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Abstract

Research on robotic wheelchairs covers a broad range
from complete autonomy to shared autonomy to manual
navigation by a joystick or other means. Shared autonomy
is valuable because it allows the user and the robot to com-
plement each other, to correct each other’s mistakes and
to avoid collisions. In this paper, we present an approach
that can learn to replicate path selection according to the
wheelchair user’s individual, often subjective, criteria in or-
der to reduce the number of times the user has to intervene
during automatic navigation. This is achieved by learning
to rank paths using a support vector machine trained on se-
lections made by the user in a simulator. If the classifier’s
confidence in the top ranked path is high, it is executed with-
out requesting confirmation from the user. Otherwise, the
choice is deferred to the user. Simulations and laboratory
experiments using two path generation strategies demon-
strate the effectiveness of our approach.

1. Introduction

Powered wheelchairs are important transportation tools
for people with certain motor impairments. It is estimated
that on average 1% of the population requires a wheelchair,
regardless of whether they have access to one. According
to the 2010 census, there are 3.6 million wheelchair users in
the US, while approximately 49% of older adults in Cana-
dian institutional settings use a wheelchair [39]. Wheelchair
users in Europe are estimated to be in the 5 million range.
According to Ceres et al. [9], 2 million wheelchair users
in the EU suffer from reduced upper-limb motor control
and have to control their wheelchairs via alternative inter-
faces. Different studies have shown that 10% of wheelchair
users require help while operating their manually-controlled
wheelchairs and around 40% of users had difficulties in
steering and maneuvering tasks using a powered wheelchair
[12]. There is a need to develop technologies to assist these
people. In order to relieve the burden of manual control,

with the advancement of the automatic navigation technol-
ogy, it is possible to achieve automatic navigation indoors
for a powered wheelchair with a computer and a few addi-
tional sensors [9, 14, 20]. In most automatic applications,
an expert system is developed: a wheelchair user only needs
to specify a navigation goal, letting the computer to plan a
path and decide how to reach the destination.

Beyond safety and efficiency, researchers have started
considering subjective criteria, such as comfort, [15, 34, 40,

] in path planning for robotic wheelchairs. Wheelchair
users, however, do not share the same preferences and the
standard of comfort varies from user to user. Among other
factors, their preferences may differ in terms of speed, ac-
celeration, curvature of the path, distance to obstacles or
people. Therefore, there is a need for an approach that en-
ables shared autonomy and allows robotic wheelchair con-
trol to be individually customized according to these pref-
erences.

This paper presents such an approach that can learn user
preferences through their commands during navigation or
in simulation. When a user specifies a destination, the
wheelchair plans several paths to it, instead of one as in an
fully autonomous wheelchair system. If one among these
paths is clearly better than the others according to the user’s
preferences, the wheelchair automatically executes it with-
out asking her. Otherwise, if the provided paths do not show
significant differences with respect to the user’s preference,
she is asked to make a choice. The objective is to achieve
a trade-off between user satisfaction with the selected paths
and user involvement in navigation. This is achieved via
shared autonomy, with the user in the loop, but not engaged
in mundane operations.

In order to generate several diverse paths for the system
to rank or for the user to select from, two path planning
methods are integrated into the platform. One method uses
the Generalized Voronoi Diagram (GVD) and can gener-
ate homotopically distinct paths for places with loop paths
(e.g. dinning room with a dining table in the center) [4, 25];
the other method iteratively uses an A* planner to generate
both homotopically distinct and equivalent paths. Note that



comparing these strategies is outside the scope of this paper,
since the criterion for the comparison is not straightforward
to define. Instead, we show that our approach works well
with both planners.

To score the paths during navigation, we define a set of
features and train a Support Vector Machine (SVM) to rank
the paths based on previous user choices. Two experiments,
one in a simulator and one in our laboratory, show that our
software can predict user preferences accurately. In the
physical experiment, users control the wheelchair jointly
with the autonomous navigation system in a studio via a
speech recognition and synthesis interface.

The contributions of this work are:

e an approach for integrating user preferences into a
shared-autonomy wheelchair that can achieve a desir-
able trade-off between adherence to user preferences
and low user involvement in navigation,

e a user interface that facilitates shared autonomy by
only involving the user in hard decisions,

e case of training a ranking model in terms of annotation
effort, and

e experimental and simulated demonstration of the pro-
posed approach using two path planning strategies.

