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ABSTRACT

Assessing trust in online social networks (OSNs) is critical for many applications
such as online marketing and network security. It is a challenging problem, however,
due to the difficulties of handling complex social network topologies and conducting
accurate assessment in these topologies. To address these challenges, we model trust
by proposing the three-valued subjective logic (3VSL) model. 3VSL properly models
the uncertainties that exist in trust, thus is able to compute trust in arbitrary graphs.
We theoretically prove the capability of 3VSL based on the Dirichlet-Categorical (DC)
distribution and its correctness in arbitrary OSN topologies. Based on the 3VSL
model, we further design the AssessTrust (AT) algorithm to accurately compute the
trust between any two users connected in an OSN.

AT is able to accurately conduct one-to-one trustworthiness, however, it is
inefficient in addressing the massive trust assessment (MTA) problem, i.e., computing
one-to-many trustworthiness in OSNs. MTA plays a vital role in OSNs,; e.g.,
identifying trustworthy opinions in a crowdsourcing system. If the AssessTrust
algorithm is applied directly to solve the MTA problem, its time complexity is
exponential. To efficiently address MTA, we propose the OpinionWalk algorithm
that yields an polynomial-time complexity. OpinionWalk uses a matrix to represent
a social network’s topology and a vector to store the trustworthiness of all users in
the network. The vector is iteratively updated when the algorithm “walks” through
the entire network.

To validate the 3VSL model, we first conduct a numerical analysis. An online
survey system is then implemented to validate the correctness and accuracy of 3VSL
in the real world. Finally, we validate 3VSL against two real-world OSN datasets:
Advogato and Pretty Good Privacy (PGP). Experimental results indicate that 3VSL
can accurately model the trust between any pair of indirectly connected users in the
Advogato and PGP. To evaluate the performance of the AssessTrust and OpinionWalk
algorithms, we use the same datasets. Compared to the state-of-art solutions, e.g.,
EigenTrust and MoleTrust, OpinionWalk yields the same order of time complexity
and a higher accuracy in trust assessment.
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INTRODUCTION

Online social networks (OSNs) are among the most frequently visited places
on the Internet. OSNs help people not only to strengthen their social connections
with known friends but also to expand their social circles to friends of friends who
they may not know previously. Trust is the enabling factor behind user interactions in
OSNs and is crucial to almost all OSN applications. For example, in recommendation
and crowdsourcing systems, trust helps to identify trustworthy opinions [9,108]. In
Twitter, spam undermines the trust among users by distributing false links [101], and
thus seriously impacts the user experience. In online marketing applications [81], trust
is used to identify trustworthy sellers. In a proactive friendship construction system
(98], trust enables the discovery of potential friendships. In the networking security
domain, trust is considered an important metric to detect malicious users [60,85, 99,
100]. In social influence analysis, trust is a key factor in evaluating the impacts of
influential users [65,105]. Given the above-mentioned applications, one confounding
issue is to what degree can a user trust another user in an OSN. This dissertation
studies the fundamental issue of trust assessment in OSNs: given an OSN, how to
model and compute trust among users?

Trust is traditionally defined as either a rating-based reputation or the
probability that a user is benign. In an online marketing system, e.g. Ebay, users rate
each other based on their previous interactions, so the trust of a given user is derived
from aggregated ratings. In the network security domain, however, trust of a given
user is defined as the probability that this user will behave normally in the future.

Based on results from previous studies [23,26,73,84], we define trust as the probability
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that a trustee will behave as expected, from the perspective of a trustor. Here, both
trustor and trustee are regular users in an OSN where the trustor is interested in
knowing the trustworthiness of the trustee. This general definition of trust makes it
applicable for a wide range of applications. We also assume that trust in OSNs is
determined by objective evidence, i.e., cognition based trust [4,21,41,43] formed in

the absence of interaction experiences, is not considered in the dissertation.

Problem Statements

This dissertation aims at addressing the fundamental issue of accurately
modeling and computing trust in OSNs, which requires us to solve the following

three technical problems.
e P1: How to model direct trust in online social networks?
e P2: How to compute indirect trust in online social networks?
e P3: How to conduct massive trust assessment in online social networks?

In the first problem, because the trustor and trustee have direct interactions
between each other, we call the trust relation between them direct trust. Based on
the assumption that trust is determined by objective evidences, this problem can be
formulated as follows.

P1: Given the interactions between a trustor and trustee, how does one model the
trustworthiness of the trustee, from the perspective of the trustor?

Solving the second problem will provide a method to calculate the trust between
two users who have no previous interactions. As the two users did not interact with
each other previously, their trust relation is called indirect trust. Here, we model a

trust social network as a directed graph G = (V, E') where a vertex u € V represents
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a user, and an edge e(u,v) € E denotes the trust relation from u to v. The weight
of an edge w(u,v) denotes how much w trusts v, which is usually referred to as the
direct trust from u to v. As such, the second problem is formulated as follows.

P2: Given a trust social network G = (V, E), ¥ u and v, s.t. e(u,v) ¢ E and 3 at
least one path from w to v, how does one compute u’s trustworthiness on v, i.e., how
should u trust a stranger v?

Massive trust assessment (MTA) allows a user to compute the direct/indirect
trustworthiness of all other users in an OSN. MTA is important in many applications.
For example, the LendingClub, Inc. [2] leverages the trust relations among users
in Facebook.com [3] to improve its online peer-to-peer lending service. It offers
a mechanism to evaluate the trustworthiness of all potential borrowers, from the
perspective of a lender. Clearly, the hinge of this application is to efficiently and
accurately compute the trustworthiness of all trustees, from the point of view of the
trustor. Therefore, the third problem can be formulated as follows.

P3: Given a trust social network G = (V,E), ¥ i and j, s.t. i,5 € V, 3 at least
one path from v to j, how does one efficiently compute the trustworthiness of users

{j € V,j # i}, from the perspective of user i?

Limitations of Prior Art

Existing trust models can be categorized as topology (or graph) based models
(13,29, 69, 95,99, 100], PageRank based models [7, 36, 58], probability based models
20,68, 90], and subjective logic based models [57]. None of them, however, are able
to accurately model and compute trust in OSNs.

Topology based models [13,95,99,100] treat trust assessment as a community
detection problem and employ a random-walk method to identify users within the

same community. These users are considered as trustworthy to each other. The key
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limitation of these models is that the trustworthiness of users within a community
is indistinguishable [67], which limits the application of the models. Graph based
models [29,47,62,69] assign a real number, ranging from 0 to 1, on each edge in
the trust social network, and employ graph searching algorithms to evaluate the
trustworthiness between any two users. The major limitation of these models is that
trust is represented as a single value, which omits the uncertainty existing in trust
and thus is inaccurate in assessing trust.

In addition to traditional graph searching algorithms, PageRank based models,
e.g., TrustRank and EigenTrust [36,58,59], apply the idea of PageRank to rank users
based on their trustworthiness. The trustworthiness of users is obtained by calculating
how likely a user can be reached from the trustor within the network. In these models,
the probability of reaching a user (from the trustor) is determined by the trust value
of the edge connecting to the user. The key limitation of these models is that they
mistakenly treat trust propagation in a social network as a random walk process,
which is not correct.

Probability based models [20,68,90] model trust as a probability distribution,
i.e., a trustor uses previous interactions with a trustee to construct a probabilistic
model to approximate the trustee’s future behavior. The major limitation of these
models is that they only focus on direct trust and cannot be applied to compute
indirect trust. Although the subjective logic [53,57] model takes advantage of both
graph and probability based models, it can only handle simple network topology. Its
performance degrades drastically in a complex network topology that is common in

real-world online social networks.



Proposed Approaches

To address problem P1, we propose the three-valued subjective logic (3VSL)
model that is able to accurately model trust based on users’ interactions within
an OSN. 3VSL is based on the subjective logic (SL) model [57]. However, it is
significantly different from SL. Instead of defining trust as a binary value in SL, 3VSL
treats it as a ternary value (i.e., belief, distrust, and uncertainty). In other words, a
user in an OSN could be trustworthy, not trustworthy, or uncertain. Therefore, the
probability of a user being trustworthy can be modeled by the Dirichlet-Categorical
(DC) distribution that is characterized by three parameters «, § and ~. Here, «
represents the number of positive interactions/evidence that supports the user is
trustworthy. For example, we observed that the user behaved as expected « times
in the past. [ denotes the amount of negative evidence indicating the user is not
trustworthy. ~ is the amount of neutral evidence that neither supports nor opposes
the user is trustworthy. The reason of introducing the uncertain state in 3VSL is
that it can accurately model the trust propagation process in an OSN. During trust
propagation, certain evidence measured by a+( is “distorted” and becomes uncertain
evidence, measured by ~. Distorted evidence is usual in trust assessment, however,
they are totally omitted in SL.

To address problem P2, we propose a trust computation algorithm, called
AssessTrust (AT), based on 3VSL model. AT decomposes the sub-graph between
the trustor and trustee as a parsing tree, which provides the correct order of applying
trust propagation and fusion to compute the indirect trust between the trustor and
trustee. Here, trust propagation and fusion are modeled by two basic operations:
discounting and combining operations. Leveraging the properties of 3VSL, AT is

proven to be able to accurately compute the trustworthiness between any two users
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connected within an OSN. Because 3VSL uses a probability distribution to describe
whether a user is trustworthy, AT offers more accurate trust assessment, compared
to the topology and graph based solutions. On the other hand, while AT makes use
of the social connections between the trustor and trustee to compute their trust, it
outperforms the probability based models that are only applicable for direct trust.
Experiment results indicate that AT achieves the best accuracy of trust assessment
in OSNs. Specifically, AT achieves the F1 scores of 0.7 and 0.75, in trust assessment,
using the Advogato and Pretty Good Privacy (PGP) datasets, respectively. AT can
also be used to rank users, based on their trustworthiness. We measure the accuracy
of the ranking results using the Kendall’s tau coefficients, compared to the ground
truth ranking. Experiment results show that AT offers 0.73 and 0.77 kendall’s tau
coefficients on average in Advogato and PGP, respectively.

Although AT is able to conduct accurate trust assessment between any two users
in an arbitrary social network, it is too slow to solve the problem P3. If AT is applied
to solve the MTA problem in OSNs, it needs to be executed O(n) times, if the network

k1) time complexity where k is the network’s

contains n users. That will yield an O(n
diameter that is usually a function of n. Therefore, it is critical to design an algorithm
to efficiently compute the trustworthiness of all users in the network, for any given
user. Based on the 3VSL and AT algorithm, we propose a polynomial-time algorithm,
called OpinionWalk, to efficiently address the MTA problem. In OpinionWalk, we use
an opinion matrix to represent a social network’s topology. Elements in the opinion
matrixz are opinions that indicate the direct trust between users in an OSN. We design
a set of matrix operations, called opinion walk, to capture the trust propagation and
fusion with the network. Traditional multiplication and summation operations are

replaced by the discounting and combining operations defined in 3VSL [66]. We

prove the correctness of OpinionWalk and analyze its time complexity. We find
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that OpinionWalk perfectly implements the 3VSL model and offers a better time
complexity, O(n?), in addressing the MTA problem. Experiment results using the

Advogato and PGP datasets validate the correctness of OpinionWalk.

Key Contributions

In this dissertation, we make the following key contributions. First, we propose
3VSL to model the direct and/or indirect trust between two users connected within
an OSN. 3VSL differs from prior trust models in that it considers both trust relations
and network topologies, and thus is applicable in large-scale OSNs. Second, 3VSL
extends SL by introducing a neutral state, distinguishing distorting opinions from
original opinions, and redesigning the discounting and combining operations. Third,
based on 3VSL, we propose a trust assessment algorithm AT to accurately compute
the trust between any two users in an OSN. Fourth, we propose another algorithm,
called OpinionWalk, to address the massive trust assessment problem. Fifth, the
correctness of OpinionWalk is proven and its time complexity is analyzed. Sixth, to
validate the 3VSL model and associated algorithms, we conduct intensive experiments
including numerical analysis, online surveys and validation against two real-world
datasets, Advogato and PGP [72].

