a d-stationary solution of

(5) minimize
w∈W

[ `(w) + γj ( g(w)− hj(w) ) ] ;

• nonnegative scalars γ̄ and {γ̂j}Ij=1 exist with
∑I
j=1 γ̂j = 1 and γ̂j (h(w)− hj(w)) =
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1644 MIJU AHN, JONG-SHI PANG, AND JACK XIN

0 for all j such that w̄ is a d-stationary solution of

minimize
w∈W

 `(w) + γ̄

 g(w)−
I∑
j=1

γ̂j hj(w)

 .
Finally, statements (a) and (b) remain valid if the PACQ holds instead of the point-
wise Slater CQ.

Proof. If w∗ is a d-stationary solution of (1), then

` ′(w∗;w − w∗) + γ
[
g ′(w∗;w − w∗)−∇hi(w∗)T (w − w∗)

]
≥ 0

for all w ∈ W and all i ∈ A(w∗). Let dw ∈ Ĉ j(w̄) for some j ∈ A(w∗). We have
dw = limk→∞

wk−w∗
τk

for some sequence {wk} ⊂ W converging to w∗ and sequence
{τk} ⊂ R++ converging to zero. For each k, we have

` ′(w∗;wk − w∗) + γ
[
g ′(w∗;wk − w∗)−∇hi(w∗)T (wk − w∗)

]
≥ 0.

Dividing by τk and letting k →∞, we deduce

` ′(w∗; dw) + γ
[
g ′(w∗; dw)−∇hi(w∗)T dw

]
≥ 0,

which implies ` ′(w∗; dw) ≥ 0 because the term in the square bracket is nonpositive.
This proves parts (a) and (c).

To prove (b), let w̄ be as given. By Proposition 2.3, it follows that for every j ∈
A(w̄), ` ′(w̄; dw) ≥ 0 for all dw ∈ Ĉ j(w̄) ,

{
d ∈ T (W; w̄) | g ′(w̄; d) ≤ ∇hj(w̄)T d

}
.

Thus dw = 0 is a minimizer of ` ′(w̄; dw) for dw ∈ Ĉ j(w̄). Since the latter set is convex
and satisfies the Slater CQ, a standard result in nonlinear programming duality theory
(see, e.g., [2]) yields the existence of a scalar γj such that dw = 0 is a minimizer of
` ′(w̄; dw) + γj

[
g ′(w̄; dw)−∇hj(w̄)T dw

]
on T (W; w̄). This proves statement (i) in

(b). Adding up the inequalities

` ′(w̄; dw) + γj
[
g ′(w̄; dw)−∇hj(w̄)T dw

]
≥ 0, dw ∈ T (W; w̄),

for j ∈ A(w̄), we deduce

` ′(w̄; dw) + γ̄

 g ′(w̄; dw)−
∑

j∈A(w̄)

γ̂j ∇hj(w̄)T dw

 ≥ 0, dw ∈ T (W; w̄),

where γ̄ , 1
| A(w̄) |

∑
j∈A(w̄) γj and γ̂j , γj∑

j ′∈A(w̄) γj ′
. This establishes (b).

Part (b) of Proposition 2.4 falls short in establishing the converse of part (a),
i.e., in establishing the full equivalence of the two families of problems {(1)}γ≥0 and
{(3)}β≥0 in terms of their d-stationary solutions and B-stationary solutions, respec-
tively. This adds to the known challenges of the latter dc-constrained family of dc
problems over the former convex constrained dc programs. In the next section, we
focus on the Lagrangian formulation (1) only and rely on the connections established
in this section to obtain parallel results for the constrained formulation (3).

Proposition 2.4 complements the penalty results in dc programming initially stud-
ied by [46] and recently expanded in [25, 42]. These previous penalty results address
the question of when a fixed constrained problem (3) has an exact penalty formulation
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as the problem (1) for sufficient large γ in terms of their global minima. Furthermore,
in the case of a quadratic loss function, the reference [25] derives a lower bound for
the scalar γ for the penalty formulation to be exact. In contrast, allowing for a gen-
eral convex loss function, Proposition 2.4 deals with stationary solutions that from
a computational perspective are more reasonable as the results pertaining to global
minima lack pragmatism and should at best be regarded as providing only theoretical
insights and conceptual evidence about the connection between the two formulations.

To close this subsection, we give a result pertaining to the case where the function
h is piecewise affine; in this case, by Proposition 2.1, every d-stationary solution of
(1) must be a local minimizer. Combining this fact with Proposition 2.4(b), we can
establish a similar result for the problem (3).

Proposition 2.5. Let assumption (A0) hold with each hi being affine addition-
ally. If w̄ is a B-stationary solution of (3) for some β > 0, such that P (w̄) = β, and
if either the pointwise Slater CQ holds at w̄ for the set Ŵβ or the PACQ holds for the
same set, then w̄ is a local minimizer of (3).

Proof. By Proposition 2.4(b) and (c), for each j ∈ A(w̄), a scalar γj ≥ 0 exists
such that w̄ is a d-stationary solution, thus minimizer, of (5), which is a convex
program because hj is affine. To complete the proof, let w ∈ Ŵβ be sufficiently close
to w̄ such that A(w) ⊆ A(w̄). Let j ∈ A(w). We then have

`(w̄) = `(w̄) + γj P (w̄)− γj β
= `(w̄) + γj ( g(w̄)− hj(w̄) )− γj β because j ∈ A(w̄)

≤ `(w) + γj ( g(w)− hj(w) )− γj β by the minimizing property of w̄

= `(w) + γj (P (w)− β ) ≤ `(w) because j ∈ A(w) and P (w) ≤ β.

This establishes that w̄ is a local minimizer of (3).

3. Minimizing and sparsity properties. In general, a stationary solution
of (1) is not guaranteed to possess any minimizing property. For smooth problems
involving twice continuously differentiable functions, it follows from classical nonlinear
programming theory that with an appropriate second-order sufficiency condition, a
stationary solution can be shown to be strictly locally minimizing. Such a well-known
result becomes highly complicated when the functions are nondifferentiable. Although
one could, in principle, apply some generalized second derivatives, e.g., those based
on Mordukhovich’s no-smooth calculus [38], it would be preferable in our context
to derive a simplified theory that is more readily applicable to particular sparsity
functions, such as those to be discussed in sections 5 and 6.

3.1. Preliminary discussion of the main result. In a nutshell, our goal is
to extend the characterization of a d-stationary solution of (1) in Proposition 2.1 by
showing that under a set of assumptions, including a specific choice of the convex
function g, for a range of values of γ to be identified in the analysis, any such nonzero
d-stationary solution w∗ either has ‖w∗‖0 bounded above by a scalar computable
from certain model constants, or

(6) w∗ ∈ argmin
w∈W

 `(w) + γ ( g(w)− hi(w) )︸ ︷︷ ︸
remains dc

 ∀ i ∈ A(w∗);
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see Theorem 3.2 in subsection 3.4 for details. In terms of the original function Zγ ,
the above condition implies a restricted global optimality property of w∗; namely,

(7) w∗ ∈ argmin
w∈W∗

Zγ(w),

where W∗ , {w ∈ W | A(w) ∩ A(w∗) 6= ∅ }. To see this implication, it suffices to
note that if w ∈ W∗, then letting i be a common index in A(w) ∩ A(w∗), we have

Zγ(w)− Zγ(w∗) = [ `(w) + γ ( g(w)− hi(w) ) ]− [ `(w∗) + γ ( g(w∗)− hi(w∗) ) ] ≥ 0.

