WireFab: Mix-Dimensional Modeling and Fabrication
for 3D Mesh Models

'Min Liu; 'Yunbo Zhang; 3 Jing Bai, ' Yuanzhi Cao, ' Jeffrey M. Alperovich, '->Karthik Ramani
'School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907 USA
2School of Electrical and Computer Engineering] Purdue University, West Lafayette, IN 47907 USA
{liu66,zhan2014,caol58, jal per,ramani} @ purdue.edu
3School of Computer Science and Engineering, Beifang University of Nationalities, Yinchuan, China
baijing_nun@163.com

Figure 1. The building pipeline using WireFab: Given a 3D mesh Gringotts Dragon model, WireFab allows the user to (a) generate a smooth 1D inner
skeleton and (b) customize the segmentations at the locations where the inner skeleton and the part are desired to be articulated, and (c) specify the
corresponding rigid body appearances of different dimensionalities, joint types and motion ranges. Also the fabrication files of all appearances and
joints are generated for the user to (d) quickly prototype and (e) assemble and pose the articulated character (fabricated Gringotts Dragon with 78

parts in total).

ABSTRACT

Many rapid fabrication technologies are directed towards layer
wise printing or laser based prototyping. We propose Wire-
Fab, a rapid modeling and prototyping system that uses bent
metal wires as the structure framework. WireFab approxi-
mates both the skeletal articulation and the skin appearance
of the corresponding virtual skin meshes, and it allows users
to personalize the designs by (1) specifying joint positions
and part segmentations, (2) defining joint types and motion
ranges to build a wire-based skeletal model, and (3) abstract-
ing the segmented meshes into mixed-dimensional appearance
patterns or attachments.

The WireFab is designed to allow the user to choose how to
best preserve the fidelity of the topological structure and artic-
ulation motion while selectively maintaining the fidelity of the
geometric appearance. Compared to 3D-printing based high-
fidelity fabrication systems, WireFab increases prototyping

*Min Liu and Yunbo Zhang contributed equally to this paper.
"By courtesy

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions @acm.org.

CHI 2017, May 06-11, 2017, Denver, CO. USA

Copyright © 2017 ACM ISBN 978-1-4503-4655-9/17/05$15.00.

DOI: http://dx.doi.org/10.1145/3025453.3025619

speed by ignoring unnecessary geometric details while preserv-
ing structural integrity and articulation motion. In addition,
other rapid or low-fidelity fabrication systems produce only
static models, while WireFab produces posable articulated
models and has the potential to enable personalized functional
products larger than the machines that produce them.

ACM Classification Keywords
H.5.2. [Information Interfaces and Presentation]: User
Interface

Author Keywords
Mix-dimensional fabrication; shape abstraction; interactive
curve modeling; skeletal deformation, physical prototyping

INTRODUCTION

In recent years, personal design and fabrication have been
enabled by the development of both hardware and software.
People tend to design and fabricate 3D models based on their
own ideas and in a variety of forms, such as origami, pla-
nar cross-section assembly, or 3D printing. The increasing
popularity of 3D modeling software and personal fabrication
devices has fueled a flurry of recent research towards seam-
lessly merging functional design and personal fabrication [23].

While tools and services that map static properties of a de-
signed model to fabrication exist, constructing posable artic-
ulated models remains a difficult problem. Recent works [3,
7, 35] are proposed to tackle this issue using 3D printed parts

and joints. In this paper, we propose WireFab, a new sys-
tem that supports wire-based multi-dimensional modeling and
rapid fabrication for articulated models. WireFab utilizes the
popular personal fabrication technologies such as 3D printing,
and 2D laser cutting, and integrates them with newly available
desktop wire bending technology [18]. Several geometric al-
gorithms and corresponding interaction operations have been
developed to enable the embedding of 3D static meshes with
wire-based custom articulation, versatile appearance attach-
ments and parameterized joints and connectors, leading to a
flexible design and prototyping system for articulated models.

We aim to lower the barriers to both design and fabrication
so that designers who lack specialized knowledge can quickly
prototype posable objects. To this end, we propose an intuitive
workflow that takes as input a static 3D mesh model (see Fig.
1(a)) which could either be downloaded from online design
repositories (e.g., http://www.thingiverse.com) or created us-
ing scanning systems such as Kinnect Fusion or Autodesk
123D Catch. The user designs an articulation model from the
static mesh by first abstracting a smooth curve inner skeleton
(Fig. 1(a)) that represents its skeletal structure. Using the inner
skeleton as the rig, the input mesh is segmented by users at
points where they desire individual parts and skeletons to be
articulated (Fig. 1(b)). Users’ design intent is further realized
by allowing them to interactively specify the corresponding ro-
tational joint motion constraints, as well as the appearance of
the segmented parts. WireFab allows users to balance fidelity
and speed to best preserve the topological structure while se-
lectively maintaining the fidelity of the geometric appearance
by combining auto-generated 3D printable joints, 1D bendable
skeletal wires, and user designed appearance attachments of
various forms (see Fig. 1 (c)). This framework enables users
to achieve the desired prototyping speed, kinematic motion,
and aesthetic outlook of 3D models.

RELATED WORK

We broadly classify the related work into functional design
and fabrication, mixed 3D fabrication, fabrication-aware shape
design, and articulated object modeling and fabrication.

Functional design and fabrication: One of the trends we
notice in the recent work on personal design and fabrication is
the introduction of functionality into the fabrication process
in order to allow non-expert users to create functional objects.
Tubes and cuboids are embedded into given sculptural 3D
models to house functionality and articulation in [29, 11] and
are fabricated by low cost 3D printing processes. Prévost et
al. [28] proposed an approach to generating models which can
stand alone by deforming the initial inputs, while Spin-it [4]
converts a given 3D model into a spinnable toy. Umentani et
al. [34] proposed a method to deal with the flyability of laser
cut paper airplanes. Other interesting works involve building
working prototypes of mechanical designs for testing [16],
printing mechanical toys [40] and characters with designable
motions [33]. Most of these methods are based on 3D printing
and suffer from the problems of slow processing time and extra
post processing for support structures. The scale of objects
generated by 3D printing is also constrained by the size of the
printer.

Mixed 3D fabrication: Some recent works from the human-
computer interaction community have begun to explore the
use of other fabrication methods together with 3D printing. By
introducing intermediate low-fidelity fabrication into the tradi-
tional slow but high-fidelity 3D printing process, Mueller et al.
and Beyer et al. proposed a variety of alternative fabrication
methods to speed-up 3D printing, such as printing a wireframe
mesh of an object [25], and substituting sub-volumes of a
model with standard Lego building blocks [26] or laser-cut
Platener [5]. Recent work CofiFab [32] combines 3D print-
ing and 2D laser cutting to support the fabrication of large
3D objects, while Wraplt [14] generates 3D printed support
structure to help users bend the wire into appropriate shape
for jewelry making. These different approaches effectively
reduced the fabricating time while preserving the shape of a
static model, but none of them dealt with articulation deforma-
tions of posable objects.