The rest of this dissertation is organized as follows. In chapter 2, the related
work is introduced. In chapter 3, we introduce the 3VSL model and define the trust
propagation and fusion operations. In chapter 4, we differentiate discounting opinions
from original opinions and prove that 3VSL can handle arbitrary network topologies.
Based on the model, we further propose the AssessTrust algorithm. In chapter 5,
we introduce the OpinionWalk algorithm and prove its correctness and analyze its
time complexity. In chapter 6, we validate 3VSL through numerical and experimental

evaluations. Furthermore, we evaluate the performance of AT and OpinionWalk using
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two real-world datasets. In chapter 7, we conclude the dissertation and present a plan

for future work.
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RELATED WORK

Definitions of Trust

Trust has been widely studied in psychology, sociology and management
domains. A widely accepted definition of trust was summarized by Rousseau in [84],
based on a cross-disciplinary literature review: “Trust is a psychological state
comprising the intention to accept vulnerability based upon positive expectations
of the intentions or behaviors of another.” Despite the various definitions of
trust [23,26, 73], they are similar to Rousseau’s, i.e., it can be concluded that trust
is composed of two parts: expectation and vulnerability. While the former indicates
the probability that the trustee will behave as expected, the latter shows the trustor’s
willingness of relying on the trustee. Specifically, the word vulnerability emphasizes
the trustor’s concerns about the uncertainty [17,76] of the trustee’s future behaviors.
The definition of trust in this dissertation is inspired by the above studies, and we
define trust as the probability that the trustee will behave as expected, from the
perspective of the trustor.

Although trust is commonly confused with reputation, they are two different
concepts. Previous works [17,24,46] have identified the positive correlations between
reputation and trust. However, reputation is not equivalent to trust. According
to the definition from Merriam-Webster dictionary and Wikipedia, reputation is the
common opinion that people have about someone or something, i.e., the overall quality
or character as seen or judged by people in general. In essence, reputation comes from
the public and general opinion. However, trust comes from individual opinions, i.e.,
from a trustor to a trustee with emphasis on personal interactions. On the other hand,
reputation is a summary of past events while trust is the intention and expectation

of the future.
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Trust Models in OSNs

Trust is built on the social ties between users and how to model trust in online
social networks has attracted more attention in recent OSN studies. Several works
exist regarding to modeling trust in social networks. In this section, we briefly

introduce these works.

Topology based Trust Model

Topology based trust models treat a trust social network as a graph, where an
edge represents the trust relationship between two neighboring nodes. The advantage
of these methods is that they leverage random walk to evaluate trust, and thus can
be easily applied in large-scale OSNs.

By analyzing network topologies, the works in [13,95,99,100] are able to identify
untrustworthy nodes in an OSN. Their fundamental idea is to identify untrustworthy
nodes by distinguishing untrustworthy regions from trustworthy regions in the
network. Specifically, they play random walk from a trustor and evaluate the
probability of reaching a trustee. A low probability indicates that the trustee is
not in the trustworthy region, and vice versa. Later on, people began to model
indirect trust by considering the trust values between users. In [19], a trust relation
between two users is treated as a probabilistic value. All users and their associated
trust relations compose a graph. Then, the indirect trust inference problem becomes
a network reachability problem. In [109], a trust network is considered a resistor
network where the resistance of each edge is derived from the trustworthiness of the
edge. In [31,103], given a trust network, a depth-first search algorithm is employed

to compute the trust between any two users.
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PageRank based Trust Model

PageRank based trust models employ the PageRank algorithm [78] to compute
the relative trustworthiness of interested users. For example, the EigenTrust
algorithm, proposed in a peer-to-peer system [58], starts from a peer and searches
for trustworthy peers based on several rules. It moves from peer to peer with a
probability that is proportional to the other peer’s trust score, i.e., higher the trust
score, higher the moving probability. In this way, EigenTrust will more likely reach
trustworthy peers. Later on, the relative trust of web pages is investigated in [36] to
identify spam pages. The TrustRank algorithm proposed in [36] again employs the
PageRank algorithm on the network to rank the trustworthiness of web pages. Both
EigenTrust and TrustRank can be viewed as a variant of the PageRank algorithm
that is a well known solution to assigning importance scores to pages on the Internet.
These algorithms, however, only generate trust rankings, instead of absolute trust

values of peers/pages.

Probability based Trust Model

Probability based trust models treat direct trust as probability distributions,
where a trustor uses past interactions and observations of a trustee to construct a
probabilistic model approximating the trustee’s future behavior. The advantage of
these models is that trust can be accurately computed based on a wide variety of
statistical and probability techniques, including Hidden Markov Chain, Maximum
Likelihood Estimation, etc.

Many previous efforts were devoted to the study of modeling direct trust
between OSN users in a computational way [14,20,68,88,90]. For example, direct trust
is modeled as a discrete multinomial distribution in [22]. Therefore, trust assessment

becomes a problem of likelihood estimation, regarding to the distribution parameters
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based on given evidence. If trust is modeled as a discrete binomial distribution (i.e., a
user is either trustworthy or not), the likelihood estimation can be performed on the
Beta distribution [57]. If trust is modeled as a continuous random variable, Gaussian
distribution can be used [14,88] to model non-discrete cases where a possible outcome
is a continuous value.

The binomial distribution can be further extended to a multinomial distribution
to handle the case of multiple discrete random variables [22]. Based on the multi-
nomial distribution (including the binomial distribution), Bayesian analysis [14, 88]
and Hidden Markov Model (HMM) [20, 68,90] can be applied in trust assessment.
While the former integrates evidence from various sources, e.g., reputation scores and

preference similarity, the latter handles the dynamic in trust.

Subjective Logic based Trust Model

To understand trust in online social networks, Jgsang proposed the subjective
logic model in [52,56,57]. Considering a binary trust value, subjective logic assumes
the probability of a user being trustworthy follows the Beta distribution. The
Beta distribution here can be computed from the numbers of positive and negative
evidence, respectively. The advantage of using subjective logic is that trust can be
more realistically modeled by considering the uncertainty in a person’s judgment
about trust. Such uncertainty exists because it is difficult for a person to determine
with absolute certainty whether a person is trustworthy or not. In [37,38,63,91,92,94],
the subjective logic model is further refined to improve its accuracy in trust
assessment.

Subjective logic treats trust as opinions and introduces an algebra for opinion
operations, e.g., discounting and consensus operations for trust propagation and

fusion, respectively. The consensus operation provides a method for combining
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possibly conflicting beliefs/opinions to generate a consensus opinion [49]. The
consensus opinion reflects all opinions being combined in a fair and equal way. The
discounting operation is the operation by which a new trust relationship can be
derived from pre-existing trust relationships [54]. For example, if Alice trusts Bob,
and Bob trusts Claire, then by trust propagation, Alice will also trust Claire. With
the discounting and consensus operations, it is possible to compute the indirect trust
between two connected users in OSNs.

Besides the two basic discounting and consensus operations, Jgsang further
defined the multiplication, co-multiplication, division, and co-division of opinions
[55].  Although these operations are irrelevant in modeling trust propagation and
fusion, they allow an opinion to be multiplied or divided by another opinion. Later
on, subjective logic is extended to support conditional inference [51]. A conditional
inference is usually in the form of “IF x THEN y” where x denotes the antecedent
and y the consequent proposition. Here, the antecedent x is modeled by subjective
logic so that it is not a binary value, true or false. Instead, it is a vector representing
the probability that this antecedent is true. Overall, subjective logic was proven
to be compatible with binary logic, probability calculus, and classical probabilistic

logic [50].

Applications of Trust in Online Systems

Along with the rapid development of the Internet and online services, trust
has been used in many applications for either improving users’ quality of experience
(QoE) or preventing the disturbance of malicious users. In this section, we briefly

introduce these applications.



14

Trust in Cloud Computing

Recently, trust was introduced in the concept of social cloud. In [75], Mohaisen
et al. employ trust as a metric to identify good workers for an outsourcer through
her social network. In [77], Moyano et al. proposed a framework to employ trust and
reputation for cloud provider selection. In [79], Pietro et al. proposed a multi-round
approach, called AntiCheetah, to dynamically assign tasks to cloud nodes, accounting

for their trustworthiness.

Trust in P2P Network and Semantic Web

Trust analysis was first implemented in peer-to-peer (P2P) networks [58,96,104].
In P2P networks, trust is used to evaluate the trustworthiness of a particular resource
owner, and thereby identify malicious sources. Trust analysis was also applied to
semantic webs [8,30,82]. The purpose of analyzing trust in semantic webs is to
study the trustworthiness of data with efficient knowledge processing mechanisms.
For example, the trustworthiness of web hyperlinks are studied in [36,61,71]. Trust
analysis is then applied to filter untrustworthy contents in [10,12,15,16,18,28]. Finally,
trust was used to evaluate the quality of contents on semantic webs in [27,32,71,83,

86, 106].

Trust in Cyber-Physical Systems

Trust analysis is also introduced in cyber-physical systems (CPS), e.g., wireless
sensor networks and vehicular networks [40]. For example, a trust based framework is
proposed to secure data aggregation in wireless sensor networks [102], which evaluates
the trustworthiness of each sensor node by the Kullback-Leibler (KL) distance to
identify the compromised nodes through an unsupervised learning technique. In [64],

trust analysis is employed to identify malicious and selfish nodes in a mobile ad
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hoc network. In addition, Xiaoyan et al. propose a new trust architecture, called
situation-aware trust (SAT), to address several important trust issues in vehicular
networks, which are essential to overcome the weaknesses of current vehicular network

security and trust models [40].

Trust in Spam Detection and Sybil Defense

Another important domain in which trust analysis is widely applied is Sybil
defense and spam detection [5,25,42,74,87,95]. The goal of these works is to identify
forged multiple identities and spam information in OSNs. The basic idea of [5,95] is
to employ random walk to rank the neighbors in a given OSN from a seed node, and
extract a trust community composed of high ranking nodes. Then, the users outside
the trust community will be considered as not trustworthy, i.e., potential Sybil nodes.
In [87], Tan et al. integrated traditional Sybil defense techniques with the analysis of
user-link graphs. In [74], Mohaisen et al. proposed a derivation of the random walk
algorithm, which employs biased random mechanism, to account for trust and other
social ties. In [97], besides graph based features, Yang et al. introduced some other
features to identify spammers. In addition, in [25,42], spam detection approaches

based on user similarity and content analysis are studied.

Trust in Recommendation and Crowdsourcing Systems

In addition to Sybil defense in OSNs, trust analysis is also useful in recom-
mendation systems [6,9,37,45,70,108]. For example, in [108], Zou et al. proposed a
belief propagation algorithm to identify untrustworthy recommendations generated by
spam users. In [9], Basu et al. proposed a privacy preserving trusted social feedback
scheme to help users obtain opinions from friends and experts whom they trust.

In [6], Andersen et al. proposed a trust-based recommendation system that generates
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personalized recommendations by aggregating the opinions from other users. In

addition, five axioms about trust in a recommendation system are studied in [6].
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THREE-VALUED SUBJECTIVE LOGIC

In this chapter, we propose the three-valued subjective logic (3VSL) model to
model the trust between users in OSNs. Designing this model is a challenging task
because trust propagation in OSNs is not well understood, although it is widely used
in many applications. We address this challenge by modeling trust as a probabilistic
distribution over three different states, i.e., belief, distrust, and uncertainty. By
looking at how the states of trust change during trust propagation, we redesign
the trust discounting operation in subjective logic [57]. In 3VSL, the parameters
controlling the probabilistic distribution are determined by the amount of evidence
that support each state. The evidence is collected from the interactions between the
trustor and trustee. To model trust fusion, we further design the combining operation.
Together with the discounting operation, we are able to model and compute the trust

between two users that are directly or indirectly connected to each other.

Preliminaries

To better understand 3VSL, we first briefly introduce the subjective logic [57].
Considering two users A and X, A’s opinion about the trustworthiness of X can be

described by an opinion vector:

wyax = (@ax, Bax,2) |aax,

where aax, [ax, 2 denotes the amount of evidence that supports user X is
trustworthy, not trustworthy, and uncertain, respectively. Note that the amount
of uncertain evidence in an opinion in SL is always 2. ax is called base rate and

formed from an existing impression without solid evidence, e.g. prejudice, preference,
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or general opinion obtained from hearsay. For example, if A always distrusts/trusts
the persons from a certain group where X belongs to, then a4 x will be smaller /greater
than 0.5.

Based on the Beta distribution, two opinions w; = (a1, 51,2) |a; and wy =
(av, B2,2) |ag can be combined to form a new opinion wis = (@12, 512,2) a2, where

12, P12 and aqo are calculated as follows.

12 = 1 + Qg

B2 =P+ B2 -
a _CL1+CL2
2= T

Let A and B denote two persons where wy; = (ay, f1,2) |a; is A’s opinion about
B’s trustworthiness. Assume C' is another person where wy = (ag, fs,2) |as is B’s
opinion about C'. Then, subjective logic applies the discounting operation to compute
A’s opinion about C’s trustworthiness wac = (@19, B2, 2) |a12, where ajs, 12 and a2

is calculated as follows.