Borrowing a terminology from piecewise programming, we say that the vectors w
and w∗ share a common piece if A(w) ∩ A(w∗) 6= ∅. Thus the restricted global
optimality property (7) of w∗ says that w∗ is a true global minimizer of Zγ(w) among
those vectors w ∈ W that share a common piece with w∗. The subset W∗ includes
a neighborhood of w∗ in W; i.e., for a suitable scalar δ > 0, B(w∗; δ) ∩ W ⊆ W∗,
where B(w∗; δ) is an Euclidean ball centered at w∗ and with radius δ > 0. Thus, the
optimality property (6) implies in particular that w∗ is a local minimizer of Zγ onW.
Another consequence of (6) is that if I = 1 (so that h is convex and differentiable),
then w∗ is a global minimizer of Zγ on W.

Besides the above special cases, our main result applies to many well-known
sparsity functions in the statistical learning literature, plus the relatively new and
largely unexplored class of exact K-sparsity functions to be discussed later.

3.2. The assumptions. The analysis requires two main sets of assumptions:
one on the model functions `(w) and {hi(w)}Ii=1 and the other one on the constraint
set W. We first state the former set of assumptions, which introduce the key model
constants Lip∇`, λ`min, Lip∇h, and ζ. In principle, we could localize these assumptions
around a given d-stationary solution; instead, our intention of stating these assump-
tions globally on the set W is to use the model constants to identify the parameter γ
that defines the optimization problem (1).
(A) In addition to (A0),
(AL

` ) the loss function `(w) is of class LC1 (for continuously differentiable with a
Lipschitz gradient) on W; i.e., a positive scalar Lip∇` exists such that for all w and
w ′ in W,

(8) ‖∇`(w)−∇`(w ′) ‖2 ≤ Lip∇` ‖w − w ′ ‖2 ∀w,w ′ ∈ W;

(Acvx
` ) a nonnegative constant λ`min exists such that

(9) `(w)− `(w ′)−∇`(w ′)T (w − w ′ ) ≥ λ`min

2
‖w − w ′ ‖22 ∀w,w ′ ∈ W;

(AL
h) nonnegative constants Lip∇h and β exist such that for each i ∈ {1, . . . , I} and

all w and w ′ in W, with 0/0 defined to be zero,

(10) 0 ≤ hi(w)−hi(w ′)−∇hi(w ′)T (w−w ′ ) ≤
(

Lip∇h
2

+
β

‖w ′ ‖2

)
‖w−w ′ ‖22.

(AB
h ) max1≤i≤I [ supw∈W ‖∇hi(w) ‖2 ] , ζ < ∞.

By the mean-value theorem for multivariate functions [41, 3.2.12], we derive from
the inequality (8),

`(w)− `(w ′)−∇`(w ′)T (w − w ′ ) ≤ Lip∇`
2
‖w − w ′ ‖22 ∀w,w ′ ∈ W.
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Thus Lip∇` ≥ λ`min. When `(w) = 1
2w

TQw + qTw is a strongly convex quadratic

function with a symmetric positive definite matrix Q, the ratio λ`min
Lip∇`

= λmin(Q)
λmax(Q) ,

where the numerator and denominator of the right-side ratio are the smallest and
largest eigenvalues of Q, respectively, is exactly the reciprocal of the condition number
of the matrix Q.

We discuss a bit about the two assumptions (Acvx
` ) and (AL

h). The constant λ`min
expresses the convexity of the loss function `, and the strong convexity when λ`min > 0.
For certain nonpolyhedral sparsity functions, this constant needs to be positive in
order for interesting results to be obtained. One may argue that the latter positivity
condition may be too restrictive to be satisfied in applications. For instance, in sparse
linear regression where `(w) = 1

2 ‖Aw − b‖22, the matrix A can be expected to be
column rank deficient so that ` is only convex but not strongly. For this problem, the
results below are applicable to the regularized loss function ̂̀α(w) = `(w) + α

2 ‖w ‖
2
2

for any positive scalar α. More generally, any regularized convex function is strongly
convex and thus satisfies condition (Acvx

` ) with a positive λ`min. Another way to soften
the positivity of λ`min satisfying (9) is to require that this inequality (with a positive
λ`min) holds only on a subset of W, e.g., on the set L∗ ∩ W, where

L∗ , {w ∈ Rm | wi = 0 whenever w∗i = 0 } .

In this case, the minimizing property of w∗ will be restricted to the set L∗ ∩ W. It
turns out that if the functions hi are affine so that the function h(w) = max1≤i≤I hi(w)
is piecewise affine (and convex), the main result could hold for λ`min = 0. Yet another
localization of the global inequality (9) is to assume that the Hessian ∇2`(w∗) exists
and is positive definite (either on the entire space Rm or on the subspace L∗). Under
such a pointwise strong convexity condition (via the positive definiteness of the Hes-
sian matrix), one obtains a locally strictly minimizing property of w∗. The upshot
of this discussion is that, in general, if one desires a strong minimizing property to
hold on the entire set W, then the inequality (9) with a positive λ`min is essential
to compensate for the nonconvexity of the sparsity function P when hi is nonaffine;
relaxation of the condition (9) with a positive λ`min is possible either with a piecewise
linear function h or at the expense of weakening the minimizing conclusion when the
functions hi are not affine.

As we will see in the subsequent sessions, assumption (AL
h) accommodates a host

of convex functions hi. Foremost is the case when the functions hi are of class LC1; in
this case, we may take β = 0 and Lip∇h to be the largest of the Lipschitz moduli of the
gradients {∇hi(w)}Ii=1 on W. In particular, when each function hi is affine, we may
further take Lip∇h to be zero or any positive scalar. Assumption (AL

h) also includes
the case where I = 1 and h(w) = ‖w‖2. Indeed, this follows from the following
inequality: provided w∗ 6= 0,

‖w ‖2 − ‖w∗ ‖2 −
(

w∗

‖w∗ ‖2

)T
(w − w∗ ) ≤ 1

‖w∗ ‖2
‖w − w∗ ‖22,

which is equivalent to

‖w ‖2 ‖w∗ ‖2 − ‖w∗ ‖22 − (w∗ )T (w − w∗ ) ≤ ‖w − w∗ ‖22.
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1648 MIJU AHN, JONG-SHI PANG, AND JACK XIN

The left-hand side is equal to ‖w‖2‖w∗‖2 − (w∗)Tw. We have

‖w − w∗ ‖22 −
[
‖w ‖2‖w∗ ‖2 − (w∗)Tw

]
= ‖w ‖22 − (w∗)Tw + ‖w∗ ‖22 − ‖w ‖2‖w∗ ‖2
≥ ‖w ‖22 − 2‖w∗ ‖2 ‖w ‖2 + ‖w∗ ‖22 = [ ‖w ‖2 − ‖w∗ ‖2 ]2 ≥ 0,

which shows that we may take Lip∇h = 0 and β = 1 for the 2-norm function. It
is important to remark that, in general, if (10) holds with a zero Lip∇h, it certainly
holds with a positive Lip∇h. Nevertheless, we refrain from taking this constant as
always positive because it affects the selection of the constant γ as it will become
clear in the main theorem, Theorem 3.2. Finally, (AL

h) also accommodates any linear
combination of functions each satisfying this assumption. Such a combination may
be relevant in problems of group sparsity minimization where one may consider the
use of different sparsity functions for different groups.

The second assumption (B) below is on the constraint setW. Consistent with the
previous assumptions, we state assumption (B) with respect to an arbitrary vector
w∗ ∈ W, making it a global-like condition; however, it will be clear from the analysis
that the assumption is most specific to a stationary solution being analyzed. The
assumption is satisfied for example if W =

∏m
i=1 Wi where each Wi is one of three

sets: R (for an unrestricted variable) or R± (for problems with sign restrictions on the
variables wi). Thus our results are applicable in particular to sign constrained prob-
lems, a departure from the literature which typically either deals with unconstrained
problems, or makes an interiority assumption on w∗ which essentially converts the
analysis to the unconstrained case.
(B) For a given vector w∗ ∈ W, there exists ε∗ > 0 such that for all ε ∈ (0, ε∗] and
for every i with w∗i 6= 0, the vectors w±ε;i defined below belong to W:

w±ε;ij ,

{
w∗j ± ε if j = i,

w∗j if j 6= i,
j = 1, . . . ,m.