2. Related Work

In this section, we review the literature on shared auton-
omy for robotic wheelchairs. We are particularly interested
in frameworks where decisions are made by both the user
and the system, and not so much in fully autonomous navi-
gation or interfaces that provide full control to the user. For
an overview of robotic wheelchair systems we refer readers
to[18, 41].

We begin with methods that combine multiple criteria
for navigation in static scenes. Gulati et al. [15] introduce
a measure of discomfort which is a weighted sum of travel
time and time integrals of the squares of tangential jerk, nor-
mal jerk, angular velocity and angular acceleration. The
method, however, does not consider obstacles, which is a
focus of our paper. Shiomi et al. [40] adjust the speed to
make their autonomous wheelchair match the behavior of
caregivers towards each user. A robotic system following
the user’s preferred speed and uttering prespecified mes-
sages was more acceptable to elderly users.

As described in Section 3, we base one of our path plan-
ning strategies on the approach of Kuderer et al. [25] who
generate a set of homotopically distinct paths on the gener-
alized Voronoi diagram of the obstacles in the scene. Once
paths have been generated, Kuderer et al. compute a cost
for each of them as a weighted sum of features. Compared
to [25], our approach requires a much weaker form of su-
pervision (see Section 4), decides when to engage the user
adaptively and can handle people in the path of the robot.

Research on shared autonomy for wheelchairs is closely
related to ours. Parikh et al. [36, 37] propose a shared con-
trol framework for an intelligent wheelchair that considers
deliberate notion plans, reactive behavior and human user
inputs. Deliberate plans are generated given the current po-
sition and a destination by finding the minimum-length path
(autonomous mode). The user can drive unassisted (man-
ual mode) or aided by reactive controllers which are em-
ployed for obstacle avoidance in semi-autonomous mode.
The PALMA project [9] led to the development of a robotic
platform providing multiple levels of autonomy. It enabled
users, primarily children, to navigate safely by performing
obstacle avoidance automatically, when needed. Five dif-
ferent levels of user intervention are programmed and con-
trolled by discrete commands via buttons. Zeng et al. [46]
developed a collaborative wheelchair which relies on the
user to specify the destination and speed, while the system
is in charge of path planning under these constraints. The
user remains involved and can alter the path to avoid obsta-
cles or enforce her preferences.

Urdiales et al. [43] proposed a shared control approach
for wheelchairs which combines commands generated by
the robot and the user according to the relative efficiency
of each in the task at hand. Efficiency is measured as the
average of smoothness, directness and safety. A similar dy-
namic shared control system for wheelchairs was designed
by Li et al. [29]. The level of assistance is adapted based
on the user’s capabilities and control is determined by opti-
mizing an objective function that considers safety, comfort
and obedience to user’s commands. The work of Carlsson
and Demiris [8] is another example of shared autonomy in
which the user guides the wheelchair while the robot adjusts
the control signals to ensure safety. Goil et al. [13] use ma-
chine learning to blend human and automatic commands in
order to control the angular velocity of a wheelchair during
simulations of assisted doorway navigation.

Shared control of a wheelchair using speech recogni-
tion as the input modality to the robot was addressed by
Boucher et al. [6]. Multiple levels of commands ranging
from turning to parking are supported. After the user se-
lects a destination on the map, a cost function comprising
motion, target reaching and obstacle avoidance components
is minimized. Multiple ways of controlling the wheelchair,
including a joystick in continuous mode, voice commands
and discrete commands via a keyboard, were tested with
users and non-users of powered wheelchairs. Mitchell et al.
[33] adopted a Wizard of Oz design, in which a hidden ex-
perimenter, the wizard, controls the wheelchair as if it were
autonomous, to study shared control policies for users with
cognitive impairments. They observed that autonomy is not
always desirable since it may give the impression of loss of
control to the users. Three policies implementing different
levels of autonomy were tested on scenarios, such as park-



ing the wheelchair and navigating in tight spaces, while the
wizard ensures collision avoidance.