( 1009 2
(0 = — . —
12 52 + (0] + 2 K
04152 2
Brp= 2 2
62 -+ (6] + 2 K
Q12 = G2
\
where
10 a3y
k=1

_52+042+2_52+062+2'

A Probabilistic Interpretation of Trust

Trust in 3VSL is defined as the probability that a user will behave as expected

in the future. 3VSL models a user’s future behavior as a random variable x that takes
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on one of three possible outcomes {1,2,3}, i.e., x = 1, x = 2 and x = 3 indicate the
user will behave as expected, not as expected, or in an uncertain way, respectively.
The third state, uncertain state, is introduced in 3VSL to capture the uncertainty
that exists in trust assessment. Therefore, the probability density function (pdf) of

x follows the categorical distribution:

f(alp) = pr g

where p = (p1,p2,p3) and py + ps + p3 = 1, p; represents the probability of seeing
event i. The Iverson bracket [z = i| evaluates to 1 if x = ¢, and 0 otherwise.

If the value tuple p is available, the pdf of x will be known and the probability
of x = 7 can be computed. Unfortunately, p is an unknown parameter and needs
to be estimated based on the observations of z. We treat p as a group of random

variables that follows the Dirichlet distribution:

p ~ DZ’I”(O(, /67 7)7

where «, 3, 7 are hyper-parameters that control the shape of the Dirichlet distribution.
We assume p follows Dirichlet distribution mainly because it is a conjugate prior
of categorical distribution. In addition, because Dirichlet distribution belongs to a
family of continuous multivariate probability distributions, we can have various pdfs

of f(p) by changing the values of «, 3,~:

f(p) = Cp® " lps" 7, (3.1)

where C' is a normalizing factor ensuring p; + p2 + ps = 1. In this way, we assume

p ~ Dir(a, 3,7) to model the uncertainty in estimating p.



20

With the mathematical model in place, parameter p can be estimated based on
the observations of z, according to the Bayesian inference. Given a set of independent
observations of x, denoted by D = {zy,29,--- ,2,} where ; € {1,2,3} and j =
1,2,---,n, we want to know how likely D is observed. This probability can be

computed as

[x;=1] [z;=2] [z;=3
D|p Hpj [2J ]L’J ]

Let ¢; denote the number of observations where z = i, we know ) ¢; = n. Then, the
above equation becomes pi'p3’ps*. Based on Bayesian inference, given observed data

D, the posterior pdf of p can be estimated from

P(D|p)f(p)

f(pID) = Py

where P(D|p) is the likelihood function p{*p35?ps*, and f(p) the prior pdf of p. P(D)

is the probability that D occurs, which is independent of p. So we have

F(PD) o< p'psipst x pt'ps 'p3
That means the posterior pdf f(p|D) can be modeld by another Dirichlet distribution
Dir(a+cy, B+co,v+c3). With the posterior pdf of p, we have the following predicative

model for z:

f(x[D) = / f(x[p) (p|D)dp. (3.2)

This function is in fact a composition of Categorical (f(z|p)) and Dirichlet (f(p|D))

distributions, so it is called Dirichlet-Categorical (DC) distribution [89].
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Opinion

In the previous section, we introduce how to model trust as a DC distribution.
Because the shape of a DC distribution is determined by three parameters, we can
instead use these parameters to form a vector to represent trust. This vector is called
an opinion that expresses a trustor’s opinion about a trustee’s trustworthiness.

For a given DC distribution, the only undetermined parameters are o, 3,~. We
set @ = f =~ = 1 in default, if there is no prior knowledge about D. In this case,
the Dirichlet distribution becomes an uniform distribution, i.e., p; = ps = p3 = 1/3.
Assuming p initially follows the uniform distribution is reasonable because we make
no observation of x, and the best choice is to believe that x could be 1,2, 3 with equal
probability. As more observations of x are made, the pdf of p approaches to the true
one.

From Eq. 3.2, we can predict the probability of x = i where ¢+ = 1,2,3, i.e.,
whether a user will behave as expected, not as expected, or in an uncertain way.
In other words, we can use Eq. 3.2 to compute the trustworthiness of a user. From
Eq. 3.2, we can obtain the expectation of the probability that a user will behave as

expected:

P(z = 1|D)

= /P(l' = 1’19171?27273)13(]01,p2,p3\01,Cz,CS)d(pl,pz,pg)

_ [(cr + e+ c3) c1—1 co—1 e3—1

" D)) (es) o

~ Tler+ e +e3)l(er + 1IN (e2)T(cs)

- T(e)T (o) (e3)T ey 4 o 4¢3+ 1)
C1

L — (3.3)
C1+Cy+C3
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where I'(n) = (n — 1)! is the Gamma function. Similarly, the probabilities that the

user will behave not as expected or uncertain are

Plx=2D)=— 2
C1+ Cy+C3
and
C3
Pz=3D)= ——
C1+ Cy + C3

If the hyper-parameters «a, 3,7 equal to 1, the trustworthiness of a user is
only determined by ci,cs,c3, i.e., the numbers of observations that support the
user will behave as expected, not as expected, and uncertain. We call these
observations positive, negative, and uncertain evidence. In other words, a trustee
X’s trustworthiness to trustor A can be modeled by the interaction evidence between

them:

wax = (ax, fax,Vax) |aax.

Here, wax denotes A’s opinion on X’s trustworthiness, and aux, Sax,vax refers
to the amount of observed positive, negative and uncertain evidence, based on
A’s interactions with X. We further name them belief, distrust and uncertainty
parameters in the rest of this dissertation. The subscripts of aax,Bax,Vax
differentiate them from the prior «, 3,7, i.e., the former represents observed evidence

while the latter is set as 1.

Discounting Operation

Because trust is modeled by DC distribution, in this section, we will model
the trust propagation by defining the operation between two DC distributions (or

opinions). Trust propagation in OSNs was intensively studied in the past decade. It
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(a) A general illustration of series topology.

(b) A simple example of series topology.

a)AB wBC

Figure 3.1: Examples of series topologies

can be illustrated in a series topology, e.g., Fig. 3.1(a), where two edges are connected
in series if they are incident to a vertex of degree 2. In Fig. 3.1(a), the nodes are
users in a trust social network. The directed edges indicate the opinions between
them. Trust propagation means that if user A; ; trusts A; and A; trusts A; ., then
A;_1 will trust A; 1, even if A;_; did not interact with A;,; before.

Let’s take the example shown in Fig. 3.1(b) to define the discounting operation
in 3VSL. Based on existing research works about trust propagation [11,34,35,107],

it is commonly agreed that the following assumptions hold:
e Al: If A trusts B, B trusts C, then A trusts C.
o A2: If A trusts B, B does not trust C, then A does not trust C.

e A3: If A trusts B, B is uncertain about the trustworthiness of C, then A is

uncertain about C’s trustworthiness.

e A4: If A does not trust B, or A is uncertain about the trustworthiness of B, A

is uncertain about the trustworthiness of C.

It is worth mentioning that trust propagation refers to an opinion being transferred

from a trustful user to another user. In other words, if A trusts B, then B’s opinion
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of C' will be transferred and becomes A’s opinion of C'. Otherwise, if A does not trust
or is uncertain about B, then A is uncertain about C' as B’s opinion on C' cannot be

trusted. According to the 3VSL model, we model A’s opinion of B as

wap = (@aB, Bap,VAB) s

and B’s opinion on C' as

wpe = (aBc, Bec: VBC) S

where {aap, B4, vap} = Dap and {apc, e, 78c} = Dpe represent the obser-
vations made by A and B (on B and ('), respectively. In this way, the expected

probability that C' will behave as A’s expectation can be computed from

//(CU = 1|pas)f(pas|/Dag) x
fxz =1lpsc) f(Pec|DBc)d(Pas)d(Pse).

(3.4)

The intuition behind Eq. 3.4 can be explained as follows. A trusts C' if and
only if A trusts B and B trusts C', which is the assumption A1 we made based on the
findings from [11,34,107]. In other words, the probability that C' will behave as A
expects is equal to the probability that C' will behave as B’s expects, if A trusts B.
In the above equation, f(x = 1|pag)f(Pan|Dag) gives the probability that A trusts

B, and f(z = 1|ppc)f(Pec|Dac)d(pap) denotes the probability that B trusts C.
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Because the two events, i.e., A trusts B and B trusts C, are independent with

each other, Eq. 3.4 can be rewritten as

/f($ = 1|pan)f(Pas|/Dag)d(pas) x

/ J(x = 1pse) f(psciDac)d(pso). (3.5)

The two integrations in the above equation are used to compute the expected
probabilities that A trusts B and B trusts C', respectively. According to Eq. 3.3,

we know the expected probabilities are

/ F(x = Upan)f(PasDas)d(Dan)

aAB
aap + Bap + vaB’

/f(I = 1lpsc) f(Pec|DBc)d(PBC)

apc
- . 3.6
ape + Bee + VBe (3:6)

Inserting these two values into Eq. 3.5, we have the probability that C' will behave as

A expects:
QABOBC
(aap + Bas +vap)(ase + Bee + VBe)

(3.7)

According to assumption A2, the probability that C' will not behave as A

expects can be computed from

/ f(x =1|pas)f(Pap|Dan) x
f(x =2|psc) f(Pec|Dae)d(Pas)d(Pse).

(3.8)
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This equation makes sense because A does not trust C' if and only if he trusts B and
B does not trust C'. Because the events that A trusts B and B does not trust C' are

independent, we have the expected probability that A does not trust C' as

aABﬁBC
(aap + Bas +vap)(ase + Bee + VBe)

(3.9)

Finally, the expected probability that A is uncertain about C’s trustworthiness

can be derived from assumptions A3 and A4:

// f(x=1|pap)f(PaB/Dap) X

f(xz =3|psc)f(PBc|DBe)+
f(z =2|pag)f(Pa|Dap) + f(v = 3|pap) f(Pas/Das)

d(pas)d(pso)-

The expected probability can then be computed as

aapype + (Bap + vap)(asce + Bee + VBe)
(cap + Bag +vaB)(ase + Bee + vBC)

(3.10)

Note that the summation of Eqs. 3.4, 3.8 and 3.10 equals 1.

Because Eqs. 3.7, 3.9 and 3.10 give the current estimates of probabilities that
C will behave as expected, not as expected, or in a uncertain way, respectively, we
could use the following categorical distribution to model C’s future behavior (from

A’s perspective).
3
falpac) =", (3.11)
i=1
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where pac = (p1,p2, p3) and

. QABOBC

b= (ap + Bap + vas)(apc + Bc + v8c)’
- aaBPBe

b2 = (ap + Bap + van)(apc + Bc + v8c)’

(Bap + vaB)(aBe + Beec + vBc) + aapYBe
(aap + Bag + vap)(ase + Be + V)

p3 =

(3.12)

Based on our calculation, we know the categorical distribution is derived from B’s
opinion on C. Let’s assume that B makes a set of observations x = {x1, 9, - ,z,}
on (C’s behavior. According to our definitions, we know ape, Bsc, Ve equal to
the number of observations where x = 1,2 = 2, = 3, respectively. Clearly, the
observations B made about C' do not reflect A’s opinion on C because (apc, Bpc, VBC)
represents only B’s opinion on C. Here, the question is if A were asked to make the
n observations, how many of them will be positive, negative, and uncertain. In other
words, A needs to re-categorize B’s observations on C' such that the updated evidence
supports A’s current opinion on C'.

For each z; € x where j = 1,2,--- ,n, we know z; is observed given the
underlying categorical distribution in Eq. 3.11. Therefore, we know x follows
the multinomial distribution with parameters (n,pac). From the multinomial
distribution, we can compute the probability of any means of re-categorizing the
observation set x. The maximum probability corresponds to the most-likely way of

re-categorizing x. Therefore, we know the following re-categorization occurs with the
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highest probability.

asc = pilape + Bee + vBC)
dABOBC
(ap + fap + vaB)’
Bac = p2(ase + Bee +vBc)

aABﬂBc
(aap + Bap + VaB)

Yac = pslage + Bee +vB0),

(Bas + vaB)(ape + Bee + vBe) + @aBYBC
(ap + Bap + VaB) '

(3.13)

Therefore, we use wac = {(@ac,Bac,Vac) to represent A’s opinion about C’s
trustworthiness. It is worth mentioning that opinion w4¢ is generated from distorting

the positive/negative evidence in wpe and saving them as uncertain evidence, i.e.,

aac + Bac + vac = ape + Bee + VBe- (3.14)

In other words, the total amount of evidence observed does not change during
the discounting process. Based on the previous analysis, we formally define the

discounting operation in 3VSL as follows.