Fabrication-aware shape design: Lau et al. [19] presented
a formal grammar combined with lexical and structural anal-
ysis to generate fabricatable parts and connectors from a 3D
furniture model. Another study focuses on the constraints and
sequences of assemblies by creating geometric puzzles, such
as Polyomino [22] and Burr puzzles [37]. Li et al. [20] de-
veloped an algorithm for computing paper architecture using
pop-ups. Megaro et al. [24] and Coros et al. [9] proposed
interactive systems for designing animated mechanical charac-
ters. A recent work AutoConnect [17] generates connectors
between different objects based on their shapes at connec-
tion points. Our WireFab is the first attempt, to the best of
our knowledge, to focus on the automatic generation of both
3D-printed static connectors and motion joints specifically
designed for wire connections and wire-based articulation.

Articulated object modeling and fabrication Recent work
on mapping 3D meshes to 3D-printable, jointed models either
assumes that the input mesh is associated with linear blend
skinning (LBS) [3], or manually inserts a classical animation
rig into the input mesh [7]. However, the skinning weights
or the animation rigs might not be directly available to naive
users. The proposed WireFab takes advantage of recent ad-
vances in automatic curve skeleton abstraction, and interactive
mesh segmentation to further simplify the process of creating
ready-to-articulate and ready-to-fabricate 3D models with 3D
static mesh input. In a related work, CarboardiZer [38] also
takes a 3D static mesh as the input, but it focuses on generat-
ing planar foldable patterns for each rigid body and the joint
type is restricted to a IDOF (degree of freedom) hinge joint.
In WireFab, the segmented rigid bodies may have different
appearances, and it supports many joint types: 1D hinge, 2D
universal, or 3D ball-and-socket joints. These joints enable
more articulation functionalities in the design and fabrication
space.

Observing existing tools for the fabrication of articulated ob-
jects, it becomes apparent that most of them only allow for
the fabrication of static models, though, some of them support
articulated objects using 3D printing [3, 7] or 2D die cutting
[38]. They are further limited by the size of the fabrication ma-

chines, the printing speed, or the types of motion achievable.
The main contributions of WireFab are:

1) A new work-flow based on bent metal wires where inner
skeletons of 3D models serve as the structural framework
to which the appearances are attached;

2) 3D printed joint and connector primitives are automatically
generated and are parameterized based on posability calcu-
lations with minimal user input; and

3) Multi-form appearance modeling and fabrication, including
3D printed detailed parts, 2D laser-cut planar cross-sections
and 1D bent wires, which allows for a rich expressiveness.

OVERVIEW

WireFab produces customizable articulated prototypes directly
from digital 3D models. As shown in Fig. 2, our compu-
tational design platform work-flow unfolds as follows: the
designer (1) inputs a desired 3D mesh model, (2) edits the
automatically generated inner curve skeleton to the desired
structure and shape, (3) customizes the segmented parts and
inner skeleton joint placement within the model to be artic-
ulated, (4) interactively designs the appearance of each part
using a 3D solid object, 2D cross sections, or 1D wires, and (5)
interactively designs the joint types, motion axes and motion
ranges which define the articulation properties. The system
then generates all the connectors, joints and appearances ac-
cording to the fabrication model. Users are able to express
their creativity and intent by controlling the number of artic-
ulated parts, appearance details, and the complexity of the
articulation motion.

Customize - Design
segmentation appearance

Input a Extractand edit ™
desired shape inner skeleton

Solid closure

Cross section pattern
Fabricate and assemble
skeletal wires, joints,
connectors and
appearances

Predefined wire pattern
Generate all the

connectors and joints Freehand-draw wires

- <= Specify articulation

Figure 2. Pipeline process of WireFab.

SKELETON DRIVEN ARTICULATION MODELING

The articulated behavior of a posable object is modeled from
a static mesh. A Skeleton is first extracted, edited and then the
set of articulated joints are defined on it so that to separate the
input model into joints and rigid bodies.

Skeletal wire extraction and editing

WireFab assumes no animation rig associated with the input
mesh and it starts by extracting 1D curve skeleton of every in-
put 3D model to capture the structural information and support
articulation motion. A digital curve skeleton have been com-
puted by thinning from a volumetric model [31] or guided by
a force field [8]. Geometric methods also exist for automatic
skeletonization from surface meshes, which include mesh con-
traction [2], computing the Reeb graph [27], or surface infla-
tion [30]. In order not to restrict our WireFab framework, we
remain agnostic as to which skeletonization method is used. In

the implementation, the medial geodesic function [10] based
1D curve skeleton was used as it is topology-preserving and
stable against small changes.

(a) (b) (©)

(d) L

Figure 3. Some examples of skeleton editing tools and the final skeleton
of the Gringotts Dragon model: (a) merging all skeletons between two
junction points into one skeleton, (b) smoothing a skeleton, (c) deleting
boundary segments, (d) final skeleton after editing with provided tools.

The inner curve skeleton is related but does not directly corre-
spond to the rig required in articulation modeling; hence there
is a need for editing curve skeletons to represent articulation
rigs according to users’ intent. The edit operation is usually
required when 3D models are noisy and complex with small
features, the extracted skeleton may appear zig-zag and con-
tain numerous small branches. Some skeleton details represent
tiny topological structure variations but do not affect the over-
all articulation. Accordingly, we developed a set of interactive
tools for users to generate smooth and compact skeleton-based
rig, functions including merging multiple skeletons into one
using the shortest curve path; deleting boundary skeletons
according to the depths of connected junction points; and
smoothing skeletons via linear, conic or cubic smoothing func-
tions. Fig. 3 gives some examples of the editing capabilities
and the final skeleton for the Gringotts Dragon model.

Customizable segmentation for rigid parts and joint

placement

In WireFab, we adapt “dot scissor” [39] to capture local con-
cave shape features using concavity-aware harmonic fields,
and to select the best cutting boundaries using a voting scheme.
The designer first specifies a stroke on the model surface (ren-
dered as a small circle with the stroke as the diameter) through
which the partitioning curves are expected to pass. The view
direction vector and the stroke give a cutting plane which
first creates a potential joint placement position on the inner
skeleton. A concavity-aware harmonic field is then computed
by using the user’s specified stroke as a constraint. A set of
candidate curves are computed upon the harmonic field by ex-
tracting iso-value curves. The voting scheme as [39] is adapted
to select the best partitioning curves according to their concav-
ity, tightness, and proximity to the potential joint on the inner
skeleton. The last term is measured as the average distance of
the potential joint position ¢ to k sampled points py, p2,- -, Pk
-on an iso-value curve. Our system with single stroke rather

than dots representation, allows more of the user intent to be
captured by the design process than the “dot scissor" approach.
If required, the user can undo this step, redraw the stroke,
and re-run the segmentation, and the user has meanwhile an
option of repositioning a potential joint along the inner curve
skeleton.