While our analysis is applicable to a general convex function g, a more interesting
case is when g is a weighted `1-function given by

(11) g(w) ,
m∑
i=1

ξi |wi |, w ∈ Rm,

for some positive constants ξi. This choice of the function g was employed in the study
[31] of DC approximations to sparsity minimization; Proposition 6 in this reference
shows that a broad class of separable sparsity functions in the statistical learning
literature has a dc decomposition with the above function g as the convex part. For
this choice of g, if η ∈ ∂g(w) with ∂g(w) denoting the subdifferential of g at w, then

‖ η 6=0 ‖2 =
√ ∑
i :wi 6= 0

ξ2
i ≥

(
min

1≤i≤m
ξi

) √
‖w ‖0,

where η6=0 denotes the subvector of η with components corresponding to the nonzero
components of w. Let ξmin , min1≤i≤m ξi so that ‖ η 6=0 ‖2 ≥ ξmin

√
‖w ‖0 for all

w ∈ Rm.
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3.3. The case β = 0. We begin our analysis with a result pertaining to the
case where condition (AL

h) holds with β = 0. This is the case where each hi is of class
LC1. The special property (B) on W is not needed in this case; also, no assumption
is imposed on g except for its convexity.

Proposition 3.1. Suppose that (Acvx
` ) and (AL

h) with β = 0 hold. For any scalar
γ > 0 such that δ , λ`min − γ Lip∇h ≥ 0, the following two statements hold:

(a) If w∗ is a d-stationary point of Zγ on W, then for all i ∈ A(w∗),

[ `(w) + γ ( g(w)− hi(w) ) ]−[ `(w∗) + γ ( g(w∗)− hi(w∗) ) ] ≥ δ

2
‖w−w∗ ‖22 ∀w ∈ W.

Hence w∗ is a minimizer of Zγ(w) on W∗. Moreover, if δ > 0, then w∗ is the unique
minimizer of `(w) + γ ( g(w) − hi(w) ) on W for all i ∈ A(w∗). Hence the unique
minimizer of Zγ(w) on W∗.

(b) If I = 1, then Zγ is convex on W with modulus δ (thus is strongly convex if
δ > 0).

Proof. To prove (a), let w ∈ W be arbitrary. For any i ∈ A(w∗), we have

[ `(w) + γ ( g(w)− hi(w) ) ]− [ `(w∗) + γ ( g(w∗)− hi(w∗) ) ]

≥ [ `(w) + γ ( g(w)− hi(w) ) ]− [ `(w∗) + γ ( g(w∗)− hi(w∗) ) ]

−
[
∇`(w∗)T (w − w∗ ) + γ

(
g ′(w∗;w − w∗)−∇hi(w∗)T (w − w∗ )

) ]
= [ `(w)− `(w∗)−∇`(w∗)(w − w∗ ) ] + γ [ g(w)− g(w∗)− g ′(w∗;w − w∗) ]

− γ
[
hi(w)− hi(w∗)−∇hi(w∗)T (w − w∗ )

]
≥ 1

2

(
λ`min − γ Lip∇h

)
‖w − w∗ ‖22.

Thus (a) follows. To prove (b), suppose I = 1. We have, for any w and w ′ in W,

Zγ(w)− Zγ(w ′)− Z ′γ(w ′;w − w ′) ≥ 1
2

(
λ`min − γ Lip∇h

)
‖w − w ′ ‖22.

Statement (b) follows readily from the above inequality.

Statement (b) of the above result is, in general, not true if I > 1 as illustrated by
the univariate function Zγ(t) = t2−γ|t| = t2−γmax(t,−t). (This univariate function
fits our framework with g = |t| and h = 2|t|.) It can be seen that for any γ > 0 this
function is not convex because

Zγ(0) = 0 > −γ
2

4
= 1

2 [Zγ(γ/2) + Zγ(−γ/2) ] .

Nevertheless, this function has two stationary points at ±γ/2 that are both global
minima of Zγ . This simple result illustrates a couple noteworthy points. First, the
convexity of the function Zγ cannot be expected for I > 1 even though the loss
function ` may be strongly convex. Yet it is possible for a d-stationary solution of
Zγ to be a global minimizer. The latter possibility is encouraging and serves as the
motivation for the subsequent extended analysis with β > 0, where an upper bound
on γ will persist.

3.4. The case of g being a weighted `1 function. In this subsection, we
refine the proof of Proposition 3.1 by taking g to be the weighted `1 function (11) and
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including the constant β. We have, for all w ∈ W and all i ∈ A(w∗),

[ `(w) + γ ( g(w)− hi(w) ) ]− [ `(w∗) + γ ( g(w∗)− hi(w∗) ) ]

≥ [ `(w)− `(w∗)−∇`(w∗)(w − w∗ ) ] + γ [ g(w)− g(w∗)− g ′(w∗;w − w∗) ]

− γ
[
hi(w)− hi(w∗)−∇hi(w∗)T (w − w∗ )

]
≥
[
λ`min

2
− γ

(
Lip∇h

2
+

β

‖w∗‖2

)]
‖w − w∗ ‖22.

The remaining analysis uses the d-stationarity of w∗ to establish the nonnegativity of
the multiplicative factor Mγ , λ`min

2 − γ
( Lip∇h

2 + β
‖w∗‖2

)
. By the characterization of

d-stationarity in Proposition 2.1, there exists a subgradient η i ∈ ∂g(w∗) such that[
∇`(w∗) + γ

(
η i −∇hi(w∗)

) ]T
(w − w∗ ) ≥ 0 ∀w ∈ W.

By assumption (B) on the constraint set W, we may substitute w = w±ε;k for all k
such that w∗k 6= 0 and for arbitrary ε ∈ (0, ε∗] and obtain

(12)
[
∇`(w∗) + γ

(
η i −∇hi(w∗)

) ]
k

= 0 ∀ k such that w∗k 6= 0.

Thus letting ∇6=0 hi(w) be the vector
(∂hi(w)

∂wk

)
k:wk 6=0, we have

‖w∗ ‖2 Lip∇` + ‖∇`(0) ‖2 ≥ ‖∇`(w∗) ‖2 = γ ‖ η6=0 −∇ 6=0hi(w∗) ‖2
≥ γ [ ‖ η 6=0 ‖2 − ‖∇6=0hi(w∗) ‖2 ] ,

where the first inequality is by the LC1 property of ` and the triangle inequality which
also yields the last inequality. Suppose γ ≥ c ‖∇`(0) ‖2 for a constant c > 0 to be
determined momentarily. We deduce

‖w∗ ‖2 Lip∇` ≥ γ
[
‖ η6=0 ‖2 − ‖∇6=0hi(w∗) ‖2 − c−1 ] .

With g being the weighted `1-function (11) and by recalling the scalar ζ in condition
(AB

h ), we deduce

(13) ‖w∗ ‖2 Lip∇` ≥ γ
[
ξmin

√
‖w∗ ‖0 − ζ − c−1

]
.

Moreover, provided that ξmin
√
‖w∗ ‖0 > ζ + c−1, we obtain

γ

‖w∗ ‖2
≤ Lip∇`

ξmin
√
‖w∗ ‖0 − ζ − c−1

.

Hence, if
√
‖w∗ ‖0 > 2

ξmin

[
ζ + c−1

]
, (the factor 2 can be replaced by any constant

greater than 1), then γ
‖w∗ ‖2 < Lip∇`

ζ+c−1 . Thus Mγ ≥ 1
2

(
λ`min − γLip∇h

)
− β Lip∇`

ζ+c−1 .
Consequently, if

(14) δγ(c) , 1
2

(
λ`min − γ Lip∇h

)
− β Lip∇`
ζ + c−1 ≥ 0,

it follows that Mγ ≥ 0. It remains to determine the constant c. To ensure the validity
of the above derivations, we need to have

(15) 1
2 c ‖∇`(0) ‖2 Lip∇h ≤

λ`min

2
− β Lip∇`
ζ + c−1 ,
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which is equivalent to

q∗(c) , c2 ζ ‖∇`(0) ‖2 Lip∇h+c
[
‖∇`(0) ‖2 Lip∇h + 2β Lip∇` − λ`min ζ

]
−λ`min ≤ 0.