Definition 1 (Discounting Operation). Given three users A, B and C, if wap =
(aap, Bap,vaB) is A’s opinion on B’s trustworthiness, and wpc = {(apc, B, VBC) 08
B’s opinion on C'’s trustworthiness; the discounting operation A(wap, wpc) computes

A’s opinion on C' as

wac = A(wap,wpe) = (vac, Bac, vac) ,
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where

ouc = aABOBC
(aap + Bap + vaB)’
aapfBpe
Bac = :
(aap + Bag + vaB)
N ~ (BaB +7aB)(aBc + Be + VBe) + @apYBC
ACc = )

(aap + Bas + VaB)
(3.15)

Intuitively, the discounting operation can be understood as certain evidence
from wpge is distorted by wap and transferred into the uncertainty space of wpc.
Recall that the total amount of evidence of opinion A(wap, wpc) is the same as wpe’s,
we conclude the resulting opinion of a discounting operation shares exvactly the same
evidence space as the original opinion. It is worth mentioning that the discounting

operation yields two properties. The first one is called the decay property:

Corollary 3.0.1. Decay Property: Given two opinions wap and wpc, Alwap, wpe)
operation yields axc < age, Bac < Bpc and Yac > YBe-

O AB

(aaB + Bap + VaB)
well as Sac < fBpe. Hence, —aac — Bac = —Pac — Bac. According to Eq. 3.14, so

Proof. Since < 1, according to Eq 3.15, we have ayc < apge as

we have v4c > vBc. O

In other words, by applying a discounting operation, the uncertainty parameter
of the resulting opinion increases while the belief and distrust parameters decrease.
This property implies that the more trust propagates, the more uncertain the resulting

opinion. The second one is called associative property:

Corollary 3.0.2. Associative Property: Given three opinions wag, wpc and wWep,

A(A(wap,wpe),wep) = Alwap, Alwpe, wep))-
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@
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@ :AiBi /\
D, @
(a) (b)
Figure 3.2: Examples of parallel topologies

Proof. Simply based on Eq 3.15. m

Discounting operation is, however, not commutative, i.e., A(wap,wpc) #
A(wpe,wap). Given a series topology where opinions are ordered as wa, a,,Wa, A5, - 5
wa,_,A,, the final opinion can be calculated as A(A(A(wa, Ay, Wayas)s )y WA, 1A, )-

As the discounting operation is associative, it is simplified as A(wa, 4y, WA, a5, * - WA, 1A, )-

Combining Operation

In this section, we will introduce the combining operation in 3VSL. According
to previous works [11,34,107], several trust opinions can be fused into a consensus one
by aggregating the opinions from different sources. Trust fusion can be illustrated by
a parallel topology, e.g., Fig. 3.2(a), where two edges are connected in parallel if they
join the same pair of distinct vertices. In Fig. 3.2(a), nodes A, B are users in a trust
social network. The edges from A to B denote A’s opinions about B’s trustworthiness
that are formed from different sources.

Let’s use the simplest parallel topology shown in Fig. 3.2(b) to explain the

combining operation. Let

wAlBl — <04A1B175A131;'YA131>
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and

WA,By, = <aA2B27 5A232 ) 7A2B2>

be A’s opinions of B from two different sources. Here, we use {a4,p,, 84,81, V4,8, } =
D, g, and {@a,B,, Ba,8,, V4,8, = Da,p, to represent the observations made by A
on B from two different sources.

According to the definition of an opinion, the expected probability that B will

behave as A expects is computed from the following DC distribution.

/ F(& = Upan)f(PasDa, sy Das)d(Doas). (3.16)

where D4, 5, and D4, p, denote the aggregated observations from two sources.
The intuition of Eq. 3.16 can be explained as follows. A first infers the
parameters pap by aggregating the observations Dy, 5, and Dga,p,. Therefore, the

posterior pdf of psp becomes

f(PaB|Da,B,;Da,p,)- (3.17)

Based on the inferred parameters p 4, the probability that B will behave as A expects
can be computed from f(z = 1|pag). By considering all possible values of pag, we
can obtain Eq. 3.16.

We now derive the analytic form of Eq. 3.16. The intuition of trust fusion can be
explained as follows. A first forms his opinion on B’s trustworthiness from observation
D4, p,. As such, the pdf of parameters psp can be computed. Then, A adjusts its
estimate about pap based on a new set of evidence D y4,p,. Therefore, Eq. 3.17 can
be regarded as the distribution of pap based on (1) the posterior evidence in D4, p,

and (2) the prior parameters p4, g, estimated from D 4, g,. According to Bayes’ rule,
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it can be expressed as follows.

f(pAB|DAlBl ) DAQBQ)

f(Da,5,|Pa,8,)f(Pa,B,)
f(DAsz)
f(Da,5,|Pa,5,)f(PA,B,)

/f(DA2B2|pAlBl)f<pAlBl)dpAlBl

(3.18)

In the above equation, parameters py,p, are derived from D4, 5, that follow the

Dirichlet distribution, so its pdf f(pa,5,) can be computed as follows.

/ (PAlBl)

F<&A131 + ﬁAlBl + 7A1B1)
F(aAlBl)F(ﬁA1Bl)F(7AlBl)
(pl)CVAlBl*1(p2)/3AlBl*1(p3>'YA1B1*1.

(3.19)

On the other hand, because D 4,5, follows the multinomial distribution derived

from pa,p,, its pdf f(Da,p,|Pa,B,) can be expressed as

f(DA2B2 |pAlBl)

F(aA2Bz + 6A232 + YA:B, + 1) %
F(aA2Bz + 1>F(6A232 + 1>F(7A2Bz + 1)
<p1)aA252 (p2)5A232 (p?’)mgsz‘

(3.20)
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Substituting f(pa,s,) and f(Da,n,|Pa,n,) in Eq. 3.18 by Eq. 3.19 and Eq. 3.20, we

obtain the analytic form of Eq. 3.18.

f(PaB|Da,B,;Da,s,)
[(aap + Bap + VaB)
U(aap)T(Bap)T (vaB)
<p1)01AB*1(p2)BAB*1<p3)’YAB*17

(3.21)
where

aAap = aAlBl + aAQBg’
5AB = ﬁAlB1 + BA2327

YAB = VA B, T VA8,
Obviously, Eq. 3.21 can be considered the pdf of the following Dirichlet distribution.
Dir(ca, By + QayBy, BayBy + BayBys Va1 By + VAsB,)-
Therefore, the following equation

/f($|pAB)f(PAB\DAIBI, D4,B,)d(PaB)

can be regarded as a DC distribution upon observations {aa,p, + @a,B,, 84,8, +

BAsByy VA By + VA8, b According to the definition of an opinion, the analytic form of
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Eq. 3.16 can be expressed as follows.

/f(x = 1|pAB)f(pAB|DA1Bn DAng)d(PAB)

aA1Bl + aAQBQ
QA B, T QayB, + 614131 + 514232 + YA4,B; T VA3B,

The probability that B will not behave as A expects and the probability that B will

behave in an uncertain way can be expressed as follows.

/f@ = 2|pag)f(PaB|Da,s,, Da,5,)d(PaB)

614131 + BAsz
QA B, T QayB, t+ 514131 + 614232 + Y4B, T VA3B, ’

and

/f@ = 3|pan)f(PaB|Da,s,, Da,5,)d(PaB)

VA1 By T VA3B,
QA B, T Qa,B, + /BA1B1 + 514232 +YA,B; T VA3B, ,

respectively. Now, we formally define the combining operation as follows.

Definition 2 (Combining Operation). Let wa, g, = (A, By, Ba, By, YA, B,) Gnd wWa,p, =
(AyBy» BAsBy, YAsB,) e the opinions on two parallel paths from users A to B, the

combining operation ©(wa,p,,wa,p,) 1S carried out as follows.

wap = O(wa,B,,Wa,B,) = (4B, BaB;VaB) (3.22)

where

OAB = QA B, T+ QA,B,
Bap = Ba,p, + Ba,p, - (3.23)

YAB = YA1B; + VA2 Bs
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It is worth mentioning that the combining operation yields two properties.

Corollary 3.0.3. Commutative Property: Given two independent opinions wa,p, and

WA3Bs @(WA1B17(")A232) = @(wAsza WA1B1)'

Proof. Based on Eq. 3.23. O

Corollary 3.0.4. Associative Property: Given three independent opinions wa,p, ,

WA B, and WA3B; then G(WAlBU @(WA2BQ7WA333)) = @(G(WA1317WA232)7("}A333>'
Proof. Based on Eq. 3.23. m

If there exist multiple parallel opinions wy, p,,wa,n, - - - wa, B, from A to B, the
overall opinion can be calculated as ©(0(O(wa,B,, WA,B,), "+ );Wa, B, ). As combining

operation is commutative and associative, it is simplified to ©(wa, B,, WA, B, * * * WA, B, )-

Expected Belief of An Opinion

With the proposed discounting and combining operations, the trust between
two users in an OSN can be computed. which will be introduced in chapter 4. Many
times, it is desired to represent the trust by a single number, rather than a vector
composed of three numbers. Therefore, we introduce how to compute the expected
belief of an opinion.

Given an opinion wax = (ax, Bax,Vax), it is interesting to know how likely
X will perform the desired actions requested by A. We call this probability as the
expected belief of wax. Although asx denotes the belief of the opinion wyx, other

components like S4x, Yax also need to be considered to compute the expected belief.
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The expected belief of an opinion in the subjective logic is defined as

EwAX _ AAX i 1><aAX
aax + Bax +2  aax + Bax +2
o Qax +aax
© aax +Bax +2

According to this definition, the expected belief in 3VSL would become

Qax + aaxYax
aax + Bax +vax

B =

WAX

The above definition, however, is incorrect and we will illustrate the problem using

an example shown in Fig. 3.3. In this figure, there exist two opinions w; and ws.

o, 1 \

w; -II

Figure 3.3: Combining opinions with high and low uncertainties

We assume the total evidence values of w; and wsy are equal, i.e., Ay = Ay where
AM = a3+ [1+ v and Ny = as + B2 + ¥2. If these two opinions are combined,
the resulting opinion ws can be seen as a mixture of w; and wsy. According to the
combining operation (Eq. 3.23) in 3VSL, the evidence value for the neutral state 73
of w3 becomes 7, + 7. Assuming ¥ > 7, we have 73 > 7. Combining more
opinions actually increases the evidence values, so the uncertainty of the resulting
opinion should decrease. However, based on Eq. 3.24, the resulting opinion ws is

more uncertain than wy (as 3 > =), which is contradictory to the common sense. In
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other words, wy polluted the certainty of ws if uncertainty is considered in computing
expected belief.

We know that acqx and S4x are the numbers of (negative and positive) certain
evidence, so they must be used in computing the expected belief. v,x only records
the amount of neutral evidence, so it should be omitted in the expected belief
computation. Ignoring the uncertain evidence recorded as y4x, the DC distribution

of w4 is collapsed into a Beta-Categorical (BC) distribution:

r

f(p1,p2 laax, Bax ) = [Naax) - T'(Bax)

Consequently, the original opinion is collapsed into
WAx = <OéAX,5AX> .

With the collapsed opinion, we apply the approach proposed in [93] to compute

the expected belief as follows.

dAx 5,4)(
E, + asx - (1 —c
ax (CYAX + Bax  oax + 5,4)() ax - ( ax)

+ L . CAX

aax + Pax
aAx

= — = . (1 — 3.24

oax + Bax cax +aax - ( cax), ( )

where c4x is the certainty factor [93] of a Beta distribution, and ax is the base rate.
The certainty factor c,x, ranging from 0 to 1, is determined by the total amount of

certain evidence and the ratio between positive and negative evidence. It is computed

_1/1
CAX—2 .

from
1

— peAX(] — CIZﬁAX — 1|dzx. 3.25
Bloax )t 1 ) (3:25)
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Basically, cax approaches 1 when the amount of certain evidence or the

disparity between positive and negative evidence becomes large.
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THE ASSESSTRUST ALGORITHM

In this chapter, we introduce the AssessTrust (AT) algorithm that implements
the 3VSL model and is able to conduct trust assessment in social networks with
arbitrary topologies. Here, we assume that social network graph does not contain
cycles, i.e., we are interested in the trust assessment in a directed acyclic graph
(DAG).