Joint specification

It is not possible to estimate automatically joint types, ranges
and motion axes from a character’s skin model since the re-
quired explicit user inputs. Therefore, for each potential joint
generated during skeleton segmentation, we give the user op-
tions to specify its articulation joint type, the corresponding
rotation axes and their motion ranges. Three revolute joint
types are supported in WireFab, which are: 3-DOF (degrees
of freedom) ball-and-socket joints, 2-DOF universal joints and
1-DOF hinge joints as shown in Fig. 4.

Ball-and-socket joints associate a cone axis vector n, and a
socket opening angle 6, as their motion range parameters.
These joints span a wide range of angles and allow for intu-
itive free-form constraints on rotations away from the center
axis (or cone axis) by shaping the socket opening. Univer-
sal joints associate two rotational axes (n,1,n,) and block
in-axis rotation. Each rotational axis further associates two
motion range parameters: forward swing angle 6,41, Onax2
and backward swing angle 6,41, Omin2. Universal joints are
common in the elbows and shoulders of characters but due to
the difficulty in designing the gimbal lock configuration, this
type of joint is seldom supported by previous work (see [3,
7, 38]). In WireFab, the universal joint template is designed
using the gimbal lock configuration with two rotational axes
offset from each other by a small distance. This design frees a
degree of restriction on the intersected rotational axes while
also allowing for motion range restriction features incorpo-
rated into the design. Hinge joints have only one rotational
axis ny and a motion range containing a forward swing angle
and a backward swing angle (8,,4x, Onin)-

In the joint templates developed in WireFab, both universal
and hinge joints are coupled with a parametric motion range
restriction feature which is automatically generated according
to the users’ specifications on motion ranges. All motion
axes are generated with their default directions based on the
incident inner skeletons’ configuration. Specifically, a Frenet
frame is calculated for each joint located on the inner curve
skeleton, and this right-handed, orthogonal frame is used as
the default joint frame for motion axis specification. Users
are allowed to change the default motion axis and its default
motion range using a simple widget-based joint specfication
tool.

APPEARANCE MODELING

Solid appearance

A partitioned segment of the model can be represented as a
solid part so that it can be 3D printed to retain the highest
shape fidelity. The original segmentation results in a set of
open surfaces, therefore a solid closure operation is applied
to guarantee that all the segmented parts are water-tight and
3D printable. We adopted a dynamic programming based hole

-

Ball-and-socket

Universal

Hinge

Figure 4. Three types of revolute joints hinge, universal and ball-and-
socket, from bottom to top, and their user specified joint parameters are
illustrated in the right-hand column.

filling algorithm [21] as it is efficient and easy to implement.
However, directly applying hole filling on the segment parts
can be troublesome and not aesthetically appealing due to the
irregular boundaries of the holes (see Fig. 5 (a)). Therefore, a
geodesic curve stretching method [36] is applied to the original
boundary curves of segments and the smoothed boundary
curves are obtained after stretching (shown in Fig. 5 (b)).
Consequently, the resultant solid model after hole filling has
more aesthetic shapes with the smoothed boundary curves (see
Fig. 5 (b)).

(a)

Figure 5. The boundary curves and resultant models before (a) and after
(b) geodesic curve stretching.

Cross section and silhouette contours

Planar contours are the basic representation of an object’s
shape as they contain explicit and dominant characteristics
for determining an object’s appearance. We provide a planar
section extraction tool in our platform to cut each partitioned
rigid body with a set of cutting planes and obtain the resul-
tant cross-sectional or silhouette contours. For cross-section
contours, the user has the control either to cut a segmented
part according to the tangential directions of the inner skeleton
(normal-to-spine option), or to use a constant normal direc-
tion. To generate the initial cutting plane direction for constant
normal cutting planes, the system applies principal compo-
nent analysis (PCA) to the segment so that the cutting planes
are created by taking the principal axis as the normal. Initial
constant cross sectional contours take the principle axis with
the largest eigenvalue as the direction while silhouette wire

appearance takes the smallest one as the cutting plane normal.
For the normal-to-spine type of cross-sections, we calculate
the pair-wise projected graph distance (the length of projected
edge onto the first principal axis) and pick the one with the
longest distance as the main spine. Fig. 6 gives an example of
different planar contours generated automatically for user to
use as appearance embodiment. For open contours, users are
given the options to close them according to the solid closure
or to manipulate the connection or closeness interactively.

14

. First Last
Main .. P
Shine Principal Principal
P Axis Axis
f
(@) (b) (c)

Figure 6. The planar contour tools that allow users to generate different
2D appearance patterns: (a) normal-to-spine cross section contours, (b)
constant normal cross section contours with cutting planes normal to the
first principal axis of a segment, and (c) silhouette contour with cutting
plane normal to the last principal axis of a segment.

If the initial cutting plane setting is not satisfactory, a widget
tool can be used to manipulate the cutting plane direction, off-
set the distances, or both, until it represents the desired cutting
direction and offset. Furthermore, a snap fit pattern is added
to each cross section plate so that it can be assembled and fit
onto the skeletal wire. And silhouette contours adjust itself
and intersect with the inner skeleton so that the connectedness
is satisfied.

Helix wires

Helix wire presents a segment portion of the object using 1D
appearance and the least number of wire pieces; it contains
only one continuous curve without self-intersection and it
represents shape appearance information in a very compact
way. Helix wire is computed based on the cross section con-
tours. First, the set of cross section contours is analyzed for
intersection if they were generated as normal-to-spine option.
The intersecting sections will be removed from the set before
they are referenced in the helix computation. Constant normal
cross-sectional contours do not need to go through intersec-
tion testing as they are always parallel to each other. All the
non-intersecting cross sections are then parameterized, from
aligned starting points, using the arc length to the total contour
length ratio as the parameter ¢ (see Fig. 7 for example). The
starting point of the parametrization is located at the intersec-
tion point of a planar contour and a silhouette contour. The
points on the ith section are moved towards the corresponding
points on the (i + 1)th section with the same arc length ratio
t. When ¢ changes from O to 1, the helix wire of one coil is
formed in between the ith and the (i + 1)th sections. The helix
wire is connected at one or both ends to the nearest point on

the inner skeleton wire to ensure connectedness. If the helix
wire is to be located at the bottom of a model, a flat end can
also be added to the appearance to increase the stability of the
structure, as shown in the example given in Fig. 7.