Next, we review methods that take into account people
in the environment. We also refer readers to a survey for
more information [24]. Sisbot et al. [42] presented a mo-
tion planner that integrates safety and comfort in its cost
function. Safety is a function of distance from humans,
while comfort is represented by a visibility criterion that
keeps the robot in the field of view of people. Navigation
considering people, as well as criteria for static scenes in-
cluding distance traveled and distance from obstacles, are
addressed by Kirby et al. [21]. Their COMPANION frame-
work encodes human-robot social interaction, by respect-
ing personal space and passing on the right, as constraints
in an optimization framework, but the weights of the con-
strains are heuristically set. In recent work, Cosgun et al.
[11] propose a path planning approach that anticipates peo-
ple’s reaction to the robot based on the social force model
[16]. It comprises a static planner that computes the cost of
a path as the weighted average of path length, distance from
people and disturbance of groups of people, as well as a dy-
namic planner that refines parts of the path that are close to
people. Morales et al. [35] address wheelchair navigation
emphasizing comfort for both its passenger and pedestri-
ans. Parameters for both passenger and pedestrian models
are set by the researchers to produce the desirable behav-
ior. The resulting planner was preferable to shortest path
planning in a user study.

3. Planning Multiple Paths

Given a map in the form of an occupancy grid, the cur-
rent position, and the destination, path planning strategies
can generate paths that connect the two positions. There are
several methods for generating paths for autonomous navi-
gation [28]. Most of them, however, present only one path
for execution. Here, we use two planning methods, sepa-
rately, to generate a diverse set of paths aiming to include at
least one that matches the user’s preferences. One method
uses the Generalized Voronoi Diagram (GVD) in order to
generate homotopically distinct paths [25], while the other
applies the A* algorithm iteratively after progressively plac-
ing “virtual obstacles” to block previously discovered paths.

In order to include the path a user would choose or the
system would choose for her, we must generate a number of
“different” paths. A useful definition of when two paths are
different is based on homotopy [4, 25, 32]. For two paths
to be homotopically distinct, there must be one or more ob-
stacles between them, preventing a smooth transformation
from one to the other. This, however, is not the only cri-
terion. Considering Fig. 1(a) for example, the presence of
a table in the center of the room gives rise to two homo-
topy classes of paths that pass on either side of the table. In
the absence of the table in Fig. 1(b), paths cannot be dis-

tinguished based on homotopy, but a wheelchair user may
prefer to navigate close to one of the wall to leave space
for people to walk for example. We present path generation
strategies that cover both cases.
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Figure 1. (a) Homotopically distinct paths. (b) Distinct paths in
the same homotopy class.

3.1. Generating Homotopically Distinct Paths Using
GVD Planning

Our strategy for generating homotopically distinct paths
relies on the GVD of the obstacles in the map and follows
the approach of Kuderer et al. [25]. It uses a property of the
GVD, on which any different paths between two vertices are
homotopically distinct. Therefore, the problem of finding
homotopically distinct paths for navigation is converted into
the problem of finding k-shortest paths on a graph.

Figure 2. Planning homotopically distinct paths. (a) Create the
GVD. (b) Add paths between start/end points to the GVD if they
are not on it. (c) Convert the GVD to graph representation. (d)
Find k-shortest paths (two in this example).

Figure 2 illustrates the process, which has four steps.

(a) Create the GVD of the obstacles in the map. The
GVD of a map is a set of free points whose distances to the
nearest two obstacles are equal [10]. It is called “general-
ized” because unlike the regular Voronoi diagram, in which
the input sites are points, the sites of the GVD can be any
continuous shape. The first step for computing the GVD is
a Euclidean distance transform, for which we employ the
implementation of Lau et al. [27]. The output of this trans-
form is a binary occupancy grid Occ with the same size as
the map, indicating whether a cell (z, y) is on the GVD or
not (i.e. Occ(x,y) = true, false).

(b) Add the start and the end point to the GVD, since
in general these points are not on the GVD. To make the



necessary connections, the closest cells to the start and end
points on the GVD are found. Straight line paths are made
between the start/end point and their respective closest cell.

(c) Convert the GVD into the graph representation G =
(V, E), which makes finding the k-shortest paths simpler.
Therefore, the binary grid Occ is converted into a graph
G. A breadth-first search is used for traversing the grid-
represented GVD so that all vertices and edges can be
found. Vertices are cells with more then two incoming
edges. The cells containing the start and end points are con-
sidered vertices with one edge. The weight of each edge is
the number of connected cells between its two vertices.