To ensure AT works in arbitrary DAGs topologies, we need to prove that AT can
handle non-series-parallel network topologies, e.g., the bridge topology in Fig. 4.5(a).
This is a challenge because the only operations available for trust computation are
the discounting and combining operations. The issue is that discounting/combining
operation requires the network topologies to be series/parallel. We address this
challenge by differentiating the distorting and original opinions in trust propagation.
For example, if A trusts B and B trusts C, then A’s opinion on B is called the
distorting opinion, and B’s opinion on C' is the original opinion. We discover that, in
trust fusion, the original opinions can be used only once but the distorting opinions
can be used any number of times. This is because the distorting opinion only
depreciates certain evidence values into uncertain ones, it does not change the total
amount of evidence. That also implies the distorting opinion from A to B, shown in
the bridge topology in Fig. 4.5(a), can appear twice in both sub-graphs A - B — C
and A—-B— D — C.

In addition, we have to further show that AT works in arbitrary DAGs. This is
a challenge because it is impossible to test AT in all possible network topologies. We
address this challenge by mathematically proving AT works in arbitrary networks.
By addressing these two challenges, we present the AT algorithm and will use an

example to illustrate how the AT algorithm works.
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(a) (b)

Figure 4.1: Difference between distorting and original opinions.

Properties of Different Opinions

Before introducing the AT algorithm, we need to understand some important
features of the discounting operation defined in 3VSL. For a discounting operation,
there must be two opinions involved. However, the functionality of the two opinions

are different.

Definition 3 (Distorting and Original Opinions). Given a discounting operation

Awap,wpe), we define wap as the distorting opinion, and wpc the original opinion.

To understand the difference between the distorting and original opinions, we
study two special cases shown in Fig. 4.1. By analyzing them, we discover a distorting
opinion can be used several times in trust computation but an original opinion can

be used only once.

Theorem 4.0.1. Let

Wp oy = <aB1C17/BBlCla/YB1C'1>

and

wBQC2 = <aB2CQ7 /8B2027 VBZC2>
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be the two opinions on two parallel paths from users B to C. Let wap =
(cap, Bap,vap) be the opinion from A to B, then the following equation will always

hold:

@(A<WABa WBch), A(WABa wBQCQ))

= A(WABv 6(w31017wB202))‘ (41)

Proof. Let’s take a look at the left side of Eq. 4.1:

@(A(WAB7 wB1C1)7 A(C‘}AB? wBZC2))‘

According to the definition of the discounting operation, the result of A(wap,wp,c;)

can be written as

WAC& - A<WABa WBlcl)

= <04A01 ) 5Acl ) ’YACJ )

where

Qo = XABAB,Cy 7
asp + Bap +vaB
3 . aapBB,c,
Aa oap + Bas + V4B’
~ (BaB +7aB)(aB,c, + By +BiCy)
YAc, =

aap + Bap + VaB
OCAB’73101

aap + Bap + VaB

(4.2)
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The result of A(wap,ws,c,) can be written as

WACQ - A<WABa szC2)

= <04A02> 5Acg ) ’YA02> )

where

AXABAB,Cy
aap + Pa + vaB’
OéABﬁBQCz
oap + Bas + V4B’
(Ba +vaB)(aBycy + BBacy + VBocs)

QAC, =

Bac, =

YAC, =
: aap + Bap + VaB

OCAB’73202
aap + Bap + VaB

If these two opinions are combined, we will have

wac = O(A(wa,p,wse), Alwa,p, wWie))

= <aAC7 BAC) 7AC> )

where

OABOB; 0y, + QABOB,C,
asp + Bap +VaB

3 _aaPcy + aaBp,c,
AT T aup+ Bas + YaB

dac =

Y

(4.3)
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(Bag + vaB)(ap,cy, + By + VBicy)

aap + Bap + VaB
QAB7BCy

aap + BaB + VaB
(6AB + 7AB)(053202 + 53202 + 73202>

aap + Bap + VaB
aAB'VBng

aap + Bag + vap

YAc =

+

Now, we look at the right side of Eq. 4.1:

A(WABa @(wBlc'uszCz))' (44)

The term O(wp, ¢, ,ws,c,) in the above formula can be written as

wpe = O(Wp,cy,WBy0,)
= (apc, Bee,VBC) (4.5)
where
apc = OéBl(Jl + aBQCQ?

Bec = Bpicy + BBycy,

YBC = YBiCi Tt VByCs-

Putting Eq. 4.6 back into Eq. 4.4, we will have

Wae — A(WABag(wB1C17wB2C2))

- <ai40’ 61407 ’754()> ’
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where

/ aap(ap,o, + aBycy)
aap + Bap + vaB
QABOB, ¢, T QABORB,C,
aap + BaB + VaB
aap(Be,c; + Bycy)
asp + Bap +vaB
aapBs.c, + aaBBB,cy
asp + Bap +VaB
(Bap +vaB)(ap,c, + B, +VBicy)

aap + Bap + vaB
XABYB,Cy

asp + Bap + VaB
<6AB + 'VAB)(OéBzCE + ﬁ3202 + 73202>

aap + Bap + VaB
QXABYByCo (46)

aap + Bap + vap

B./AC =

/
Yac

Clearly, w'y is equivalent to wac. O

Theorem 4.0.2. Let

Wa,B; = (aA1B1 ) 6A1B1 ) 714131)

and

wAQBQ == (aAng7 /BA2B2 ) 7A2B2)

be the opinions on two parallel paths between two users A and B; Let wpe =
(ase, B, VBC) be an opinion from users B to C, then the following equation does

not hold:

O(A(wa, B, wWBe), AlWayB, s Wae))

= A(@(wAlBl7wA2BZ>7wBC>' (47)
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Proof. In Chapter 3, we have shown that the combining operation applies on
O(wa, B, wWa,B,) When the evidence of wa,p, and wa,p, are from different sources,
i.e., they are independent. In the left side of Eq. 4.7, opinions A(wa,p,,wpc) and
A(wa,p,,wpc) share the same evidence from the opinion wpe. As a result, the
combining operation does not apply to them. Therefore, A(O(wa,p,,wa,B,), wsc) is

the only correct solution, and is not equal to ©(A(wa, 5, wse), Awa,p,,wse)). O

From Theorem 4.0.1 and 4.0.2, we note that reusing wsp in case (a) is allowed
but reusing wpc in case (b) is not. The difference between wap and wpe is that wap
is a distorting opinion while wpg¢ is an original opinion. Therefore, we conclude that
in trust computation, original opinions can be combined only once, while distorting
opinions can be used any number of times because they do not change the total

amount of evidence of final opinions.

Arbitrary Network Topology

As the distorting and original opinions are distinguished, we will prove that

3VSL is capable of handling non-series-parallel network topologies.

Theorem 4.0.3. Given an arbitrary two-terminal directed graph G = (V, E) where
A, C are the first and second terminals. In the graph, a vertex u represents a user, the
edge e(u,v) denotes u’s opinion about v’s trustworthiness, denoted as w,,. By applying
the discounting and combining operations, the resulting opinion wac 1s solvable and

unique.

Proof. We prove the theorem in a recursive manner, i.e., reducing the original problem
into sub-problem(s) and continuing to reduce the sub-problems until the base case is

solvable and yields a unique solution.
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Arbitrary
Topology

Figure 4.2: Mlustration of an arbitrary network topology.

As shown in Fig. 4.2, we assume there are m nodes (cy,¢a, - -+, ¢,,) connecting
to C, ie., e(¢;,C) € E where i € [1,m]. There are n nodes (ai,as, - ,a,) being

connected from A, i.e., e(A,a;) € E where j € [1,n].

Reduction rules

Case 1: If there is only one node connecting to C, i.e., m = 1, then wac =
A(wae,,we,c)- In this case, we reduce the problem of computing wac to wae,, and A
and c; are connected by a smaller sub-graph.
Case 2: 1f there is more than one node connected to C, i.e., m > 1, wae is equal to
O(A(Wacy Wer @) A(Wacy, Wepo)y * s AWae,, , We,,c)) due to Theorem 4.0.1. Therefore,
wac 1s solvable and unique if and only if each wy,, is solvable and unique, where w4,
corresponds to the sub-graph G’ = G — Ye(¢;, C) — C. In this case, we reduce the
problem of computing wac to wa,.

In each round of reduction, G is reduced into a smaller graph with such that
|E| = |E|—m and |V| = |V|— 1. After applying the reduction rules on sub-problems

recursively, the base case will finally be reached, i.e., |E| =1 and |V| = 2.
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Base Case
The sub-graph of base case contains only one edge from A to a; where j € [1,n]. As
WAa, 18 known from the original graph G, the base case is solvable and its solution is

unique. Applying the equations in Case 1 and 2 repeatedly, we can obtain an unique

WAC- ]

Differences between 3VSL and SL

In this section, we present the differences between 3VSL and SL by introducing
several examples. Compared to SL, 3VSL introduces the uncertainty state to keep
track of the uncertainty generated when trust propagates within an OSN. Particularly,
the uncertainty state is used to store the “distorted” positive and negative evidence
in trust propagation and fusion.

It is well-known that SL can only handle series-parallel network topologies. A
series-parallel graph can be decomposed into many series (see Fig. 3.1) or parallel (see
Fig. 3.2) sub-graphs so that every edge in the original graph will appear only once in
the sub-graphs [44]. In real-world social networks, however, the connection between
two users could be too complicated to be decomposed into series-parallel graphs. To
apply the SL model, a complex topology has to be simplified into a series-parallel
topology by removing or selecting edges [37-39]. The simplifications will result in
information loss and inaccurate trust assessment. This problem is also observed in
our numerical experiments, which will be presented in Chapter 6. Furthermore, it
is not clear which edges need to be removed in a large-scale OSN, i.e., there is no
algorithm for the solutions proposed in [37-39].

Due to the lack of the uncertainty state, SL results in inaccurate trust

assessments even if it processes a social network similarly to 3VSL. We take two
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examples to explain why the inaccuracy will occur.

Example 1

(a) Illustration of the discounting operation

:T:a

Wpe [ EEEE
, i
Wy | ,_
o Lo @, [
sc [ I Y ‘ ~
i a=a'x— Bx—
= K
(b) Result of 3VSL (c) Result of Subjective Logic

Figure 4.3: Difference between 3VSL and SL on the discounting operation.

Let’s consider a series topology composed of A, B and C|, as shown in Fig 4.3(a).
We assume the evidence values for «, § and v are non-zero in both wapg and wge. A’s
opinion of C’s trustworthiness can be computed by applying the discounting operation
defined in 3VSL (or SL) on wap and wpe, i.e., wac = A(wap, wpo)-

With the 3VSL model, the total number of evidence in the resulting opinion
wac is the same as wpe, as shown in Fig 4.3(b). Part of agc and fpc will be
transferred into v4¢, indicating a “distortion” from positive and negative evidence
values to uncertain evidence values. On the other hand, with the SL model, the

distorted evidence values are merged into the prior uncertainty state, which is a fixed
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number and always equals to 2, as shown in Fig 4.3(c). As a result, the positive and

negative evidence values in wue shrink, leading to the missing of evidence.
Example 2

o ] R
@up [
7/ l:l 171 a)Asz l:l -
W, l
LB,
®, ]
(a) Two opinions are combined (b) Result of 3VSL
/
45 [ N
- @, X
NN L > +
Y —

/ / wA232 -
2 , 2 1
aA=0'X— y=2=YX—

K K
\ \ @,
w

(¢) Result of Subjective Logic
Figure 4.4: Difference between 3VSL and SL on the combining operation.

Let’s consider a parallel topology shown in Fig 4.4(a)

A has two parallel
opinions wx,p, and wa,p, on B. We assume the evidence values o and 7 are non-

zero and [ is zero in both wy, p, and wa,p,. A’s opinion of B can be computed by

applying the combining operation defined in 3VSL (or SL) on wa,p, and wa,p,, i.e.,
wAB = @(wz‘hBuwAzBQ)'
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As shown in Fig 4.4(b), according to 3VSL, the numbers of positive and
uncertain evidence in the resulting opinion wsp are the sums of the positive and
uncertain evidence numbers in wya, g, and wa,p,. As shown in Fig 4.4(c), using SL,
the uncertain evidence value in the resulting opinion is always 2. According to the
combining operation defined in SL, either the uncertain evidence values in wy,p, or
those in wy,p, are ignored. As a result, the number of positive evidence values will
be more than the actual.

The problems identified in the above examples will impact the accuracy of SL.
On the other hand, 3VSL avoids these problems by treating uncertainty as a third
state. This conclusion will be validated in Chapter 6, by comparing 3VSL and SL

using two real OSN datasets.