Figure 7. Helix wire is generated from cross section contours through
arc length parametrization, neighboring contour alignment and point
shifting.

Free-hand-draw wires

For users who have patience and hand dexterity, WireFab’s
free-hand-draw module enables the user to define complex
wire patterns on the object’s surfaces. We developed a set of
interactive tools including curve creation, editing and clipping.
Fig. 8 shows a curve editing tool which allows the user to
modify the existing curve’s shape by dragging control points
on the curve. During the whole process of curve creation
and editing, all the points are snapped continuously onto the
surfaces of a 3D model to make sure the curves perfectly
follow the input model’s shape. The snapping of points onto
surface is done by querying the closest point on the surface
of input model for each point on the curve. This query can
be done efficiently by adopting a bounding volume hierarchy
structure on the input model.

Figure 8. Curve creating and editing tools allow on-the-surface opera-
tions.

A design is composed of many curves and most of them are
connected to each other, but the curve drawing and editing
tool creates and edits a single curve individually without con-
sidering the interference between the curves. An interactive
clipping tool is developed for the user to remove certain por-
tion of the curve split by intersections with other curves.

JOINT PARAMETRIZATION FOR POSABILITY

In the WireFab work-flow, all joints and connectors are de-
signed to be 3D printed parts. One functional requirement for
fabricated models is that the printed joints have to be tight
enough to resist gravity and allow for static poses in the whole

articulation motion space. Adding friction to the contacting el-
ements of joints is the most common way to achieve posability
for articulated models. The friction can be introduced using
bump features [3], tolerances [7], or locking fasteners [15].
Among these methods, bump features are less suitable for our
purposes as they are susceptible to wear and tear due to the
small feature size and the constraints of the plastic material
used in most desktop 3D printing processes. Locking fasten-
ers is the safest way to obtain the desired friction but they
require extra parts, extra processing, or assembling time, and a
more complicated joint shape. We therefore use the tolerance
method, which enables a very compact design to obtain the
desired friction force and to hold all static poses.

Calibration The tolerance-based friction methods use interfer-
ence fit between shafts and holes (or ball and socket in terms of
ball-and-socket joint) to withstand the torques. Given any joint
with its type and motion range specification, tolerances and
dimensions have to be chosen to provide the desired degree
of friction or torque. In theory, these joint parameters may
be derived from known material properties, the specification
of the 3D printing process, and the contact area of the joint.
However, it is observed that even the same process may lead
to different results and individual printers may vary. Thus, we
leave the determination of joint dimensions and tolerances to
a calibration process that we run on each printer before the
joint synthesis. For this purpose, we created several data sets
that are used for calibration by varying two different joint pa-
rameters: interference fit tolerance and joint diameter. For the
1DOF hinge and the 2DOF universal joint, the joint diameter
is set as the inner diameter of the holes in contact with the
standard size metal shaft. For 3DOF ball-and-socket joint,
the joint diameter is set as the outer diameter of the ball part.
By default, the joint shaft size is as same as the bent metal
wire diameter and the shaft length is a dependent variable and
is scaled in proportion to the shaft diameter. A calibration
set example is given in Fig. 9. Based on the calibration test
and theoretical torque calculation, the minimum size for a
printable and functional joint can then be determined.

 SIRAA 0 A%

Figure 9. Calibration sets for testing 3D printer parameters for achiev-
ing optimal friction. For this purpose we vary two parameters: tolerance
and joint size. Note that the tolerance variation is not shown here since
the interference value is too small to be visible.

Theoretical torque calculation The theoretical torque a joint
needs to hold has to be calculated for each joint. It is the
sum of all the torques generated by the gravities of all child
segments of the focusing joint, and it can be calculated as
follows:

T =Y ViPigl (1)
where 7; is the desired torque that jth joint needs to hold, and
Vi is the total volume of the kth child segment and py is its
material density; [, is the corresponding maximum level arm

distance from the centroid of kth child segment to the motion
axis of jth joint in its motion space.

Of the three types of segment representation: 1D wire, 2D
plate and 3D solid, the computation for the total volume of
a child segment represented with wires and planar contour
appearance is straightforward. Solid appearances are all repre-
sented as sets of triangular facets. It is a linear computation
to calculate the interior volume of a mesh solid, done by sum-
ming the volumes of all the oriented pyramid centers at a point
in 3D space (the origin, for instance) and taking a triangular
facet for the base. The expression of the volume calculation of
a meshed solid segment S is given in the following equation:

1 |F|
Vo= X 8N ©)
k=1

where |F| is the number of triangles in S, g = (x} +x7 +x3)/3
and NV, = x,lcx,% X x}cxi. x,i,x,% and xz are the three vertices of
the kth triangular facet.

In the torque equation (1), the level arm distance from the
centroid of the kth child segment to the motion axis of a
joint varies with different poses in the articulation space. We
estimate a maximum torque in the motion space by sampling
the motion space of all child segments to find out the maximum
level arm distance. With the required torque calculated, the
joint size and tolerance parameters can then be chosen based
on the calibration test.

FABRICATION DETAILS

Snap fit design of 3D printed part to metal wire The basic
connection of 3D printed parts (joints, connectors or solid
appearances) to metal wire is shown in Fig. 10. A snap fit
feature design is applied to all connections between metal wire
and 3D printed parts. By default Dy will be a value smaller
than the metal wire diameter for a tight fit or interference fit
that prevents undesired movement. The user can redefine the
tightness of the connection, then the diameter of the connection
holder Dy, will change accordingly.

Metal wire

Basic connector

Figure 10. The geometric feature for a basic element, to connect 3D
printed parts to metal wire. Dy, is the inner diameter of the connector
holder and it can affect the tightness of the fitting.

Wire-to-wire rigid connector We have classified three basic
cases for rigid connectors that connect wire to wire with no
motion. Case I: Two or more wires intersect at one point
(Fig. 11(a)); Case 2: One or more wires intersect at a point on
another wire (Fig. 11(b)); and Case 3: Two or more wires are
connected together in an envelope, but they do not necessarily

intersect at one point and need to be rigidly connected (Fig.

11(c)).

The first two types of rigid connectors are generated automati-
cally based on the wire configuration at junction points. The
case three connectors, however, are defined through the user
interaction.

(@)

Figure 11. Three types of rigid connectors.