Summarizing the above derivations, we have established the following main result
which does not require further proof.

Theorem 3.2. Under the assumptions in subsection 3.2 with the constants λ`min,
Lip∇`, Lip∇h, β, ζ, and ξmin as given therein, let g be given by (11), and let c > 0 be
any constant satisfying q∗(c) ≤ 0. Let γ > 0 satisfy

(16) c ‖∇`(0) ‖2 Lip∇h ≤ γ Lip∇h ≤ λ`min −
2β Lip∇`
ζ + c−1 .

If w∗ is a d-stationary solution of Zγ on W, then either

(17)
√
‖w∗ ‖0 ≤

2
ξmin

[
ζ + c−1 ] ,

or for all i ∈ A(w∗) and all w ∈ W,

[ `(w) + γ ( g(w)− hi(w) ) ]− [ `(w∗) + γ ( g(w∗)− hi(w∗) ) ] ≥ δγ(c) ‖w − w∗ ‖22.

If the above inequality holds, then w∗ is a minimizer of Zγ(w) on W∗. Moreover, if
δγ(c) > 0, then w∗ is the unique minimizer of `(w) + γ ( g(w)− hi(w) ) on W for all
i ∈ A(w∗), hence the unique minimizer of Zγ(w) on W∗.

Remark. As shown above, q∗(c) ≤ 0 if and only if (15) holds. With the latter
inequality, we can choose γ > 0 so that (16) holds. In turn, the inequalities in (16)
implicitly impose a condition on the four model constants: λ`min, Lip∇`, Lip∇h, and
β and suggest a choice of γ in terms of them for the theorem to hold.

As a (restricted) global minimizer of Zγ , w∗ has the property that for every
w ∈ W∗, either `(w∗) ≤ `(w) or P (w∗) < P (w). In particular, if w∗ is not a global
minimizer of the loss function ` on W∗, then we must have P (w∗) < P (w̃) where w̃ is
the latter minimizer. In the language of multicriteria optimization such a vector w∗

is a Pareto point on W∗ of the two criteria: loss and model control; specifically, there
does not exist a w ∈ W∗ such that the pair (`(w), P (w)) � (`(w∗), P (w∗)).

The implication of the (restricted) global minimizing property of a d-stationary
point is reminiscent of the class of “pseudoconvex functions” [36] which, by their
definition, are differentiable functions with the property that all its stationary points
are global minimizers of the functions. There are two differences, however. One
difference is that the function Zγ is only directionally differentiable and its stationary
solutions are defined in terms of the directional derivatives. Another difference is that
when β > 0, a (non)sparsity stipulation (i.e., the failure of (17)) on the d-stationary
solution w∗ is needed for it to be a (restricted) global minimizer.

The following corollary of Theorem 3.2 is worth mentioning. For simplicity, we
state the corollary in terms of Zγ on the subset W∗. No proof is required.

Corollary 3.3. Under the assumptions of Theorem 3.2, suppose that Lip∇h =
0. Let g be given by (11). Let c > 0 satisfy c

[
2β Lip∇` − λ`min ζ

]
≤ λ`min. For any

γ ≥ c ‖∇`(0) ‖2, if w∗ is a d-stationary solution of Zγ on W, then either

(18) Zγ(w)− Zγ(w∗) ≥
[
λ`min

2
− β Lip∇`
ζ + c−1

]
‖w − w∗ ‖22 ∀w ∈ W∗,

or
√
‖w∗ ‖0 ≤ 2 ( ζ+c−1)

ξmin
.
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We close this section by giving a bound on ‖w∗‖0 based on the inequality (13).
The validity of this bound does not require the positivity of λ`min; nevertheless, the
sparsity bound preassumes a bound on ‖w∗‖2; this is in contrast to Theorem 3.2
which makes no assumption on w∗ except for its d-stationarity.

Proposition 3.4. Suppose that assumptions (Acvx
` ), (AL

` ), and (B) hold. Let
g be given by (11). For every γ > c‖∇`(0)‖2 for some scalar c > 0, if w∗ is a d-
stationary solution of Zγ on W such that ‖w∗‖2 ≤ c‖∇`(0)‖2

Lip∇`

[
ξmin
√
L+ 1− ζ − c−1

]
for some integer L > 0 then ‖w∗‖0 ≤ L.

Proof. Assume for contradiction that ‖w∗‖0 ≥ L + 1. Then w∗ 6= 0; hence
ξmin
√
L+ 1 > ζ + c−1. We have

c ‖∇`(0) ‖2
[
ξmin
√
L+ 1− ζ − c−1

]
< γ

[
ξmin
√
L+ 1− ζ − c−1

]
by the choice of γ

≤ γ
[
ξmin ‖w∗ ‖0 − ζ − c−1

]
by assumption on ‖w∗ ‖0

≤ ‖w∗‖2 Lip∇` by (13)

≤ c ‖∇`(0) ‖2
[
ξmin
√
L+ 1− ζ − c−1

]
by assumption on ‖w∗ ‖2.

This contradiction establishes the desired bound on ‖w∗ ‖0.

4. Sparsity functions and their dc representations. In this and the next
section, we investigate the application of the results in section 3 to a host of non-
convex sparsity functions that have been studied extensively in the literature. These
nonconvex functions are deviations from the convex `1-norm that is a well-known
convex surrogate for the `0-function. As mentioned in the introduction, we classify
these sparsity functions into two categories: the exact ones and the surrogate ones.
The next section discusses the class of exact sparsity functions; section 6 discusses
the surrogate sparsity functions. In each case, we identify the constants Lip∇h, β,
ζ, and ξmin of the sparsity functions and present the specialization of the results in
the last section to these functions. For convenience, we summarize in Table 1 the
sparsity functions being analyzed. The results obtained in the next two sections are
summarized in Tables 2 and 3 appended.

5. Exact sparsity functions. While the class of exact K-sparsity functions has
been discussed exclusively in the context of matrix optimization, for the sake of com-
pleteness we formally define these functions for vectors and highlight their properties
most relevant to our discussion. For an m-vector w = (wi)mi=1, let [|w|] , (w[i])mi=1
be derived from w by ranking the absolute values of its components in nonincreasing
order: max1≤i≤m |wi| , |w[1]| ≥ |w[2]| ≥ · · · ≥ |w[m]| , min1≤i≤m |wi|; thus |w[k]| is
the kth largest of the m components of w in absolute values and {[1], . . . , [m]} is an
arrangement of the index set {1, . . . ,m}. For a fixed positive integer K, let

P[K](w) , ‖w ‖1︸ ︷︷ ︸
g[K](w)

−
K∑
k=1

|w[k] |︸ ︷︷ ︸
h[K](w)

=
m∑

k=K+1

|w[k] |.

Clearly, P[K](w) = 0 if and only if w has no more than K nonzero components.
The convexity of h[K], thus the dc-property of P[K], follows from the value-function
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Table 1
Exact and surrogate penalty functions and their properties.