AssessTrust Algorithm

Based on Theorem 4.0.3, we design the AssessTrust algorithm. The algorithm is
based on the 3VSL model and is able to work with arbitrary network topologies. The
inputs of this algorithm include the corresponding graph G, the trustor A, the trustee
C, and the maximum searching depth H, measured by number of hops. Specifically,
H determines the longest distance between the trustor and trustee. H controls the
searching depth on graph G, which is necessary because G' could be potentially very
large. H is helpful in reducing the running time of AssessTrust without sacrificing

much trust assessment accuracy.

[lustration of the AssessTrust Algorithm

In this section, we will use the bridge topology shown in Fig. 4.5(a) to illustrate

how the AT algorithm computes A’s indirect opinion upon C, denoted as Qup.
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Algorithm 4.1: AssessTrust(G, A, C, H).

Require: G, A, C, and H.
Ensure: wyc.

n<+0

if H > 0 then

if ¢; = A then

Wi & WAg;

else

G+ G—e(c¢,C)

wi — A(wae;, We,c)
end if
:n+<—n+1

: end for

. if n > 1 then

C Wac = @(wl . -wn)
. else

S S e S Gy S Gy S
D TR WD = O

 WAC = Wn

. end if

. else

c Wac = <0, 0,0>
. end if

N = =
S © 0

(a) Bridge topology

Wae, < AssessTrust(G', A, ¢;, H — 1)

for all incoming edges e(¢;,C') € G do

Q,, =007, 9
7N\
A(?, wBD) A(?a a)cp)
!
Wyp 0,7

N\

A, wy) Wy

Wyp

(b) Decomposition parsing pars-
ing tree

Figure 4.5: An illustration of 3VSL based on the bridge topology.
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To differentiate from the direct opinion, we use 2 to denote the indirect opinion.
As shown in Fig. 4.5(a), to compute Q4p, discounting and combining operations
are applied on opinions wag,wap,wsp,wep, and wpe. AT starts from the trustee
D in Fig. 4.5(a), searches the network backwards and recursively computes the
trustworthiness of every user during the search. As a result, we get a parsing tree,
shown in Fig. 4.5(b), to describe how discounting and combining operations are
applied in computing A’s opinion of D. Traversing the parsing tree in a bottom-

up manner, A’s indirect opinion of D, Q4p, can be computed as

O (A(wap,wsp), A(O(A(wap, wpe),wac),wep)) - (4.8)

To understand the time complexity of AT when it is applied on the bridge
topology, we use AT® (i, j) to denote that it is the kth time that AT is called to
compute the user i’s opinion on j. At the time when AT is first called, A’s opinion

on D is computed from

O (A(Qap,wsp), A(Qac,wep))

where Q45 and Q40 are A’s indirect opinions on B and C', respectively. These two
opinions will then be provided by AT® (A, B) and AT®(A,C), respectively. In
AT®) (A, C), AT computes A’s opinion of C' as

O (A(QuB,wnc),wac) ,

where Q45 is computed by AT (A, B). Finally, A’s opinion of D can be computed
from Eq. 4.8. With the bridge topology, AT is called four times in total: ATM (A, D),
AT@(A, B), AT®(A,C) and ATW(A, B). Note that the AT(A, B) is called twice
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in this example, i.e., in sub-graphs A - B — C and A -+ B — D — (', which is

allowed in 3VSL.

Time Complexity Analysis

Finally, we present the time complexity of AssessTrust in this section. Since

AT is a recursive algorithm, the recurrence equation of its time complexity is

Tn)=Mm-1)-(T'(n—1)+Cy)+Co+0(n—1)

=n—-1)-Tn—-1)+0(n—-1)+C,

where (n — 1) is the maximum number of branches from the trustee node (line 3),
assuming there are n nodes in the network. 7'(n — 1) is the time complexity of
recursively running AT on each branch (line 8), C} is the time for lines 4, 5, 6, 7, 9,
10 and 11. O(n — 1) is the time for combining operations (line 14). Cy is the time

used outside the “for” loop (line 13 — 20). Therefore, the time complexity of AT is

where k is the searching depth, and n is the number of nodes in the network. Note that
the time complexity is for one-to-one trust assessment in OSNs. To solve the MTA
problem, AT needs to go through every trustee one by one, so its time complexity is
O(n-n*) = O(n*™) in total. Clearly, this is unacceptable for most MTA applications.
This problem motivates us to propose a more efficient solution to MTA problem, which

will be shown in the next chapter.
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MASSIVE TRUST ASSESSMENT IN OSNS

One major limitation of AssessTrust is that it is inefficient in conducting massive
trust assessments (MTA). To efficiently address the MTA problem, we propose the
OpinionWalk algorithm that is based on AT and offers a better time complexity. To
design the OpinionWalk algorithm, we need to address the following three challenges.

The first challenge is how to address the MTA problem while keeping low time
complexity. This is a challenge because AT is designed for one-to-one trust assessment
but MTA focuses on one-to-many situations. To address this challenge, we use an
opinion matrix to represent the network’s topology and an individual opinion vector
to store the trustworthiness of all nodes. In this way, similar to matrix operations,
the individual opinion vector can be updated in a parallel manner. Based on this
novel design, the time complexity is reduced from O(n**1) to O(n?), where k is the
longest distance in hops from the trustor to the trustee node.

The second challenge is to eliminate the recursive operations in the AT
algorithm. This is a challenge because AT needs to first transform a trust social
network into a recursion tree, and then processes its sub-trees before getting into
the upper-level of the tree. To address this challenge, we design the OpinionWalk
algorithm to implement this recursive procedure in an iterative way. This is non-
trivial because OpinionWalk has to use the operations defined in 3VSL. As recursive
operations are slower and take up more memory/stack, OpinionWalk offers a faster
running time, especially in large-scale networks.

The third challenge is to show OpinionWalk is equivalent to AT, in addressing
MTA. This is a challenge because these two algorithms are different and we need
to prove they output the same results in arbitrary network topologies. To address

this challenge, we first prove the opinion walk operations equivalently implement
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the discounting and combination operations in 3VSL. Then, we extend the proof
into arbitrary network topologies and recursively show that each case encountered
in AT can be equivalently solved by OpinionWalk. In other words, OpinionWalk is
an equivalent implementation of AT. Additionally, we analyze OpinionWalk’s time
complexity and show that it offers a better time complexity. At the end of this

chapter, we also use an example to illustrate how OpinionWalk works.

Design of OpinionWalk

OpinionWalk is essentially a matrix-based algorithm that implements 3VSL in
a more efficient way to address the MTA problem. Given a trust social network
G = (V, E,w), OpinionWalk represents this graph by an opinion matriz M. The
elements in M are edges/opinions between nodes in the graph G = (V, E,w). The
trustworthiness of all nodes are stored in the indiwidual opinion vector Y. The

procedure of OpinionWalk can be expressed as an iteration equation:
Y® = M7 o y®-b,

where k is the current searching depth in the graph from the trustor to the trustee.
The operation rules of ® will be introduced later. The trustworthiness of a given
trustee can be obtained from Y. OpinionWalk is more efficient than AT because it
uses an iterative method rather than a recursive one to address the MTA problem.
Based on 3VSL, we define two special opinions that will be used to initialize

the OpinionWalk algorithm.

Definition 4 (Uncertain Opinion). An uncertain opinion O is defined as

0 2 (0,0,0),
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that indicates the trustor is totally uncertain about the trustee’s trustworthiness.

Definition 5 (Absolute Opinion). An absolute opinion 1 is defined as
12 (c0,0,0),

that indicates the trustor has infinite positive evidence, hence absolutely trusts the

trustee.
Based on the uncertain opinion and 3VSL, we can have the following corollaries.

Corollary 5.0.1. Applying the discounting operation on QO and an opinion w, we

have A(w,0) = O and A(O,w) = O.

Corollary 5.0.2. Applying the combining operation on Q@ and an opinion w, we have

O(w,0) = O(w,0) = w.
Based on the absolute opinion and 3VSL, we can have the following corollaries.

Corollary 5.0.3. Applying the discounting operation on I and an opinion w, we have

Alw,I) =w and A(l,w) = w.

Corollary 5.0.4. Applying the combining operation on I and an opinion w, we have

O(w,I) =60(w,I) =L

Opinion Matrix

Definition 6. Given a trust social network containing n nodes, an opinion matrix

M s an n X n matriz:

w11 W12 Win

w w PR PR
A 21 Wao
Mnxn = )

wnl DY PR wnn
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where each element w;; (1,7 < n) denotes the direct opinion from node i to j.

Unlike the traditional representation of a graph, e.g., adjacency or Laplace
matrix, the entries in M are the direct opinions between nodes in G. If ¢ does not
have a direct opinion on j, we use the uncertain opinion to represent the corresponding

entry, i.e., w;; 20 (4, En,i#j)ife; ¢ E.

Individual Opinion Vector

Definition 7. An individual opinion vector Y;(k) 1s an n X 1 column vector composed
of n opinions:

k) A k) ~(k k 0T
}/;(): Q£1)7Q£2)77Q()7JQ( )] )

ij in

where Qg“) denotes user i’s individual opinion on j. The head note k indicates the

current iteration step in the OpinionWalk algorithm.

Opinion Walk Operation

Definition 8. An opinion walk operation @ “multiplies” matriz M and vector Y;(kfl)

(k)

to yield a new vector Y, as follows.

Y’Z(k) — MT ® }/i(k_l)

@(A(ngil)a wll)? ) A(ngil% wnl))a
A @(A<QEII€71)7 wl2)7 ) A(ngil% wn?))a
O(AQ ™ win), -+ AL wan)
T
2o ol ab ol

where k denotes the iteration step. The © and A implement the combining and

discounting operations in 3VSL.
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Figure 5.1: A detailed illustration of OpinionWalk.

When the OpinionWalk algorithm is initialized, Y© is set as

T

? 2

= [@7(0)7@7”' 71[7"' 7®]T7

This vector indicates node i does not trust other nodes except for itself. In the
following steps, the OpinionWalk either updates Qg”*l) or keeps it unchanged.

A detailed explanation of the opinion walk operation can be seen in Fig. 5.1.
As shown in Fig. 5.1(a), at the (k — 1)-th iteration, node i’s individual opinions on all
other nodes (V j € V\i ) are stored in the individual opinion vector, which is denoted

as Y*=1_ Then, at the k-th iteration, as shown in Fig. 5.1(b), i’s individual opinion
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on j (V7 € V\i) is updated by applying the discounting and combining operations,
respectively. The discounting operation is applied to ngfl) and wg;. ngfl) is i’s
individual opinion on s € S for the (k — 1)-th iteration, where S is the set of j’s in-
neighbors. wyg; is s’s direct opinion on j, which does not change in all iterations. As
shown in Fig. 5.1(c), the logic behind the discounting operation is using i’s individual
opinion on s (in the (k — 1)-th iteration) and s’s direct opinion on j to form i’s
“partial” opinion €,; on j (in the k-th iteration). In other words, the“partial”
opinion is made through i’s individual opinion on s (€;s) and s’s direct opinion on
J (wsj). The combining operation is then applied on the results of the discounting
operations from above. The logic behind the combining operation is aggregating all of
the “partial” opinions §;; (from j’s in-neighbor nodes) together to form 4’s overall
individual opinion on j, which is shown in Fig. 5.1(c).

As shown in Fig. 5.2, the OpinionWalk operation is similar to the multiplication
between a matrix and a vector. The difference is that the summation and production
operations are replaced by the combining and discounting operations. Notice that
mathematically k£ denotes the iteration number of the opinion walk operation, as
shown in Fig. 5.2. On the other hand, as shown in Fig. 5.1(a) and Fig. 5.1(b), the
physical meaning of £ is the searching depth of the OpinionWalk algorithm that

originates from the trustor. Most importantly, the trustor’s individual opinion on

any trustee within & hops can be found from Y.

OpinionWalk Algorithm

The pseudo-code of the OpinionWalk algorithm is shown in Algorithm 5.2.
In the algorithm, line 3 controls how many levels OpinionWalk will search on the
network. Lines 5-14 update the indirect opinion (;; iteratively. Line 5 considers all

users, other than i, as the trustees. Lines 7-12 combines all opinions derived from
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Figure 5.2: A general view of the “opinion walk” operation.