(d) Apply Dijisktra’s algorithm to find k-shortest paths
on the graph G. These k different paths are homotopically
distinct because they correspond to different paths on the
grid-represented GVD. For a map that contains n obstacles,
the complexity of this algorithm is O (k(nlogn)) [25].

3.2. Path Planning using the Iterative A* Algorithm

In an empty room, or a corridor, homotopically distinct
paths are unlikely to exist. However, wheelchair users may
still have a preference among paths in the same homotopy
class. Some may prefer to navigate near the wall, while oth-
ers may prefer the center. Therefore, we propose a different
method to generate multiple paths in such environments.
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Figure 3. (a) Generate shortest-distance path. (b) Place virtual ob-
stacle with pre-defined size. (c) Keep planning and placing obsta-
cles until no new path can be planned. (d) Retrieve all generated
paths.

Iterative A* is illustrated in Fig. 3 and works as follows.

(a) Use the A* algorithm to find the optimal path. The
ROS move-base package is used for this purpose.

(b) Place a “virtual obstacle” blocking the most recently
generated path. This is implemented by labeling as occu-
pied the cells of the occupancy grid that are within a certain
distance of the generated paths. The size of the virtual ob-
stacle is pre-defined and depends on the size of the room
and the grid cells. The first and last segments of the path
are left free of virtual obstacles to allow the discovery of
additional paths.

(c) Generate the next path using the A* algorithm on the

modified map and return to step (b) until virtual obstacles
block all possible paths.

4. Learning Users’ Preferences

We provide a simple user interface (UI) that allows the
user to click on a path in the simulator to indicate her pref-
erence, or to select a path by saying the name of a color
that has been assigned to it in a display mounted on the
wheelchair. In either case, when a user picks a path among
multiple options, she performs a ranking action. In order
to enable our software to mimic the user making a choice,
a pairwise learning-to-rank model using a Support Vector
Machine (SVM) is trained [ 7]. Training data are collected
by recording a number of user selections and deriving rank-
ing constraints from them. Specifically, given a user choice,
we learn that the selected path should be ranked higher than
any of the other available paths in that map. We learn noth-
ing about the relative ranks of the other paths though.

We define a scenario as a map with a specified start point
and destination. Annotation efforts are minimal since the
user only needs to click once, to select a path, for every
scenario in the simulator. (We are aware that clicking in
the simulator is different than being in the wheelchair, but
training can be augmented with real data. We evaluate the
effectiveness of training on the simulator in Section 5.)

As a form of representing the paths, we define a set of
features which are presented below, starting with static en-
vironments and continuing with environments that contain
people who must be taken into account by the planner.

4.1. Feature Vector for Paths in Static Environments

A user may consider several criteria in order to select a
path. We form a feature vector that captures relevant prop-
erties of a path. In a static environment, for a path X that
consists of poses x, the feature vector f(X) has four di-
mensions:

.f(X) = [lﬂ lnvavdmin7ésum]T (1)

(a) Path length: the shortest path is preferable among

otherwise equivalent choices, while length and duration are

always important features. The length is approximated as

the sum of the lengths of the segments connecting succes-
sive poses.

1= Nz ziiq) )

(b) Narrow passage length: in each path, there are seg-
ments that are close to obstacles on both sides. These seg-
ments are called “narrow passages”, in which the proba-
bility of wheelchair collision is larger than in open area.
The narrow passage segments are segments between poses
in X, which is a subset of the path X, such that d(z;) < d,,



and d(x;+1) < d,, where d,, is a pre-set constant, with the
default d,, = 0.5m.

Iy = Z Uzis i 1), {xi,zip1} € Xy 3)

This feature allows the system to learn the preferred
trade-off between overall path length and tolerance of nar-
row passages. Users may prefer longer, wider paths up to a
certain increase of overall path length.