Penalty Difference of convex representation

K-sparsity • ||w ||1 −
K∑

k=1

|w[k] |,

• β = Lip∇h = 0

`1 − `2
• ||w ||1 − ||w ||2,

• β = 1; Lip∇h = 0

SCAD •
m∑

i=1

λi|wi | −
m∑

i=1



0 if |wi | ≤ λ,

( |wi | − λ )2

2 ( a− 1 )
if λ ≤ |wi | ≤ aλ,

λ |wi | −
( a+ 1 )λ2

2
if |wi | ≥ aλ,

• β = 0; Lip∇h = 1

Capped `1
•

m∑
i=1

|wi|
ai
−

m∑
i=1

max
{

0,
wi

ai
− 1, −

wi

ai
− 1
}

,

• β = Lip∇h = 0

Transformed
`1

•
m∑

i=1

ai + 1
ai
|wi| −

m∑
i=1

[
ai + 1
ai
|wi| −

(ai + 1)|wi|
ai + |wi|

]
,

• β = 0; Lip∇h = 2 max
1≤i≤m

ai + 1
a2

i

Logarithmic
•

m∑
i=1

λi

εi
|wi| −

m∑
i=1

λi

[
|wi|
εi
− log(|wi|+ εi) + log εi

]
,

• β = 0; Lip∇h = max
1≤i≤m

λi

εi

Table 2
Summary of general results. w∗ is a d-stationary solution.

Result Condition on constants Conclusions

Thm. 3.2

• c||∇`(0)||2Lip∇h

≤ γLip∇h ≤ λ`
min −

2βLip∇`

ζ + c−1
,

• q∗(c) ≤ 0

• Either
√
||w∗||0 ≤

2
ξmin

[
ζ + c−1 ],

• or w∗ is a minimizer on W∗, unique if

γLip∇h < λ`
min −

2βLip∇`

ζ + c−1

Prop. 3.4 c||∇`(0)||2 < γ
‖w∗ ‖2 ≤

c‖∇`(0)‖2
Lip∇`

[
ξmin
√
L+ 1− ζ − c−1

]
⇒ ‖w∗‖0 ≤ L.

representation below:

(19)
h[K](w) ,

K∑
k=1

|w[k] | = maximum
v∈∆K,m

m∑
i=1

vi |wi |,

where ∆K,m ,

{
v ∈ [ 0, 1 ]m |

m∑
i=1

vi = K

}
.

Since h[K] is piecewise linear, it is LC1 with Lip∇h = 0; moreover, we have β = 0. In
order to calculate the constant ζ associated with the function h[K], it would be useful
to express h[K](w) as the pointwise maximum of finitely many linear functions. For
this purpose, let E(∆K,m) be the finite set of extreme points of the polytope ∆K,m.
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Table 3
Summary of specialized results. q∗(c) , c2 ζ ‖∇`(0) ‖2 Lip∇h+c

[
‖∇`(0) ‖2 Lip∇h + 2β Lip∇`

−λ`
min ζ

]
− λ`

min.

Result Condition on constants Conclusions

Thm. 5.1

(K-sparsity)
w∗ is a minimizer on W∗

Thm. 5.1

(K-sparsity)

• c||∇`(0)||2 < γ,

•
√
K + 1 >

√
K + c−1

‖w∗‖2 ≤
c‖∇`(0)‖2

Lip∇`

[√
K + 1 −

√
K − c−1]

⇒ ‖w∗‖0 ≤ K

Thm. 5.2

(`1 − `2)

• c||∇`(0)||2 < γ,

• c ≤
λ`min

2Lip∇` − λ
`
min

• Either
√
‖w∗‖0 ≤ 2(1 + c−1),

• or w∗ is a global minimizer on W

Thm. 6.1

(SCAD)
γ ≤ 1

2λ
`
min w∗ is a global minimizer on W

Thm. 6.1

(SCAD)
c‖∇`(0)‖2 < γ ≤ 1

2λ
`
min

‖w∗‖2 ≤
c‖∇`(0)‖2

Lip∇`

[
min

1≤j≤m
λj − c

−1
]

⇒
√
‖w∗‖0 ≤

‖∇`(0)‖2
Lip∇`

c − ( min
1≤j≤m

λj

)−1


Thm. 6.2

(Capped `1)
w∗ is a global minimizer on W∗

Thm. 6.2

(Capped `1)
c‖∇`(0)‖2 < γ

‖w∗‖2 ≤
c‖∇`(0)‖2

Lip∇`

 min
1≤j≤m

1

aj

− c−1


⇒
√
‖w∗‖0 ≤

c‖∇`(0)‖2[
min

1≤j≤m
aj

]
Lip∇`

 min
1≤j≤m

1

aj

− c−1


Thm. 6.3

(Transformed `1)
c||∇`(0)||2 ≤ γ ≤

λ`min

2 max
1≤i≤m

ai + 1

a2
i

w∗ is a global minimizer on W

Thm. 6.3

(Transformed `1)
c||∇`(0)||2 < γ ≤

λ`min

2 max
1≤i≤m

ai + 1

a2
i

‖w∗‖2 ≤
c‖∇`(0)‖2

Lip∇`

[
1

4

(
1 + min

1≤i≤m

1

ai

)
− c−1

]

⇒ ∀ i = 1, . . . ,m, either w∗i = 0 or |w∗i | ≥ ai

Thm. 6.4

(Logarithmic)
c||∇`(0)||2 ≤ γ ≤

λ`min

max
1≤i≤m

λi

εi

w∗ is a global minimizer on W

Thm. 6.4

(Logarithmic)
c‖∇`(0)‖2 < γ ≤

λ`min

max
1≤i≤m

λi

εi

‖w∗‖2 ≤
c‖∇`(0)‖2

Lip∇`

[
min

1≤i≤m

λi

2εi
− c−1

]

⇒
√
‖w∗‖0 ≤

c‖∇`(0)‖2[
min
1≤m

εi

]
Lip∇`

[
min

1≤i≤m

λi

2 εi
− c−1

]

We then have

h[K](w) = max

{
m∑
i=1

vi σi wi | v ∈ E(∆K,m); σ ∈ {±1 }m
}
.

Note that if v ∈ E(∆K,m) then each component of v is either 0 or 1 and there are
exactly K ones. For a given pair (v, σ) ∈ E(∆K,m) × {±1}m, the linear function
hv,σ : w 7→

∑m
i=1 vi σi wi has gradient given by v ◦ σ, where ◦ is the notation for the

Hadamard product of two vectors. Hence,

‖∇6=0hv,σ(w) ‖2 =
√ ∑
i :wi 6=0

v2
i σ

2
i =

√
min(K, ‖w‖0 ).

Since for any nonzero vector w and for any η ∈ ∂g[K](w), ‖η6=0‖2 =
√
‖w‖0, it follows
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thatforallw∈W,allη∈∂g[K](w),andallpairs(v,σ)∈E(∆K,m)×{±1}
m,

η=0−∇=0hv,σ(w)2 ≥ η=0 2− ∇=0hv,σ(w)2

=0 ifw 0≤K,

≥
√
K+1−

√
K ifw 0≥K+1.

Sinceeachfunctionhv,σisaffine,Proposition3.1applies.Inordertoidentifythe
vectorsw∈ Wthatshareacommonpiecewithw∗,i.e.,w∈ W∗,wearrangethe
componentsof|w∗|asfollows:

|w∗[1]|≥···≥|w
∗
[s∗]|> |w∗[s∗+1]|=···=|w

∗
[K]|=···=|w

∗
[t∗−1]|

allequalto|w∗[K]|

> |w∗[t∗]|≥···≥|w
∗
[m]|,

andlet

I∗> {[1],...,[s∗]}, I∗= {[s∗+1],...,[t∗−1]}, and I∗< {[t∗],...,[m]}.

Vectorswthatshareacommonpiecewithw∗arethosesuchthatP[K](w)= i∈I∗<
|wi|

+ i∈J∗=
|wi|,whereJ

∗
= isanysubsetofI

∗
= witht

∗−(K+1)elements. Let

Z[K];γ(w) (w)+γP[K](w).

Theorem5.1.Assumethatconditions(AL),(Acvx),and(B)hold.Forafixed
integerK≥1andscalarγ>0,thefollowingtwostatementsholdforad-stationary
pointw∗ofthefunctionZ[K];γ(w)onW:
(a)w∗isaglobalminimizerofZ[K];γ(w)onthesubsetofvectorsw∈ Wthatshare
acommonpiecewithw∗.
(b)Supposethatγ>c ∇(0)2forsomec>0satisfying

√
K+1>

√
K+c−1.If

w∗ 2≤
c ∇ (0) 2

Lip∇

√
K+1−

√
K−c−1 ,then w∗ 0≤K.