Laser cut cross-sectional appearances One of the appear-
ance options is to use laser cutting to acquire planar sheets that
have the shape of the model’s cross-sections, and which snap
fit onto the inner skeleton metal wire. WireFab has the ability
to generate cross sections from the rigid parts and to apply the
automatically generated snap-fit-to-wire pattern. Please refer
to Fig. 12 for the cut-out pattern implemented in the current
system. Each cross-section is assigned a sequence number that
is included in the cutting pattern for identification during the
assembly process. These patterns can then be sent to a laser
cutter in DXF format to acquire the planar parts. A example
DXEF file for the Gringotts Dragon is shown partially in Fig.
12, where all ready-to-cut cross section plates with cut-out
patterns are aligned inside the region corresponding to the
sheet size specified by the user.

Cross section
contour

Snap-fit-to- P /\
wire cutout /\ (\
pattern o \ \r’\‘/
_ n

Figure 12. Left: Snap-fit-to-wire cutout pattern for a cross section con-
tour of the Gringotts Dragon’s main body. Right: DXF file for the model
(portion of the whole drawing is shown here due to the size limit). Dy, is
the metal wire diameter specified by the user, Dy is cut-out hole diameter,
and there is a tight clearance (Dy, — D;)/2 designed for the snap fit func-
tionality. A slot of width W which is incremented from Dy, by a small
amount is added to enable a smooth assembly of the metal wire with the
laser cut sheet.

3D wire bending Pensa Labs [18] has a commercial desktop
bender available that is capable of bending wires in 2D. While
still available, the open source information regarding Pensa’s
original 3D bender is now unsupported and has much left to be
determined by the machine builder. The available information
was taken and used to build a fully 3D wire bender to pair
with WireFab (see Fig. 13 for the prototype). This bender
is capable of bending any length of wire, and of straighten-
ing wires as they are fed through the machine. Its 3D wire

bending capability is implemented by adding an additional
out-of-plane rotation onto the in-plane bending. It has bend
angle and feed length limitations due to the constraints of the
components, however, these limitations do not inhibit creating
complex models. The bend limit is 90 degrees in-plane and
the minimum wire feed length is Smm. Our software system
automatically enforces the feed length constraints and splits
the wire where the turning angle exceeds the bending angle
limit. To avoid collision, WireFab simulates bending tool-
path, detects possible collisions, and splits wires into two at
where collision is detected. For helix shapes shown in Fig.7,
collisions between bending machine and helix wires can be
avoided by setting a minimum pitch of the helix wire. The
bender uses an Arduino to output commands to 3 step motors
that control the feed, bend, and rotation about the z-axis. The
commands are generated by WireFab in the form of a text file
containing feed length, xy bend angle, and z bend angle. These
commands are run through the processing software which cou-
ples to the Arduino, sending the appropriate signals to the 3D
bender’s step motors.

Figure 13. The 3D desktop wire bender prototype built for WireFab.

Part labeling and assembly guidance Using WireFab’s inter-
active tools, users could generate quite complex designs. For
example, the Gringotts Dragon shown in Fig. 1 has in total 78
parts including 3D printed parts, laser cut parts, and wire seg-
ments. To ease the effort of users, WireFab automatically adds
numbers on the model of connectors and appearances, and
these numbers can either be printed (3D printing) or carved
(laser cutting) on the parts. Wires are bent in the order set by
WireFab and labeled by attaching stickers on. The numbers
are displayed around all parts and wires in the software when
users assemble them.

RESULTS AND DISCUSSION

Prototypical results

We have first tested WireFab ourselves on a number of hu-
manoid, animal and man-made 3D objects, and Fig. 14 demon-
strates the design and fabrication results with some examples.
Testing cases vary in complexity and include some sculptural
models (e.g. dragon, giraffe and hand) and some real life ob-
jects (e.g. memento, glasses and helicopter), all downloaded
from the internet. The glasses are modeled with two hinges
and the appearances include solid, inner skeleton and silhou-
ette wire. The memento is modeled as a static model with
a helix appearance as it base. The giraffe has a bendable
neck which is designed and fabricated with a series of 3DOF
ball-and-socket joints. The hand model is fabricated with
five universal joints and ten hinges, simulating the DOF of
a real hand. The modeling for the helicopter involves a set

of freeform hand-draw curves, and all rigid connectors are
generated automatically by WireFab.

In the experiment, the joints, connectors and solid appearances
are all printed using an EnvisionTEC Xtreme 3SP printer that
has a resolution of 0.Imm along both the horizontal and the
vertical directions. All planar cross sectional plates are fabri-
cated with a CO2 golden laser cutter using acrylic sheets, and
all metal wires are bent using our prototyped 3D wire bender,
which supports three different wire diameters in the current
implementation. All fabricated models are fully functional
and easy to manipulate while maintaining a balanced level of
friction to allow for posing. Fig. 15 shows the results for hand
and giraffe models articulated in different poses. A common
issue with 3D printed joints is their durability. Depending
on the printing processes, continued manipulation of a joint
can lead to reduced friction due to wear and tear. However,
since one of the friction elements in our joint template for
universal and hinge joints is a metal shaft, the issue is less
serious compared with in the pure 3D printed ball-and-socket
joints.

Preliminary user study

In order to verify the usability and the expressiveness of our
system, we have invited 12 users to participate in our user
study. All of them were engineering college students and none
of them had any prior experience of using our system. We
divided all the participants randomly into 4 groups, 3 users for
each group. All the users in the same group were given the
same model to process. Each user’s study consisted of two
sessions, the design session and the physical assembly session.
During the first session, the users received a 10 minute tutorial
on how to use our software. Then the users would be given
a model to process with the software. Based on the users’
input, all the physical parts including the metal wires, joints
and connectors, and acrylic cross-sections were fabricated for
the second session. During the physical assembly session,
the users also received a 10 minute tutorial about handling
the physical parts before they started assembling. A virtual
3D model with all required assembly information (e.g. the
labeling of wires, joints and connectors and their configuration
in 3D space) is given to user as an instruction of assembly. And
then the users would perform hands-on assembly to produce
the prototype based on the virtual model they processed during
the first session.

The primary users’ prototyping results are shown in Fig. 16.
The expressiveness of users using our system is demonstrated
directly by the end results. We can observe a variety of dif-
ferent expressions designed by the users who started with the
same model (please refer to Fig. 16). For group 1-3, we
can observe the choice of different appearances as well as
user-defined functional joints. For group 4, we intentionally
tested a conical shape which is not a typical articulated shape.
All users processed it successfully with a static model using
hand-draw surface wire tool. The users came up with vari-
ous artistic surface patterns that already transcend the original
conical geometry.