(c) Average distance to obstacles: the distance from
each pose z; to its nearest obstacle can be estimated on the
map. The average of these distances is a global feature rep-
resenting comfort and likelihood of collisions. Similar fea-

tures have been considered in the literature [6, 21, 43]
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(d) Minimum distance to obstacle: the minimum among
all distances from each pose to the respective closest obsta-
cle.

dmin = mm| | d(llf;)” o)

(e) Sum of turning angles: the angle between two con-
secutive poses reflects the angular velocity and accelera-
tion of the wheelchair as the local plan is followed. There-
fore, the sum of turning angles is a proxy for user comfort

[ ’ b ]'
5sum = Z |5(mi+1) - 6(xz)| (6)

4.2. Feature Vector for Paths in Environments with
People

The wheelchair should consider people as dynamic ob-
stacles in the scene and treat them differently than static ob-
stacles [11, 21, 24, 35, 42]. The SPENCER people detector
is used for people detection[30, 31]. Wheelchair users may
show different preferences if people are on or near a path.
The feature vector here, in addition to the features for static
scenes, contains two more features which capture the dis-
tances from a path to people. This feature vector has seven
dimensions:

f(X) = [l’ l’ru (27 dmin7 5sum» d_p7 dp-min]T @)
The two additional features are defined as follows.

(f) Average distance to people: like the sum of distance
to obstacles, distances of all poses to their respective nearest
people are averaged.
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(g) Minimum distance to people: is defined similarly to
the minimum distance to obstacles.

dp min = min(dy(z;)) 9)

4.3. Support Vector Pairwise Ranking

Given a set of paths from the starting point to the destina-
tion, we need to rank them in order of user preference. Our
system does not classify paths as acceptable or unaccept-
able, but chooses one of the available options. Since during
training the user only selects the best path in each scenario,
we only have pairwise constraints between the selected path
and all other paths, but we do not know which paths would
have been the user’s second or third choice. Therefore, we
formulate the problem as ordinal regression using a Support
Vector Machine (SVM) following the approach of Herbrich
et al. [17] with pairwise constraints, instead of adopting a
listwise approach [7]. The process is the same for static and
dynamic environments.

Because the feature vector is heterogeneous, all features
are normalized to have zero mean and variance equal to one.
Normalized feature vectors are denoted by f(X). To gen-
erate the training set, we form pairs of preferred and not-
preferred paths (from the same scenario) and define prefer-
ence vectors by subtracting the corresponding feature vec-
tors. Half of the preference vectors are derived by subtract-
ing a not-preferred path from the preferred one and the other
half are derived by subtracting the feature vectors the other
way. A preference vector p;; = f(X;) — f(X) is labeled
as follows:

+1  if user prefers path X; to X
y(pij) = { oY

. (10)
—1  if user prefers path X; to X;.

We then train a linear SVM on the preference vectors
which learns to predict whether the minuend or the subtra-
hend is the preferred path, and produces a positive or nega-
tive prediction, respectively.

During testing, the linearity of the SVM allows us to
compute the inner product of the SVM weight vector w
and f(X) before the subtraction. Therefore, we compute a
score for each path

S(X) =wT f(X) an

and select the one with the maximum score.

Selecting the path with the maximum score corresponds
to fully autonomous navigation. Our goal, however, is to
keep the user in the loop to make the harder choices. Our
system decides to involve the user when the top two scores
are close to each other, where closeness is defined as the
difference of the scores. (User selections in these situations
can be used to refine the SVM, but we have not pursued this

yet.)

5. Experimental Results

In order to validate the accuracy of our approach in rank-
ing paths according to user preferences we conducted sim-



Figure 4. Examples of path selection by subjects. (The destination is on the right of the map in these examples.) The preferred paths are
denoted by solid red curves while the ones not chosen by dotted blue ones. Top: selections by subject 1. Bottom: selections by subject 2.

Notice the different choices in the presence of people.

ulations and experiments with two users who have differ-
ent preferences. We chose this design to closely model the
preferences of individual users as opposed to the “average”
preference of the crowd [19]. To enable fast and diverse
training, we developed a ROS-based simulator that inte-
grates our path planner. We also performed experiments
with a powered wheelchair and the same two users.

5.1. Data Collection in the Simulator

We generated four maps in the simulator that resemble
the complexity of the space we use in our physical experi-
ments. Some of the maps can be seen in Fig. 4. They con-
tain furniture, such as a bed, a desk, a dining table, a sofa,
etc. Some of these maps were intentionally made to have
two or more homotopically distinct paths, while some maps
only allow one homotopy class of paths. During training,
each subject generates a number of scenarios by specifying
a start and end point on the map. The system, then, invokes
one of the planners to generate a set of plans and asks the
user to select the one that he prefers.