Proof.Statement(a)followsfromProposition3.1withLip∇h=0.Statement
(b)followsfromtheinequality w∗ 2Lip∇ ≥γ η=0−∇=0hv,σ(w)2−c

−1 by
acontrapositiveargumentandthelowerboundon η=0−∇=0hv,σ(w)2;cf.the
proofofProposition3.4.

5.1. The 1 2function.When K=1,thezerosofthefunctionP[1](w)=

w 1− w ∞ arethe1-sparsevectors.ItturnsoutthatthefunctionP1−2(w)
w 1− w 2hasthesamepropertyasP[1](w)inthisregard. Nevertheless,struc-
turally,thesetwofunctionsaredifferent:specifically,P[1]isapiecewiselinearfunction
whereasthe 2-functioninP1−2

isnotpiecewisesmoothalthoughitisdifferentiable
everywhereexceptattheorigin.Assuch,Corollary3.3isapplicable.Asshownpre-
viously,condition(ALh)holdswithLip∇h=0andβ=1. Moreover,foranyw=0,
∇ w 2 2=1.CorrespondingtoP1−2

,wewriteZ
1−2;γ(w) (w)+γP

1−2
(w).

Theorem5.2.Assumeconditions(AL),(Acvx),and(B).Letc>0satisfy

c 2Lip∇ −λmin ≤λmin.

Foranyγ>c ∇(0)2,ifw
∗isad-stationarysolutionofZ1−2;γonW,theneither

w∗ 0≤2(1+c
−1),or

(20) Z
1−2;γ(w)−Z1−2;γ(w

∗)≥
λmin
2
−
Lip∇
1+c−1

w−w∗ 2
2 ∀w∈ W
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Remark. The inequality (20) is global on the entire set W.

We should point out that there are other piecewise linear functions whose zeros
are 1-sparse but are not necessarily exact sparsity functions. Indeed, for any finite
subset V of the unit Euclidean ball, the function PV (w) = ‖w‖1 − maxv∈V vTw is
one such function. This can be seen from the inequality PV (w) ≥ ‖w‖1 − ‖w‖2, from
which it follows that the zeros of PV (w) must be 1-sparse. Nevertheless, the 1-sparse
vectors are not necessarily the zeros of PV (w) if the subset V is not properly chosen.
Yet a result similar to Theorem 5.1 can be derived for the function PV .

6. Surrogate sparsity functions. We next examine several inexact sparsity
functions. All such functions to be examined are of the folded concave type [19] and
separable so that P (w) =

∑m
i=1 pi(wi) with each pi(wi) representable as the difference

of a convex and a pointwise maximum of finitely many differentiable convex function;
cf. 2); i.e., pi(wi) = gi(wi)−max1≤j≤Ii hi,j(wi) where gi and each hi,j are univariate
convex functions with hi,j differentiable. For each sparsity function examined below,
we discuss the applicability of the results in section 3.

6.1. The SCAD family. Foremost among the separable sparsity functions is
the SCAD (smoothly clipped absolute deviation) family [17, 18, 35]. Parameterized
by two scalars a > 2 and λ > 0 and with the origin as its unique zero, this univariate
function is once continuously differentiable except at the origin and given by, for all
t ∈ R,

pSCAD
a,λ (t) ,



λ | t | if | t | ≤ λ,

( a+ 1 )λ2

2
− ( a λ− | t | )2

2 ( a− 1 )
if λ ≤ | t | ≤ a λ,

( a+ 1 )λ2

2
if | t | ≥ a λ .

The representation of this function as a dc function gSCAD
λ (t)−hSCAD

a,λ (t) with hSCAD
a,λ (t)

being differentiable and gSCAD
λ (t) being a multiple of the absolute-value function is

known [22]. (Nevertheless, Theorem 6.1 is new.) Specifically, we may take

gSCAD
λ (t) , λ | t | and hSCAD

a,λ (t) ,



0 if | t | ≤ λ,

( | t | − λ )2

2 ( a− 1 )
if λ ≤ | t | ≤ a λ,

λ | t | − ( a+ 1 )λ2

2
if | t | ≥ a λ.

The function hSCAD
a,λ (t) is continuously differentiable with derivative given by

dhSCAD
a,λ (t)
dt

=


0 if | t | ≤ λ,

| t | − λ
a− 1

sign(t) if λ ≤ | t | ≤ a λ,

λ sign(t) if | t | ≥ a λ.

It is not difficult to see that the function hSCAD
a,λ (t) is LC1 on R with its derivative

being Lipschitz continuous with a Lipschitz constant of 2 (recall that a > 2). To

D
ow

nl
oa

de
d 

09
/0

8/
17

 to
 6

8.
18

1.
20

6.
23

. R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.si

am
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

DC LEARNING 1657

verify the latter property, we need to show that∣∣∣∣∣ dhSCAD
a,λ (t)
dt

−
dhSCAD

a,λ (t ′)
dt

∣∣∣∣∣ ≤ 2 | t− t ′ |

for two arbitrary scalars t and t ′. The derivation below establishes this for t and t ′

satisfying −aλ ≤ t ≤ −λ and λ ≤ t ′ ≤ aλ:∣∣∣∣∣ dhSCAD
a,λ (t)
dt

−
dhSCAD

a,λ (t ′)
dt

∣∣∣∣∣ =
∣∣∣∣ t+ λ

a− 1
− t ′ − λ
a− 1

∣∣∣∣ =
∣∣∣∣ t− t ′a− 1

− 2λ
a− 1

∣∣∣∣ ≤ 2 | t− t ′ |

because a > 2. The same inequality can be derived for all other cases of the pair
(t, t ′). As a consequence of this LC1 property, Proposition 3.1 is applicable to the
SCAD family of surrogate sparsity functions ZSCAD

γ;a,λ (w) , `(w)+γ P SCAD
a,λ (w), where

for given positive constants {ai, λi}mi=1 with ai > 2 for all i,

P SCAD
a,λ (w) ,

m∑
i=1

λi |wi |︸ ︷︷ ︸
weighted `1

−
m∑
i=1

hSCAD
ai,λi (wi)︸ ︷︷ ︸

hSCAD
a,λ (w)

.

The cited proposition yields the strong convexity of the objective ZSCAD
γ;a;λ (w) on Rm,

provided that γ ≤ λ`min/2. To obtain a bound on ‖w∗‖0 from Theorem 3.2, we
evaluate ‖ η 6=0 −∇ 6=0h

SCAD
a;λ (w) ‖22 for a subgradient η ∈ ∂gSCAD

λ (w). We have

(21)

‖ η6=0 −∇ 6=0h
SCAD
a;λ (w) ‖22 =

∑
k :wk 6= 0

(
λk sign(wk)−

dhSCAD
ak,λk

(wk)
dwk

)2

=
∑

k : 0<|wk|<λk

λ2
k +

∑
k :λk≤|wk|≤akλk

(
λk −

|wk | − λk
ak − 1

)2

=
∑

k : 0<|wk|<λk

λ2
k +

∑
k :λk≤|wk|≤akλk

(
ak λk − |wk |

ak − 1

)2

≥ min
1≤j≤m

λ2
j provided that there is one k such that 0 < |wk| < λk.

Theorem 6.1. Assume conditions (AL
` ), (Acvx

` ), and (B). Let {ak, λk}mk=1 be
positive scalars such that ak > 2 for all k. For every positive scalar γ ≤ 1

2 λ
`
min, if w∗

is a d-stationary point of ZSCAD
γ;a;λ (w) on W, then w∗ is a minimizer of this function

on W; more precisely,

ZSCAD
γ;a;λ (w)− ZSCAD

γ;a;λ (w∗) ≥
[
λ`min

2
− γ

]
‖w − w∗ ‖22 ∀w ∈ W.