During the user study, every user was asked to fill out a ques-
tionnaire designed based on the system usability scale (SUS)

[6]. The primary survey results are given in Fig. 17. The
average SUS score was 82 (SD - 9.64). Each user took the
same questionnaire twice after both the design and assembly
sessions and therefore a total of 24 survey results has been
collected. In Fig. 17, we sorted the survey results separately
for each session and plotted their SUS scores. We observe
that the average SUS score after the first session (interactive
design) was 79 (SD-9.07), while the average SUS score af-
ter the second session (hands-on assembly) increased to 85
(SD-9.59).

Discussion

We benchmarked the efficiency of WireFab by comparing
the total time using WireFab with the printing time using 3D
printer (EnvisionTEC Xtreme 3SP) for the same set of tested
models. There are three main parts where the users spend their
time within the work-flow: (1) Interacting with the WireFab
software, (2) waiting for physical parts to be fabricated by the
authors. and (3) assembling the physical parts into the final
prototypes. We have recorded the time spent on all the models
demonstrated in our paper. In the time statistic, the fabrication
time are included, but the overhead time for preparing the
machines and operating associated software are excluded. To
fit the size constraint of 3D printer, all tested models are scaled
such that their largest dimensions are in the range of 200-300
mm. To 3D print any of those models would take more than 10
hours, while using our system, we spend less than 2 hours on
any of the model except the model (3) in Fig.16 presented in
the paper. It took around 4 hours for that model since the user
chose to use solid appearance for the main body of the model.
The overall fabrication time is greatly shortened compared
to 3D printing the whole model. The users spend most of
their time doing the interactive design and hands-on assembly,
rather than waiting idly for the fabrication. The time it takes to
advance an idea from the 3D model to the physical prototype
which also includes all the articulation is better using the wire
bending tools and methods we present here.

Another divergence between 3D printing and WireFab is the
fidelity of the products. The process developed using WireFab
allows for a multitude of fidelity options, based on the user’s
preferences for time and appearance. This mix of fidelity not
only caters more closely to the user’s desires (Whether it be for
a time sensitive shape model or an appearance reliant structural
element) but it is also able to match the fidelity of 3d printing.
The mixed medium modeling capabilities of WireFab also
serve to maintain and highlight the articulation of the joints, a
feature that adds additional processing options that are outside
the capabilities of the common user. But it is fair to point out
that the shape fidelity is sacrificed in terms of build appearance
if the user desires a full shape reproduction as designed. In
addition the rigidity is replaced by an articulated model.

For the usability of the proposed system, the above SUS scores
indicated a good usability of our system, that within a total
of less than 2 hours, the users could produce a new proto-
type that was very different from the model they started with.
Besides quantitative evaluation using SUS scores, we also col-
lected users’ qualitative feedback during and after user study.
For the simplicity of notation, we label users according to

Figure 14. Prototypical results generated by WireFab. The first row from left to right shows input models for: Glasses, Memento, Giraffe, Hand
and Helicopter and their initial segmentation with potential joints. The second row shows the appearances design using different forms and the
corresponding virtual fabrication models which incorporate all connectors and joints. In the last row, all finished physical prototypes are shown (from
left to right, each fabricated model consists of 12, 24, 56, 46, and 72 parts respectively.).

Figure 15. Photographs of hand and giraffe models articulated in differ-
ent poses.

which model they designed and assembled (shown in Fig. 16
(1)-(12)). In general, users appreciated WireFab’s interactive
tools to be “easy to learn and use” (user 12). User 2 found
WireFab’s appearance modeling tools invaluable for better ex-
pressing their design intent: “it was easy for me to create the
prototype as I expected.” As user 1 expressed, “(appearance
modeling tools) were really interesting for me as I could see
how the part was going to look like after assembled, depend-
ing on the choice of the manufacturing methods.” 1t is also

noted that most users chose to first go through all possible ap-
pearances in the WireFab and then made their decision based
on their aesthetic preferences. User 1 particularly enjoyed
WireFab’s customized segmentation and joint specification
tools, as they “were the easiest tools to use for generating mov-
able objects among all software (he used)”. WireFab’s joint
parameterization greatly supported the generation of movable
joints, as “(users) just specified the type of motion/degrees of
freedom between 2 parts and the system automatically did the
rest” (user 1). We also found that users tended to segment
the model and put the joints based on their understanding of
its semantic components and intent to articulate. Another im-
portant observation is that the tangibility of assembly greatly
affects users’ experience. The SUS score in Fig. 17 shows
a significant increasing before and after users’ hands-on as-
sembly (79 with SD-9.07 vs. 85 with SD-9.59). The users
were generally more satisfied with the system after the second
session where they get to assemble the prototype themselves.
We have observed great satisfaction among the users upon
finishing assembling their models, many of the users were ex-
cited enough to take out their camera and took pictures of their
models. They felt that they have actually created something
new. The user who did model 7 in Fig. 16 said this after the
second session : “I didn’t know it was going to be this cool
when I did it on the computer.” Another user who did model
10 said: “I think this kind of hands-on practice is really helpful

(a) \ (b) () (d)

V)

L i @ — o

Figure 16. Results from the user study. The first row shows the four
testing models and the second to fourth rows show different articulation
models built by different users. (a) Group 1 users were given a crane
model to process (from top to bottom, the fabricated objects consists of
40, 23, and 16 parts). (b) Group 2 users were given a dragonfly model
(from top to bottom, the fabricated objects consists of 24, 26, and 28
parts). (c) Group 3 users were given a air plane model (from top to
bottom, the fabricated objects consists of 33, 21, and 12 parts). And (d),
group 4 users were given a conical shaped model to process (from top to
bottom, the fabricated objects consists of 63, 27, and 28 parts).

SUS after first session SUS after second session

Number of Participants
Number of Participants

°

<70 7175 7680 8185 8690 9195 96100 <70 7175 7680 8185 8690 9195 96:100

SUS score SUS score

Figure 17. (a) Results of the SUS survey after the first session(b) Results
of the SUS survey after the second session.

to promote motivation in learning.” The hands-on assembly
helped users to “understand the software (of WireFab) from a
perspective of hands-on activity” (user 5). This tells us just
how important physical user interaction really is, especially
in the personalized fabrication area. User constructed objects
have been shown to promote self-extension into them and to
be more engaging [13]. Prior studies [1, 13, 12] have indicated
that the design, fabrication and assembly process is enjoyable
and self actualizing, and computer supported creative design
and fabrication processes requires further understanding as a
means for engaging and embodied learning experiences. From
users’ feedback, WireFab has several limitations. One user
found it was difficult to assemble when “3 or more wires are
connected to one connector” (user 12). Users also pointed
out the joints “were a little weak and fragile" (user 5), thus
“they were easy to break” (user 7). This problem could be ad-

dressed in the future by choosing stronger materials for joint
fabrication.