In order to evaluate our approach in the presence of peo-
ple, another dataset was collected and annotated in the sim-
ulator. These data demonstrate more clearly the differences
between individual users, since one of our subjects had a
strong preference for avoiding people.

5.2. Results in Simulated Maps

Two subjects were asked to select one path in scenarios
generated in the maps of Fig. 4. Both planners were used;
the GVD planner was only applied in maps with homotopi-
cally distinct paths, while the iterative A* method was ap-
plied in all maps.

The feature vectors of all generated paths, the start and
end points and the user selections were recorded to form
two datasets: one with and one without people. 36 sce-
narios were generated by each subject for each planner for
static scenes and 36 more for each planner in the presence
of people. Figure 4 shows examples of selected paths by

both subjects in two of the maps. Each subset of the data
(same subject, planner and static/dynamic condition) was
randomly split into a training and test set, comprising two
thirds and one third of the scenarios, respectively. A total of
eight SVMs are trained as in Section 4.3.

To achieve the appropriate level of user involvement we
define confidence as the difference of the top two path
scores and threshold it to determine if the system should
decide autonomously or not. Figure 5 shows the ROC of
system accuracy and system decision rate (the fraction of
times the system decides autonomously) as a function of
this threshold. For clarity, we show ROC:s for static and dy-
namic scenes, averaging over planners. As can be observed,
accuracy is in the order of 85-90% when the system makes
all decisions and quickly rises as the user is called upon to
make the hardest decisions. We chose a threshold of 0.2 on
the difference of SVM scores, defined in (11), as the oper-
ating point for the remainder of the paper.

System accuracy System accuracy
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Figure 5. Relationship between system accuracy vs. system deci-

sion rate. Left: static scenes; right: dynamics scenes. (36 scenar-
ios per planner per user)

Table 1 shows the average results for static scenes after
randomly splitting the datasets 20 times, keeping the thresh-
old at 0.2. Accuracy is never below 75%; around 10% of
the decisions are deferred to the user; and at most 12.09%
of paths were incorrectly selected by the system. Table 2
shows similar results on dynamic scenes under the same
conditions. The overall accuracy and decision rate are simi-
lar to those in static scenes. It is worth pointing out that the
consistent choices made by subject 2, who said “T always



GYVD Path Planner Iterative A* Path Planner
Preferred  Not Preferred Ask subject Preferred  Not Preferred Ask subject
Path Picked  Path Picked to Decide Path Picked  Path Picked to Decide
subject 1 91.85% 2.46% 5.69% 76.39% 12.09% 11.52%
subject 2 79.61% 10.79% 9.60% 81.88% 11.12% 7.00%

Table 1. Accuracy in simulator for both subjects in static scenes. (36 scenarios per planner per user)

GYVD Path Planner Iterative A* Path Planner
Preferred  Not Preferred Ask subject  Preferred  Not Preferred Ask subject
Path Picked  Path Picked to Decide Path Picked  Path Picked to Decide
subject 1 93.90% 2.19% 3.92% 79.93% 14.40% 5.67%
subject 2 84.95% 6.71% 8.33% 97.33% 0.59% 2.08%

Table 2. Accuracy in simulator for both subjects in dynamic scenes. (36 scenarios per planner per user)

pick the path that was away from the person, especially for
open spaces,” make predictions for his preferences using the
iterative A* method easy.

5.3. Results on Robotic Wheelchair

We also tested our approach in real scenes using a robotic
wheelchair. We modified a commercially available powered
wheelchair so that it can be controlled by a computer, by
connecting the latter to the joystick interface, and added a
Microsoft Kinect, which provides RGB-D images for local-
ization and obstacle avoidance. A microphone is used to
receive voice commands and a tablet, mounted in front of
the subject, displays the map and messages to the user (see
Fig. 6).

Displaying

tabiet

Figure 6. Setup of robotic wheelchair

The ROS move-base package is used for path planning
and navigation. Given a, potentially partial, map, the move-
base package can plan a path and execute it taking into ac-
count the robot’s physical properties. For the experiments
shown here, we replaced the global planning component of
the ROS move-base package with the path-planning meth-
ods presented in Section 3. After a path is selected auto-
matically or by the user, it is sent to the local planner for
execution.