Moreover, if γ > c ‖∇`(0) ‖2 for some c > 0 and

(22) ‖w∗ ‖2 ≤
c ‖∇`(0) ‖2

Lip∇`

[
min

1≤j≤m
λj − c−1

]
,

then for every k = 1, . . . ,m, either w∗k = 0 or |w∗k| ≥ λk; hence
√
‖w∗ ‖0 ≤

‖∇`(0) ‖2
Lip∇`

[
c− 1

min1≤j≤m λj

]
.
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Proof. It suffices to show the last two assertions of the theorem. Assume the
choice of γ and the bound on ‖w∗‖2. There is nothing to prove if w∗ = 0. Otherwise,
we must have min1≤j≤m λj−c−1 > 0. Moreover, if there exists k such that 0 < |w∗k| <
λk, then ‖ η 6=0 − ∇6=0h

SCAD
a;λ (w) ‖2 ≥ min1≤j≤m λj . This contradicts the inequality

‖w∗ ‖2 Lip∇` ≥ γ
[
‖ η 6=0 − ∇6=0h

SCAD
a;λ (w) ‖2 − c−1

]
. To complete the proof of the

theorem, let ‖w∗ ‖0 = K. Then
√
K min

1≤j≤m
λj ≤ ‖w∗ ‖2 ≤

c ‖∇`(0) ‖2
Lip∇`

[
min

1≤j≤m
λj − c−1

]
,

from which the desired bound on K follows.

Remarks. The two conditions c ‖∇`(0)‖2 < γ ≤ 1
2 λ

`
min and (22) together yield

min1≤j≤m λj ≥ 2 ‖∇`(0) ‖2
λ`min

, which offers a guide in choosing the parameters λj in the

SCAD function so that Theorem 6.1 is applicable to the function ZSCAD
γ;a;λ (w). The

recipe of deriving a bound on ‖w∗‖0 from the individual components w∗k persists in
the later results; details will not be repeated.

6.2. The MCP family. Next we discuss the MCP (minimax concave penalty)
family of surrogate sparsity functions [53]. Also parameterized by two positive scalars
a > 2 and λ, the building block of these functions is the univariate, piecewise quadratic
function: for t ∈ R,

pMCP
a,λ (t) , a λ2 − [ ( aλ− | t | )+ ]2

a
.

Similar to the SCAD decomposition, we may take

gMCP
λ (t) , 2λ | t | and hMCP

a,λ (t) ,


t2

a
if | t | ≤ a λ,

2λ | t | − a λ2 if | t | ≥ a λ.

Moreover, the function hMCP
a,λ (t) is convex and continuously differentiable with a de-

rivative given by

dhMCP
a,λ (t)
dt

=


2 t
a

if | t | ≤ a λ,

2λ sign(t) if | t | ≥ a λ .

Moreover, using the fact that a > 2, we can verify that, for any two scalars t and t ′,∣∣∣∣∣ dhMCP
a,λ (t)
dt

−
dhMCP

a,λ (t ′)
dt

∣∣∣∣∣ ≤ | t− t ′ |.
The MCP sparsity function is defined as follows: for some positive constants {ai, λi}mi=1
with ai > 2 for all i,

PMCP
a,λ (w) , 2

m∑
i=1

λi |wi | −
m∑
i=1

hMCP
ai,λi (wi)︸ ︷︷ ︸

hMCP
a,λ (w)

.

At this point, we can proceed similarly to the SCAD function and obtain a result
analogous to Theorem 6.1. In particular, since hMCP

a,λ is differentiable, the globally
minimizing property of a stationary solution is on the entire set W. We omit the
details.
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6.3. The capped `1 family. One distinction of this family from the previous
two families is that the capped `1 functions are piecewise linear; thus Propositions 3.1
and 3.4 are applicable. The building block of this family of functions is as follows: for
a given scalar a > 0 and for all t ∈ R,

pcapL1
a (t) , min

(
| t |
a
, 1
)

=
| t |
a
−max

(
0,
| t |
a
− 1

)
.

This leads to the surrogate penalty function: given positive scalars {ai}mi=1 and for
all t ∈ R,

P capL1
a (w) ,

m∑
i=1

min
(
|wi |
ai

, 1
)

=
m∑
i=1

|wi |
ai︸ ︷︷ ︸

gcapL1
a (w)

−
m∑
i=1

max
(

0,
wi
ai
− 1,

−wi
ai
− 1

)
︸ ︷︷ ︸

hcapL1
a (w)

.

We have the following result for the function ZcapL1
γ;a (w) , `(w) + γP capL1

a (w). Due
to the piecewise property of the function hcapL1

a (w), the minimizing property is of the
restricted kind for vectors sharing a common piece with the given stationary solution
on hand.

Theorem 6.2. Assume conditions (AL
` ), (Acvx

` ), and (B). Let {ak}mk=1 be posi-
tive scalars. The following two statements hold for a d-stationary point w∗ of ZcapL1

γ;a (w)
on W for any γ > 0.
(a) w∗ is a global minimizer of ZcapL1

γ;a (w) on the subset of vectors of W that share a
common piece with w∗.

(b) If γ > c ‖∇`(0) ‖2 for some c > 0 and ‖w∗ ‖2 ≤ c ‖∇`(0) ‖2
Lip∇`

[
min1≤j≤m

1
aj
−c−1

]
,

then for every k = 1, . . . ,m, either w∗k = 0 or |w∗k| ≥ ak; thus
√
‖w∗ ‖0 ≤

c ‖∇`(0) ‖2
[ min1≤j≤m aj ] Lip∇`

[
min1≤j≤m

1
aj
− c−1

]
.

6.4. The transformed `1-family. Employed recently by [54], this function is
given as follows: for a given a > 0 and for t ∈ R,

pTL1
a (t) ,

( a+ 1 ) | t |
a+ | t |

which has the dc decomposition

pTL1
a (t) =

a+ 1
a
| t |︸ ︷︷ ︸

gTL1
a (t)

−
[
a+ 1
a
| t | − ( a+ 1 ) | t |

a+ | t |

]
︸ ︷︷ ︸

hTL1
a (t)

.

The univariate function hTL1
a (t) is strictly convex and (infinitely many times) differ-

entiable on the real line as can be seen from its first and second derivatives:

dhTL1
a (t)
dt

=
[
a+ 1
a
− a ( a+ 1 )

( a+ | t | )2

]
sign(t) and

d 2hTL1
a (t)
dt2

=
2a ( a+ 1 )
( a+ | t | )3 .

The second derivative also shows that dhTL1
a (t)
dt is Lipchitz continuous with modulus

2 ( a+1 )
a2 . For given positive parameters {ai}mi=1, and with

gTL1
a (w) ,

m∑
i=1

ai + 1
ai

|wi | and hTL1
a (w) ,

m∑
i=1

[
ai + 1
ai

|wi | −
( ai + 1 ) |wi |
ai + |wi |

]
,
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we have for any η ∈ ∂gTL1
a (w),

∥∥ η6=0 −∇ 6=0h
TL1
a (w)

∥∥
2 =

√√√√ ∑
i :wi 6=0

(
ai ( ai + 1 )

( ai + |wi | )2

)2

≥ 1
4

(
1 + min

1≤i≤m

1
ai

)
if ∃ k such that 0 < |wk | < ak.

Taking Lip∇h = 2 max1≤i≤m
ai+1
a2
i

, we obtain a result for the function ZTL1
γ;a (w) ,

`(w) + γ PTL1
a (w), where

PTL1
a (w) ,

m∑
i=1

( ai + 1 ) |wi |
ai + |wi |

that is similar to Theorem 6.1 for the function ZSCAD
γ;a;λ and Theorem 6.2 for the function

ZcapL1
γ;a (w).