Algorithm 5.2: OpinionWalk(G, i, H).
Require: A directed graph G with a trustor ¢ and the maximum searching level H.
Ensure: i’s opinion j where j # i.
Initialize M and Y;(l) based on G
k<1
while £ < H do
k< k+1
for all columns ¢; € M s.t. j # i do
oY 0
for all direct opinions wy; € ¢; s.t. ws; # O do
QY ey
if Q%Y £ 0 then
O 00, A0, wy))
: end if
: end for
YOl o
: end for
: end while

: return Yi(k)

S O e S e Gy S
SR I U N S

wsj # O. Line 8 obtains ¢’s indirect opinion on one of the predecessors of j, e.g.,

s. If this opinion already exists, ¢ discounts s’s opinion on j to update ng) at line
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9. Otherwise, it checks another predecessor. Line 10 combines all opinions that are
currently computed from w,; # O. Note that line 10 essentially combines opinions
one by one, so Ql(f) equals to

QAN ™ wiy), -, ALY, W 1), AL wa)))).-

in—1" in

Because the combining operation is associative (see corollary 5.0.2), the above

equation is the same as the following form:

wm

@ <A(Q£]1€_1)7w1j)7 Tty A(Q(k_1)7 wnj)) '

After processing all users connecting to j, at line 13, the newly computed €;; is
used to update the corresponding element in the individual opinion vector. When ’s
opinions on all possible j’s are updated, at line 14, OpinionWalk searches the next

(k)

level. Finally, the vector Y, will contain ¢’s opinions about the trustworthiness of

all other users.

Mlustration of the OpinionWalk Algorithm

In this section, we use the example shown in Fig. 4.5(a) to illustrate how
OpinionWalk is used to compute the trustworthiness of all users (B, C' and D),
from the perspective of A.

The opinion matrix of the corresponding graph in Fig. 4.5(a) can be expressed

as
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O O
wag O
Wac WaC

O

O
O
O

O
O
O

wpp wep O

Because we want to evaluate A’s opinions on other users, the algorithm starts from
A and ends at D. Hence, we set the initial individual opinion vector as

y(©) —

A

T
0 0 0
o). 00, 02.00]" = 10,00/

After the initialization, the algorithm will go through several iterations that

can be expressed as

YA(k) _ T Yékfl)
L O(AO% Y wa)), '

| OAQyy Y wan)),

| e, wae), A%, wse)), |
| O(AQY5" wap), AQ4: ", wep)) |

where k is the number of iterations.
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Figure 5.3: Ilustration of how OpinionWalk processes the bridge topology.
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/T
Q) \ :

A(Q(/i)c @cp)
AQY}, @)
.'~‘ ) 4

B0,

/9(2)

(2)
QAC j:
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— A(Q(Alﬁ D)

(b) 2nd iteration

(4)
£-2/45

AQQ, o)

QS \@/szs;z;

(4)
QAC
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I Changed

(d) 4th iteration

dashed box shows how the combining operation in OpinionWalk works.

The first iteration is shown Fig. 5.3(a) and can be expressed as

YA(l) . MT ® YéO)
O(A(LI)),

[1,0(0, A(L,wap)), O(0, A(L,wac)),0]"

= UIJ WAB, u-}AC?(O)]T'

The
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In this iteration, because both Q(Xj)g and fo)c are still O, we have

Q4 = (AL, wap), AQY), wep))

0
— ),
The result of the second iteration is shown in Fig. 5.3(b) and can be expressed as

T
2 2 2 2
YO =MTovy® =100, af), Q%Q(A}D]

= []L WARB, @(UJAC7 A((J‘JABa wBC))a

O(A(wap, wsp), Alwac, wep))]'

In this iteration, as both QS}B and 9541()) hchanged (compared to Qfé and Qfg), we

have

05 = 0(A(QY ), wp), AQYS, wep))

= O(AQY ), wsp), AQYL, wep))-

The result of the third iteration shown in Fig. 5.3(c) reflects the following computa-

tion.
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T
3 3 3 3
YO =MToY® = Q%) %%, qu)cﬂ(m)a]

= [}L WAB, @(wAc, A(WABN/UBC)) )

O(A(wan, wap), AOwac, AMlwag, wae)), wep))] .

It is worth mentioning that Q(jg did not change, but Q(jé has changed, so we update

Q ,p by substituting 95412; with Q(Azé as follows.

Q5L = (AL, wap), AQY), wen))

= @(A(QS)Bv wBD)? A<QE42217 WCD))-
In the end, the fourth iteration (see Fig. 5.3(d)) can be expressed as

T
4 4 4 4
YW =MTov® =0\, ), qu();Q(Af)j]

=[l,wap, O(wac, Alwap,wsc)) ,

@(A(WAB,WBD), A(@(WAC, A(WABy WBC)): WCD))]T'
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In this iteration, neither Qfg nor Qf(); changed, so we have

Q4 = (A, wap), AQS), wep))

(3)
— QAD.
The components in the final individual opinion vector are

9%1)4 =1
Y% = was,
Qf;% = O(A(wap,wpc),wac),

Q4 = 6(A(was, wep), AO(Wac, Alwag, wae)), wep))-
which are exactly the same as those obtained by the AT algorithm.

Correctness of OpinionWalk

To prove OpinionWalk equivalently implements the AT algorithm, we first show
both AT and OpinionWalk generate the same result if network topology is either series
or parallel. Then, we show this is true for arbitrary network topologies.

If we zoom into a trust social network, two edges can be connected in series if
they are incident to a vertex of degree 2, or in parallel if they join the same pair of
distinct vertices. Therefore, two users can be connected in a series topology shown
in Fig. 5.4(a), or a parallel topology shown in Fig. 5.4(b). Note that the paths from

i to 81,82, , 8, in Fig. 5.4(b) are disjoint, i.e., no sharing edges along the paths.
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(a) Series topology (b) Parallel topology

Figure 5.4: lustration of two fundamental topologies in an OSN.

Series Network Topology

Lemma 5.0.1. Given two users v and j who are connected by m wusers in a series

topology, the opinion Q;; computed from AT and OpinionWalk will be the same.

Proof. We use sq, 89, -+, S, to denote the users that connects ¢ to j, as shown in

Fig. 5.4(a). According to the AT algorithm, i’s trustworthiness of j is
QZ] = A (wism A(w81327 e A(ujsm—lSm? wsm]))) . (51)

According to the OpinionWalk algorithm, in the opinion matrix, except for
OpInions wis, , Ws, sy, * ** , Ws,,;, all other opinions are uncertain opinions @. The initial

individual opinion vector is
Y(l) = [@7 cry Wisy, e 7®]T'

If OpinionWalk searches the 2nd level of the network, the individual opinion

vector is updated to

Y(Q) _ [@, , Wisys® ,A(Wis1;w5182),“' 7@]T.
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where Qg = wjs, and Qg = A(wis,,Ws,s,) are i’s current opinions on users s; and
S9, respectively.
When OpinionWalk searches the (m-1)-th level, it will reach user j, and Yfi(mﬂ)

becomes

Y(m+1) _ MT ® Y(m)

(2

18

- [(O)"” ’Q(n:n)f” 7A(Qz(:2,wsmj),‘“ ,@}T

I 1Sm 9 I i

— [@,... QUmt+h

If we expend Ql(-;nﬂ) in the above equation, we will get

QY = A, w,, ;)

¥ 1Sm ) wSmj

= A(A(QMY ), W, j) (5.2)

1Sm—1 " wsm—lsm

- A(A<A(wi$1’ws1s2)7 to ’wsmflsm,)’ wsmj)

Because the discount operation is associative [66], Eqgs. 5.1 and 5.2 give the same
result. Therefore, given a series topology, OpinionWalk equivalently implements AT.

]

Parallel Network Topology

Lemma 5.0.2. Giwen two users i and j who are connected by m users in a parallel

topology, the opinion Q;; computed from AT and OpinionWalk will be the same.

Proof. We use s1, s9, -+ , s, to denote the m users based on their distances to i, i.e.,

Sm 1s the farthest away from 7. As shown in Fig. 5.4(b), because the paths from i to
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S1, 89, , S, are disjointed, the AT algorithm computes i’s opinion on j as

S} (A<Qi817w81j)7 A(Qisw wszj)’ T A(Qism’ wsmj)) : (53)

According to the OpinionWalk algorithm, the opinion matrix will be

Ws1j

M = Wsoj

(,L)smj
Let’s assume after ki, ks, - - - , k,,, searches, the OpinionWalk algorithm reaches users
S1,82," "+ , Sm, respectively. After k; searches, OpinionWalk obtains ¢’s opinion on s;

as Ql(fll) Here, ngll) is equal to §2;5, computed from AT in Eq. 5.3, due to Lemma 5.0.1.
During the (ki + 1)-th search, OpinionWalk reaches user j, and it updates i’s
opinion on j to

Qz(';?lJrl) = A(Qi81 ) wSlj)'
After ko searches, OpinionWalk gets i’s opinion on s5 as €;,,. At the (k2 +1)-th

search, OpinionWalk hits user j and updates i’s opinion on j to

ij

QD) _ g (Qg??), A(Qiszawszj)) :
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From (k; 4+ 1)-th to ko-th searches, opinion 2;; is not updated, so we have Q) =

)

Okt

; ), Therefore, we have

k2
Qz('j Y =0 (A(Qislvwmj)? A(Qiswwsﬂ)) :
Similarly, after k,, 4+ 1 searches, ¢’s opinion on j is updated to
6 (AU, wag) AQEY wag), - AU ws,1))

For every [ =1,2,--- ,m, we have ngll) = Q%) as it does not change after the kj-th

1S]

search. Therefore, the above equation becomes

6 (A wo) AQE ), A w,,.5))

81 ) 1Sm ) Y SmJ]

For any [ =1,2,--- ,m, we know that ngll) is equal to 2,5, computed by AT, due to

Lemma 5.0.1. Therefore, OpinionWalk computes i’s opinion on j as
S} (A<Qi817w81j)7 A(Qisw WSzj)’ T A(Qism’ wsmj)) : (54)

Because Eqgs. 5.3 and 5.4 give the same result, we conclude that OpinionWalk

equivalently implements AT on a parallel topology. O]

Arbitrary Topology

Given an arbitrary network topology shown in Fig. 5.5, we assume m > 1 nodes

{s1,89,+ -+, 8m} directly connect to j. We use ki, ks, - - , k,, to denote the last times
when users sq, sg, - -+ , S, are visited by the OpinionWalk algorithm, respectively. Let
{t1,ta,- -+ , 1.} denote the users who are connected from 4, via either series or parallel

topologies.
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Arbltrary

@ ’% Topology

Figure 5.5: Illustration of a network with an arbitrary topology.
Theorem 5.0.1. OpinionWalk equivalently implements the AT algorithm in an
arbitrary network topology.

Proof. We prove the theorem in a recursive manner, i.e., reducing the original network
into sub-network(s) and keep reducing the sub-network(s) until the base case is

reached, i.e., two users are connected via either a series or parallel topology.

Reduction rules

Case 1: There is only one user connecting to 7, i.e., m = 1. In this case, according to
the AT algorithm, €2;; is computed as A(€;s,, ws,;), where €;,, denotes 4’s opinion on
s1, and it can be computed by recursively calling the AT algorithm. For OpinionWalk,
at the (k1 + 1)-th search, it reaches j and updates i’s opinion on j as

A w, ).

181 )
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Case 2: There are more than one user connecting to 7, i.e., m > 1. In this case, AT

computes €);; as
@(A<Qi817w81j)7 A(Qisw Wszj)’ T A(Qism’ wsmj))'

After k+ 1 searches where k = max(ky, ko, -+, k), OpinionWalk updates i’s opinion
on j to

wsm’)’ A(Q(];) w52j>7 T A(Qz('fivwsmj))'

189

SR

1817
For any user s;, where [ = 1,2,--- ,m, because k; is the last time that s; was visited
by OpinionWalk, €2;;, was not updated after the k;-th search. Therefore, the above
equation can be rewritten as

O(AU 0 ), AL W), -+ AQE™ 0, ).

81 89 iSm

Summarizing the above two cases, we know that if Q;;, = QZ(-ZZ) for every

[ = 1,2,---,m, then OpinionWalk and AT yield the same result of ;. For
(k1)

any user s;, (), and QiSl actually denote i’s opinion on s; computed by AT and
OpinionWalk, respectively. Both AT and OpinionWalk will work on the same sub-
network G’ = G — e(s;,j) that connects i to s;. The sub-network G’ can be further
reduced by removing the edge connecting to s;. Continuing this process, the original

network G' will eventually be reduced to the following base case.