Other ROS packages used here include: RTAB-map

which is used for mapping and localization [26] and the
upper-body detector from the SPENCER project which is
used to detect people [30, 31]. Both localization and peo-
ple detection rely entirely on the Microsoft Kinect for input.
The CMU Sphinx library [44] is used for voice recognition.

Figure 7. Experiment in studio. (a): Studio for navigation, (b):
paths between kitchen and study, (c): map of studio, (d): paths
displayed on tablet

A studio, shown in Fig.7, is used for testing. Inside the
studio, there is a bed, a study area, a dining table, a chat-
ting area, and a kitchen. The dining table is at the center
of the room allowing the wheelchair to pass on either side.
Therefore, there are two homotopically distinct paths be-
tween any two locations. In some cases, such as between
the kitchen and bed, the top two paths have similar feature
vectors, while in other cases, such as the bed and the study
area, the feature vectors differ considerably.

A voice recognition interface is used for hands-free con-
trol of the wheelchair by defining words or phrases as com-
mands. In addition to the commands, the subject only needs
to say the color of a path to select it when needed. A typical
interaction of the user with the wheelchair looks as follows:

1. The subject says “attention” to start.

2. The system responds with “ok, where do you want to

29

go”.



Figure 8. Photographs from experiments in studio with subject 2. Top: static scene. Bottom: dynamic scene. The system chose different
paths due to the presence of people in the second scenario, even though they do not block the left path.

3. The subject says the name of one of the pre-specified
locations (e.g. “’kitchen”, “study”).

4. The system acknowledges receiving the location and
searches for paths using one of the planners.

5. The system plans paths. If there is more than one
path, the system evaluates the paths and decides whether to
defer to the subject or not based on the difference of path
scores.

6. If the system decides to engage the subject, it displays
the paths on the tablet and asks the subject to choose the
path he prefers. The subject responds by the color of the
path (e.g. “red”, “green”).

7. The wheelchair executes the path selected by the sub-
ject or automatically.

8. The system goes back to idle state and the subject can
say “attention” to restart the process.

One of the purposes of experimenting in a real environ-
ment is to test whether the learning-to-rank model trained
on simulated data would transfer well to a robot. Prelimi-
nary observations support this hypothesis for both planners.
Moreover, the difference in user preferences shown in the
simulator has been maintained when the subjects operate
the wheelchair and is manifested by the different paths cho-
sen, especially in the vicinity of people. Photographs from
one of the runs are shown in Fig. 8.

6. Conclusions and Future Work

This paper presents an approach for shared autonomy fo-
cusing on a robotic wheelchair that can learn user prefer-
ences and integrate them in path planning. Given a naviga-
tion goal, our approach generates multiple paths, using one
of two available planners, and attempts to select the path
that the user would have chosen. The selection is made by
an SVM that has been trained to rank paths according to

objective criteria, such as length, as well as more subjective
criteria, such as distance to people and obstacles. Train-
ing the SVM does not require substantial annotation efforts
since it can be done with one click per scenario in a simula-
tor - much faster than actually navigating the wheelchair.

Unlike other research efforts that adjust the level of au-
tonomy of robotic wheelchairs according to the user’s capa-
bilities [9, 29, 33, 40, 43], we target users without serious
cognitive impairments. Our aim is to provide them with a
user interface that alleviates the burden of navigation while
adhering very closely to what the user would have done if
she were driving. Our experiments in a simulator and using
a powered wheelchair are encouraging that this goal can be
attained. User studies at a much larger scale are our highest
priority for future work.

Currently, our system only learns from a single click
of the user who selects a path among a few options. We
plan to record richer inputs while the user is navigating
the wheelchair manually, using the joystick or another in-
put mechanism. We can then apply learning from demon-
stration techniques [, 3, 5] to capture user preferences and
habits more faithfully. In the shorter term, it is straightfor-
ward to periodically retrain the system using data recorded
during everyday operation when the user is engaged by the
system. Finally, we plan to provide more sophisticated in-
teraction capabilities with people in the scene by anticipat-
ing their behavior [2, 11, 22, 23, 45].
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