CONCLUSION AND FUTURE WORK

In this paper we present WireFab, a rapid design and prototyp-
ing system that allows makers to customize and articulate ev-
eryday sculptural models by extracting a skeletal wire, adding
joints and attaching various appearances to segmented rigid
parts. The computational design platform and prototyping
pipeline are explicitly constructed to ensure a rapid design and
digital fabrication system based on a semi-automatic process,
limited interactive modeling and multiple personal fabrication
tools. The mixed dimensionality of the system gives novice, as
well as expert designers more flexibility towards modeling and
prototyping posable models. Our primary results and users’
study show that our method can handle different types of input
meshes in terms of geometrical complexity and variety and
number of articulations.

There are several remaining challenges which may direct our
future work. Currently, our system relies on visual feedback
for collision detection in the relative motion between two rigid
parts. An automatic collision test and feedback will help users
to make more feasible designs and achieve the desired articula-
tion range in real world models. Reducing the number of wires
makes fabricating some specific shapes very efficient with less
number of connectors. Currently this decision is left to the
users, but it is helpful if the users had some computational
guidance. Structural stability analysis would further enhance
the usability of the tool. Another expansion option is towards
systematic electromechanical embedding strategies so that
modular electronic components can be pre-assembled with the
motion joints. To further enhance the value of WireFab, we
could also extend it to large structures with 3D fortified metal
joints. In this paper, the focus of WireFab is the new workflow
of turning existing 3D models into articulated mixed-fidelity
objects. Therefore, we constrained the capability of interactive
shape design. The shapes of input models remain unchanged,
but only the appearance of each segmented part can be cus-
tomized during the whole process. We would like to further
extend this work by exploring the shape design freedom in the
future.

ACKNOWLEDGMENTS

We thank the reviewers for their valuable feedback. This
work was partly supported by the National Science Founda-
tion Award 1632154 IIP and 1329979 CPS. Jing Bai was sup-
ported by the National Natural Science Foundation of China
(No. 61163016) and University Scientific Research Projects
of Ningxia Province (NGY2015161). Any opinions, findings,
and conclusions or recommendations expressed in this mate-
rial are those of the author(s) and do not necessarily reflect the
views of NSF.

REFERENCES
1. Eric Almquist, John Senior, and Nicolas Bloch. 2016.
The Elements of Value. Harvard Business Review (2016),
47-52.

2. Oscar Kin-Chung Au, Chiew-Lan Tai, Hung-Kuo Chu,
Daniel Cohen-Or, and Tong-Yee Lee. 2008. Skeleton

10.

11.

12.

13.

14.

extraction by mesh contraction. In ACM Trans. Graph.,
Vol. 27. 44.

. Moritz Bicher, Bernd Bickel, Doug L. James, and

Hanspeter Pfister. 2012. Fabricating Articulated
Characters from Skinned Meshes. ACM Trans. Graph. 31,
4 (July 2012), 47:1-47:9.

. Moritz Bicher, Emily Whiting, Bernd Bickel, and Olga

Sorkine-Hornung. 2014. Spin-it: Optimizing moment of
inertia for spinnable objects. ACM Transactions on
Graphics (TOG) 33, 4 (2014), 96:1-96:10.

. Dustin Beyer, Serafima Gurevich, Stefanie Mueller,

Hsiang-Ting Chen, and Patrick Baudisch. 2015. Platener:
Low-Fidelity Fabrication of 3D Objects by Substituting
3D Print with Laser-Cut Plates. In Proceedings of the
SIGCHI Conference on Human Factors in Computing
Systems (CHI "15). ACM Press, 1799-1806.

. John Brooke. 1996. SUS: A quick and dirty usability

scale. (1996).

. Jacques Cali, Dan A. Calian, Cristina Amati, Rebecca
Kleinberger, Anthony Steed, Jan Kautz, and Tim Weyrich.

2012. 3D-printing of Non-assembly, Articulated Models.
ACM Trans. Graph. 31, 6 (Nov. 2012), 130:1-130:8.

. Jen-Hi Chuang, Chi-Hao Tsai, and Min-Chi Ko. 2000.

Skeletonization of Three-Dimensional Object Using
Generalized Potential Field. IEEE Trans. Pattern Anal.
Mach. Intell. 22, 11 (Nov. 2000), 1241-1251.

. Stelian Coros, Bernhard Thomaszewski, Gioacchino

Noris, Shinjiro Sueda, Moira Forberg, Robert W. Sumner,
Wojciech Matusik, and Bernd Bickel. 2013.
Computational Design of Mechanical Characters. ACM
Trans. Graph. 32, 4 (2013), 83:1-83:12.

Tamal K. Dey and Jian Sun. 2006. Defining and
Computing Curve-skeletons with Medial Geodesic
Function. In Proceedings of the Fourth Eurographics
Symposium on Geometry Processing (SGP "06). 143—-152.

Wei Gao, Yunbo Zhang, Diogo C. Nazzetta, Karthik
Ramani, and Raymond J. Cipra. 2015. RevoMaker:
Enabling Multi-directional and Functionally-embedded
3D Printing Using a Rotational Cuboidal Platform. In
Proceedings of the 28th Annual ACM Symposium on User
Interface Software & Technology (UIST '15). 437-446.

Victoria Groom, Leila Takayama, Paloma Ochi, and
Clifford Nass. 2009. I am my robot: the impact of
robot-building and robot form on operators. In
Proceedings of the 4th ACM/IEEE international
conference on Human robot interaction. ACM, 31-36.

Imre Horvath. 2004. On some crucial issues of computer
support of conceptual design. In Product Engineering.
Springer, 123-142.

Emmanuel Iarussi, Wilmot Li, and Adrien Bousseau.
2015. Wraplt: Computer-assisted Crafting of Wire
Wrapped Jewelry. ACM Trans. Graph. 34, 6 (2015),
221:1-221:8.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Alec Jacobson, Daniele Panozzo, Oliver Glauser, Cédric
Pradalier, Otmar Hilliges, and Olga Sorkine-Hornung.
2014. Tangible and Modular Input Device for Character
Articulation. ACM Trans. Graph. 33, 4 (2014),
82:1-82:12.

Bongjin Koo, Wilmot Li, JiaXian Yao, Maneesh
Agrawala, and Niloy J Mitra. 2014. Creating works-like
prototypes of mechanical objects. ACM Trans. Graph. 33,
6 (2014), 217:1-217:9.

Yuki Koyama, Shinjiro Sueda, Emma Steinhardt, Takeo
Igarashi, Ariel Shamir, and Wojciech Matusik. 2015.
AutoConnect: Computational Design of 3D-printable
Connectors. ACM Trans. Graph. 34, 6 (2015),
231:1-231:11.

Pensa Labs. 2016. DiWire-Pensa Labs. (2016).

http://www.pensalabs.com/diwire-overview/.