Theorem 6.3. Assume conditions (AL
` ), (Acvx

` ), and (B). Let {ak}mk=1 be posi-
tive scalars. For every positive scalars c and γ such that

c ‖∇`(0) ‖2 ≤ γ ≤ λ`min

2 max
1≤i≤m

ai + 1
a2
i

,

if w∗ is a d-stationary point of ZTL1
γ;a (w) onW, then w∗ is a minimizer of this function

on W; more precisely,

ZTL1
γ;a (w)− ZTL1

γ;a (w∗) ≥
[
λ`min

2
− γ max

1≤i≤m

ai + 1
a2
i

]
‖w − w∗ ‖22 ∀w ∈ W.

Moreover, if γ > c ‖∇`(0) ‖2 and ‖w∗ ‖2 ≤ c ‖∇`(0) ‖2
Lip∇`

[ 1
4

(
1 + min1≤i≤m

1
ai

)
− c−1

]
,

then for every k = 1, . . . ,m, either w∗k = 0 or |w∗k| ≥ ak.

6.5. The logarithmic family. Introduced in [9] as an optimization formulation
for the reweighted `1 procedure, and studied in particular in [22, 31], this family of
functions is built from the univariate function: given positive scalars λ and ε,

plog
λ;ε(t) , λ log(| t |+ ε)− λ log ε, t ∈ R,

which has the dc decomposition

plog
λ;ε(t) =

λ

ε
| t | − λ

[
| t |
ε
− log(| t |+ ε) + log ε

]
︸ ︷︷ ︸

hlog
λ;ε(t)

.

(Although this logarithmic function fails to satisfy the “continuity property” in the set
of postulates of [17], we include it here to illustrate the breadth of our framework.) The
univariate function hlog

λ;ε is strictly convex and (infinitely many times) differentiable
on the real line as can be seen from its first and second derivatives:

dhlog
λ;ε(t)
dt

=
λ t

ε ( ε+ | t | )
and

d 2hlog
λ;ε(t)
dt2

=
λ

( ε+ | t | )2 ∀ t ∈ R.
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The second derivative also shows that
dhlog
λ;ε(t)
dt is Lipchitz continuous with modulus

λ/ε2. For given positive parameters {λi, εi}mi=1, and with

glog
λ;ε(w) ,

m∑
i=1

λi
εi
|wi | and hlog

λ;ε(w) ,
m∑
i=1

λi

[
|wi |
εi
− log(|wi |+ εi) + log εi

]
,

we have for any η ∈ ∂glog
λ;ε(w),

∥∥∥ η6=0 −∇ 6=0h
log
λ;ε(w)

∥∥∥
2

=

√√√√ ∑
i :wi 6=0

λ2
i

( εi + |wi | )2

≥ min
1≤i≤m

λi
2 εi

if ∃ k such that 0 < |wk | < εk.

Similar to previous results for the functions ZSCAD
γ;a;λ (w) and ZTL1

γ;a (w), the result below
pertains to a d-stationary point of the function Z log

γ;λ;ε(w) , `(w) + γ P log
λ;ε (w), where

P log
λ;ε (w) ,

∑m
i=1 λi log(|wi|+ εi).

Theorem 6.4. Assume conditions (AL
` ), (Acvx

` ), and (B). Let {ak, εk}mk=1 be
positive scalars. For every positive scalars c and γ such that

c ‖∇`(0) ‖2 ≤ γ ≤ λ`min

max
1≤i≤m

λi
ε2
i

,

if w∗ is a d-stationary point of Z log
γ;λ;ε(w) onW, then w∗ is a minimizer of this function

on W; more precisely,

Z log
γ;λ;ε(w)− Z log

γ;λ;ε(w
∗) ≥ 1

2

[
λ`min − γ max

1≤i≤m

λi
ε2
i

]
‖w − w∗ ‖22 ∀w ∈ W.

Moreover, if γ > c ‖∇`(0) ‖2 and ‖w∗ ‖2 ≤ c ‖∇`(0) ‖2
Lip∇`

[
min1≤i≤m

λi
2 εi
− c−1

]
, then

for every k = 1, . . . ,m, either w∗k = 0 or |w∗k| ≥ εk. Hence,√
‖w∗ ‖0 ≤

c ‖∇`(0) ‖2[
min
1≤m

εi

]
Lip∇`

[
min

1≤i≤m

λi
2 εi
− c−1

]
.

This completes the proof.

6.6. Some comments on results. We note that in the statistical learning
literature [57, 60] among others, the bounds on the estimators from minimizing a
regularized cost function are probabilistic and typically in the limit of large sample size
or dimension. In contrast, our sparsity bounds in Proposition 3.4 and Theorems 5.1,
5.2, 6.1, 6.2, 6.3, and 6.4 on a d-stationary point are deterministic and hold in any
fixed sample size and dimension. Moreover, these results are explicit and helpful
for analyzing numerical algorithms. In a set of regularized least-squares tests, we
find that our sparsity bounds are robust and can still be valid when the theoretical
sufficient conditions are not satisfied. In this regard, we should emphasize that these
conditions are necessarily conservative and an advanced analysis could yield better
sparsity bounds for targeted sparsity functions.
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7. Concluding remarks and future work. Based on a general derivation, we
have analyzed the minimizing and sparsity properties of a d-stationary solution of the
minimization problem (1). The analysis makes it clear about the role of the parameter
γ in obtaining these properties. In contrast to the statistical analysis, our approach
is totally deterministic, taking as given the form of the optimization problem to be
solved in practice and adopting a pragmatic perspective about the kind of solution
being analyzed. In a companion paper [1] under preparation, we will examine the
computational comparisons of the various problems studied in this paper, including
the use of the algorithms described in [42] for computing the d-stationary solutions.

It is natural to ask what role the error bound

(23) Zγ(w)− Zγ(w∗) ≥
[
λ`min

2
− γ

(
Lip∇h

2
+

β

‖w∗‖2

)]
‖w − w∗ ‖22 ∀w ∈ W

for a d-stationary solution w∗ of Zγ(w) on the set W plays when this function is
constructed with the goal of addressing the bicriteria optimization of an expected loss
and the sparsity of an underlying statistical model; i.e., the problem

(24) bicriteria minimization
w∈W

(E [`(w, ω̃)] , ‖w‖0 ) .

Here, the uncertainty ω̃ is a random vector defined on the probability space (Ω,F ,P),
with Ω being the sample space, F being the σ-algebra generated by subsets of Ω, P
being a probability measure defined on F , and E being the associated expectation
operator. We assume that `(•, ω) is convex onW for every fixed but arbitrary ω ∈ Ω.
We approximate the bicriteria stochastic program (24) by a regularized sample average
approximation (SAA) wherein we take N independently and identically distributed
samples {ωi}Ni=1 of the random variable ω̃, regularize the loss function to ensure the
strong convexity of the sampled loss function, introduce the sparsity function P (w)
to substitute for the `0-function, and convert this biobjective minimization problem
(24) to a single-objective, sampled minimization problem:

(25) argmin
w∈W

Zγ;N (w) ,
1
N

N∑
j=1

`(w,ωj) +
αN
2
wTw︸ ︷︷ ︸

`N (w) with convexity modulus λ`N ;min

+ γN P (w),

where αN ≥ 0 and γN > 0 may depend on the sample size N . The asymptotic
analysis of the standard SAA approach for solving a single-objective expected-value
minimization problem: minimizew∈W E [`(w, ω̃)], is well understood in stochastic pro-
gramming, particularly for the convex case; see [47, Chapter 5]. The existing analysis
is complicated by the presence of the nonconvex function P (w), which renders the
resulting SAA subproblem (25) nonconvex. Such an analysis typically works with a
global minimizer of (25) and/or its global optimum value, both of which are compu-
tationally not available. This is where an error bound such as (23) could be useful.
Indeed, a minimizing property of a d-stationary solution provides the missing link
between the statistical analysis and computational practice. It is our interest to pur-
sue this line of research in a future work that will explore the role of (23) in such an
analysis.
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