Manfred Lau, Akira Ohgawara, Jun Mitani, and Takeo
Igarashi. 2011. Converting 3D Furniture Models to
Fabricatable Parts and Connectors. ACM Trans. Graph.
30, 4 (July 2011), 85:1-85:6.

Xian-Ying Li, Chao-Hui Shen, Shi-Sheng Huang, Tao Ju,
and Shi-Min Hu. 2010. Popup: Automatic Paper
Architectures from 3D Models. In ACM SIGGRAPH
2010 Papers (SIGGRAPH ’10). 111:1-111:9.

Peter Liepa. 2003. Filling Holes in Meshes. In
Proceedings of the 2003 Eurographics (SGP '03).
200-205.

Kui-Yip Lo, Chi-Wing Fu, and Hongwei Li. 2009. 3D
Polyomino Puzzle. ACM Trans. Graph. 28, 5 (Dec. 2009),
157:1-157:8.

James McCrae, Nobuyuki Umetani, and Karan Singh.
2014. FlatFitFab: Interactive Modeling with Planar
Sections. In Proceedings of the 27th Annual ACM
Symposium on User Interface Software and Technology
(UIST ’14). 13-22.

Vittorio Megaro, Bernhard Thomaszewski, Damien
Gauge, Eitan Grinspun, Stelian Coros, and Markus Gross.
2014. ChaCra: An Interactive Design System for Rapid
Character Crafting. In ACM SIGGRAPH/Eurographics
Symposium on Computer Animation (SCA’14). 123-130.

Stefanie Mueller, Sangha Im, Serafima Gurevich,
Alexander Teibrich, Lisa Pfisterer, Fran¢ois Guimbretiere,
and Patrick Baudisch. 2014a. WirePrint: 3D Printed
Previews for Fast Prototyping. In Proceedings of the 27th
Annual ACM Symposium on User Interface Software and
Technology (UIST ’14). 273-280.

Stefanie Mueller, Tobias Mohr, Kerstin Guenther,
Johannes Frohnhofen, Kai-Adrian Rollmann, and Patrick
Baudisch. 2014b. faBrickation: Fast 3D Printing of
Functional Objects by Integrating Construction Kit
Building Blocks. In CHI ’14 Extended Abstracts on
Human Factors in Computing Systems (CHI EA ’14).
527-530.

http://www.pensalabs.com/diwire-overview/

217.

28.

29.

30.

31.

32.

33.

Valerio Pascucci, Giorgio Scorzelli, Peer-Timo Bremer,
and Ajith Mascarenhas. 2007. Robust On-line
Computation of Reeb Graphs: Simplicity and Speed.
ACM Trans. Graph. 26, 3 (2007).

Romain Prévost, Emily Whiting, Sylvain Lefebvre, and
Olga Sorkine-Hornung. 2013. Make It Stand: Balancing
Shapes for 3D Fabrication. ACM Trans. Graph. 32, 4
(July 2013), 81:1-81:10.

Valkyrie Savage, Ryan Schmidt, Tovi Grossman, George
Fitzmaurice, and Bjorn Hartmann. 2014. A Series of
Tubes: Adding Interactivity to 3D Prints Using Internal
Pipes. In Proceedings of the 27th Annual ACM
Symposium on User Interface Software and Technology
(UIST ’14). 3—-12.

Andrei Sharf, Thomas Lewiner, Ariel Shamir, and Leif
Kobbelt. 2007. On-the-fly curve-skeleton computation for
3D shapes. ACM Trans. Graph. 26, 3 (2007), 323-328.

André Sobiecki, Andrei Jalba, and Alexandru Telea.
2014. Comparison of curve and surface skeletonization
methods for voxel shapes. Pattern Recognition Letters 47
(2014), 147-156.

Peng Song, Bailin Deng, Ziqi Wang, Zhichao Dong, Wei
Li, Chi-Wing Fu, and Ligang Liu. 2016. CofiFab:
Coarse-to-Fine Fabrication of Large 3D Objects. ACM
Trans. Graph. 35, 4 (2016).

Bernhard Thomaszewski, Stelian Coros, Damien Gauge,
Vittorio Megaro, Eitan Grinspun, and Markus Gross.
2014. Computational Design of Linkage-based
Characters. ACM Trans. Graph. 33, 4 (2014), 64:1-64:9.

34.

35.

36.

37.

38.

39.

40.

Nobuyuki Umetani, Yuki Koyama, Ryan Schmidt, and
Takeo Igarashi. 2014. Pteromys: Interactive Design and
Optimization of Free-formed Free-flight Model Airplanes.
ACM Trans. Graph. 33, 4 (July 2014), 65:1-65:10.

Francisca Gil Ureta, Chelsea Tymms, and Denis Zorin.
2016. Interactive Modeling of Mechanical Objects. In
Computer Graphics Forum, Vol. 35. Wiley Online
Library, 145-155.

Charlie CL. Wang. 2004. CyberTape: an interactive
measurement tool on polyhedral surface. Computers &
Graphics 28, 5 (2004), 731-745.

Shiging Xin, Chi-Fu Lai, Chi-Wing Fu, Tien-Tsin Wong,
Ying He, and Daniel Cohen-Or. 2011. Making Burr
Puzzles from 3D Models. In ACM SIGGRAPH 2011
Papers (SIGGRAPH ’11).97:1-97:8.

Yunbo Zhang, Wei Gao, Luis Paredes, and Karthik
Ramani. 2016. CardBoardiZer: creatively customize,
articulate and fold 3D Mesh Models. In Proceedings of
the SIGCHI Conference on Human Factors in Computing
Systems (CHI ’16). 897-907.

Youyi Zheng, Chiew-Lan Tai, and Oscar Kin-Chung Au.
2012. Dot scissor: a single-click interface for mesh
segmentation. Visualization and Computer Graphics,
IEEE Transactions on 18, 8 (2012), 1304-1312.

Lifeng Zhu, Weiwei Xu, John Snyder, Yang Liu, Guoping
Wang, and Baining Guo. 2012. Motion-guided
Mechanical Toy Modeling. ACM Trans. Graph. 31, 6
(Nov. 2012), 127:1-127:10.

	Introduction
	Related Work
	Overview
	Skeleton Driven Articulation Modeling
	Skeletal wire extraction and editing
	Customizable segmentation for rigid parts and joint placement
	Joint specification

	Appearance Modeling
	Solid appearance
	Cross section and silhouette contours
	Helix wires
	Free-hand-draw wires

	Joint Parametrization for Posability
	Fabrication Details
	Results and Discussion
	Prototypical results
	Preliminary user study
	Discussion

	Conclusion and Future work
	Acknowledgments
	REFERENCES