Base Case
In the base case, user ¢ connects to users t1, t9, - - - ,t, via either series or parallel

topologies. Based on Lemmas 5.0.1 and 5.0.2, AT and OpinionWalk give the same
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values of €, Qi -+, Q.. Overall, we prove that AT and OpinionWalk give the

same result. ]

Time Complexity Analysis

Let’s further investigate the time complexity of OpinionWalk in DAG. For
OpinionWalk shown in Algorithm 5.2, the time complexity of the “for” loop from
line 7 to line 12 is n - Cy. Lines 5 — 14 take n - (n - Cy + Cy), and lines 3 — 15 take
k-n-(n-Cy+Cy). For the first iteration, there is only one node (the starting node) to
process. After the first iteration, the trustworthiness of all trustees within k& hops from
a trustor can be obtained from Y*) after OpinionWalk runs k iterations. Therefore,

the time complexity of OpinionWalk is

O(k(n+mn))=0(n) (k=1)
O(k(n*+n)) =0(n3) (k> 1)

, (5.5)

where k is the searching depth or number of iterations.

In addition, the time complexity of the “for” loop from line 7 to line 12 is
actually determined by the in-degree of node j. The in-degree of a node ranges from
0 to n, where n is the total node number of GG. For example, in a series topology where
the in-degree of each intermediate node is 1, the time complexity of OpinionWalk will
be k-n - (Cy + Cy) = O(n). Since the average degree of a real social network graph
is often far less than n, the execution time of OpinionWalk in real social networks
increases slowly as the trustee set size n becomes larger. This finding will be validated
in Chapter 6. Note that OpinionWalk is a polynomial-time solution in DAG. If the
given graph contains loop(s), then the convergence of OpinionWalk is unknown. As

a result, the time complexity of OpinionWalk in graphs containing loop is an open
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issue, which is considered our future work. Since there are always loops in real social
networks, the searching depth of OpinionWalk is empirically set. Our experiments
in Chapter 6 show that even though OpinionWalk cannot get exact results in social
networks containing loops, the trust assessment results are still promising.

Lower time complexity is not the only advantage of OpinionWalk. Since an
iterative procedure is used in OpinionWalk, it offers faster running time compared to
AT that involves large numbers of stack operations and consumes much more system
memory. Faster execution time is especially useful when the network size is large and
complex, which is common in OSNs. Moreover, during each iteration in OpinionWalk,
a node’s trustworthiness is updated only based on its value in the previous iteration,

meaning OpinionWalk can be implemented in a distributed manner.

Differences between AssessTrust and OpinionWalk Algorithms

The AT algorithm’s time complexity is O(n*) where k is the number of hops on
the longest path between the trustor and trustee, and n is the number of nodes in a
DAG. The basic idea of AT algorithm is finding all possible paths between the trustor
and trustee. From these paths, opinions will be discounted and combined to generate
the final opinion between the trustor and trustee. However, finding all possible paths
between two nodes is an NP-hard problem. In fact, we can conduct trust assessment
between two nodes without tracking all possible paths between them. This is why we
propose the OpinionWalk algorithm to solve the problem. OpinionWalk is designed
to replace the AT algorithm in solving the trust assessment problem.

OpinionWalk algorithm is a breath first search (BFS) based algorithm that
takes O(kn?) time complexity to solve the trust assessment problem between any
two nodes in a DAG network, where £ is the number of hops of the longest distance

between the trustor and trustee nodes. Analogous to BFS, OW searches the graph
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level by level. On a certain level, every node on this level needs to search all of its
children. After k rounds of searches, the algorithm will stop because it will never hit
the trustee in future searches. OpinionWalk has a lower time complexity because it
does not have to repeatedly consider some edges in the graph, which is inevitable in
the problem of finding all possible paths.

When OpinionWalk searches the graph, we note that the trustworthiness of
every other node can be computed as well. Therefore, OpinionWalk can be used
to solve the MTA problem. Its time complexity in addressing MTA in a DAG is
O(k*n?), where k* is the number of hops of the longest distance between the trustor
and any other node in the graph. The reason why OpinionWalk has a lower time
complexity in addressing MTA is that the trustor can use its opinions about nodes on
a certain level to compute its opinions of nodes on the next level. As a result, when
the OpinionWalk algorithm finishes searching the longest path(s), the opinions of all
other nodes can be computed. In a DAG, we know k < n — 1. Therefore, the time
complexity of OpinionWalk in a DAG can also be expressed as O(n?).

Note that neither AT nor OW can give exact results in a graph containing
loops. The computed results will oscillate and the convergence is not well understood.
Therefore, the complexity of trust assessment in the general case is currently unknown,

which is considered our future work.

Distributed OpinionWalk Algorithm

OpinionWalk can be implemented in a distributed manner, making it applicable
to a distributed system. Suppose a user wants to know the trustworthiness of the
users around him and these users are directly or indirectly connected to the user. If
the OpinionWalk algorithm is executed, the opinions between any two connected users

must be known. As the trust information between users is private and sensitive, some
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users may not want to provide it. Even though some users are willing to share the
data, they don’t want the information to be stored on a central server. To mitigate
users’ concerns about their privacy, we design the distributed OpinionWalk, called

D-OpinionWalk, as shown in Algorithm 5.3.

Algorithm 5.3: D-OpinionWalk Algorithm that is executed on user j.

Require: Message {A (s, ws;), k}, where s € S; .
Ensure: Message {A(€;,w;o), k + 1}, where 0 € O; .
: for all received messages {A(€5, ws;), k} on user j do
if s € S; and k < H then

Yils] < A(Qmwsa‘)

end if

end for

for all y € Y;[;] and y # j do

if Q;; £ O then

Qij <y

else

Qij < O(Qy5,y)

: end if

: end for

: for all o € O; do

: send a message {A(;,wj,), k+ 1} to user o

: end for

— e e e e
TR W N P O

Suppose that the D-OpinionWalk algorithm is running on a user j that receives
a set of messages from users in S;. After j executes the D-OpinionWalk algorithm, it
will send another set of messages to users in O;. For any user s € S, there must be
an edge/opinion from s to j in the corresponding social network. Similarly, for any
user o € Oj, there must be an edge from j to o in the social network. We call .S; and
O; user j’s in-neighbor and out-neighbor lists, respectively. In a received message,
e.g., sent from user s, the following two pieces of information will be provided: i’s

opinion about j’s trustworthiness A(€;s,ws;) and the number of hops k. User j also
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maintains the individual opinion vector Y; to store A(§2;, ws;) received from s. Here,
A(€4s, wsj) can also be expressed as ;-

The details of Algorithm 5.3 can be explained as follows. For lines 1-5, user j
receives messages from users in S; and initializes its individual opinion vector Y;. In
the messages, k& denotes how far the trustor ¢ is away from user j, measured by the
number of hops. For each received message, j first checks if it is sent from any node
in S and whether k is less than H. If so, it saves the information of A({2s,ws;) into
Y, in line 3. If there is already a record of A(§;,ws;) in Y;, j will update it.

After j receives messages from all users in .S;, it applies the combining operation
on all opinions saved in Y, as shown in lines 6-12. In the end, for each node o € O;,
7 applies the discounting operation on the resulting opinion and j’s direct opinions

to get A€, w;),). Finally, it sends message (A(€;,wjo), &+ 1) to user o, in line 14.

Q, =0(AQ,,@,).. AQ,,®,), ...

N
O—— @

— S| A 0 “
i TN ’ {p
\\\\ /' J ‘\\\ 27
o s N\, o4
., 2 oS, e
SN Al NS e
il DRSS g R g
Msg{AQ,. o).k} Msg{AQ, ®,)k+1}

Figure 5.6: A general view of the D-OpinionWalk algorithm.

In Algorithm 5.3, there is an important feature that needs to be emphasized
here. User j is unable to know his neighbor’s direct opinion about himself, which
protects the privacy of users in S;. As shown in Fig. 5.6, what j received from
his in-neighbors are A(Q;,,ws;) and k, from which he cannot infer wy;. Second,
D-OpinionWalk requires each user to provide her/his direct opinion on the given out-

neighbors and push the computed individual opinions to them, respectively. Similarly,
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because j does not provide his opinion on any user o € Oj, its privacy is protected as

well.
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EVALUATIONS

In this chapter, we evaluate the properties and performance of the 3VSL model,
AT algorithm and OpinionWalk algorithm. For 3VSL, we conduct a numerical
analysis to show the properties of discounting and combining operations. Then,
we present the results of applying 3VSL to compute trustworthiness in the bridge
topology. We also evaluate the accuracy of 3VSL using a dataset collected from
an online survey system. In the end, we conduct comprehensive experiments to
evaluate its accuracy and compare its performance to subjective logic, in two real-
world datasets: Advogato and PGP.

For the AT algorithm, we evaluate its accuracy and compare its performance
to another trust assessment algorithm, called TidalTrust, in Advogato and PGP.
We investigate the reasons why AT outperforms TidalTrust by analyzing the results
obtained from these experiments. For OpinionWalk, we evaluate its accuracy and

execution time in solving the MTA problem using the same two datasets.

Numerical Analysis

To understand whether 3VSL accurately models trust in OSNs, we first conduct
a numerical analysis on the discounting and combining operations defined in 3VSL.
After that, we investigate whether 3VSL can be used to compute trust in the bridge
topology. For the sake of simplicity, we denote the total evidence value in an opinion

as A\, i.e., A=a+ [ +.

Discounting Operation

We first look at the discounting operation defined in 3VSL, i.e., an opinion wsp

discounts another opinion wpe. As a result, opinion wc is derived from A(wap, wpe).
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We assume the initial evidence in an opinion is 30, i.e., Aap = Agc = 30. We also
assume there is no neutral evidence in Ayp and Agc. In the experiment, we change
the numbers of positive evidence, asp and agc, from 0 to 27. We investigate the
accuracy of 3VSL by observing the expected belief of wac.

As shown in Fig. 6.1, when a4p increases, the expected belief of wy¢c, denoted
by E, ,., increases as well. Similar results are observed when ap¢ increases. It implies
that A tends to believe B’s opinion on C' if A highly trusts B. When a,p is low,
however, E,,,. approaches 0.5, indicating A holds a neutral opinion on C' because A

does not trust B at all.

Figure 6.1: Influence of belief on discounting operation.

To further understand the impact of the evidence values, we vary aap/Aap
from 0 to 1, and change Asp from 0 to 300. In the experiment, we keep the original
opinion wpe unchanged, i.e., wpe = (25,5,0).

As we can see in Fig. 6.2, when A\sp is large, E,,. increases as aap/Aap

increases. When A4p is small, E,, . is very close to 0.5. This phenomena indicates

AC
that when A is more certain about her opinion on B, i.e., larger \4p, she relies more

on B to form her own opinion on C'. Otherwise, A’s opinion on C' tends to be neutral.
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Figure 6.2: Influence of belief and uncertainty on the discounting operation.

Combining Operation

Here, we assume two opinions wy,¢, and wa,c, are combined to yield another
opinion wac = O(wa, 0, wWa,0,). We vary Aa,e, of opinion wa,¢, from 0 to 300,
and keep the value of au,¢,/Ba,c, = 1/7. As such, we can denote opinion wy, ¢,
as (0.125 X Agy,¢,,0.875 X A ¢y, 0) (low trust). We set the second opinion wa,c, as
(25,5,0) (high trust).

As shown in Fig. 6.3, when A4, is very large, the expected belief of the
combined opinion wac approaches K, .. When Ay, ¢, is smaller, E,,, gets close
to Ey,,c,- It implies that a combining opinion yields a result similar to the opinion
with a larger .

We further evaluate the combining operation by setting wa,c, as (25,5,0), Aa,c,
as 30, and varying aa,c, from 0 to 27. As shown in Fig. 6.4, when a4,c, and ay, ¢,

are similar, the expected belief of the resulted wa¢ is close to but higher than either

E, a0, OF E, 45Cy When o 4,0, and g, ¢, are different, E,, . is close to the average
of E and E,

WA1Cy WA5Cy*



82

b
o

o
o

o
~

Expected Belief

o
(N

3 60 120 180 240 300

A C
171

Figure 6.3: Influence of total evidence value A on combining operation.

08 _—
Y ’4’
ko .
©0.6 -7 !
m -
> -
3 -
004 |- - 4
o Y- - -
< - —Owp o ¥ c)
nj _- 171 272
02- -~ W ¢ I
e 11
N
2 2
0 | | I
0 9 18 27
%A c

Figure 6.4: Influence of positive evidence value o on combining operation.

We conclude that combining two opinions with similar positive evidence values
will enhance the original opinion, due to the increased amount of positive evidence.

On the other hand, combing opinions with the different amounts of positive evidence

yields a neutralized result.

Bridge Topology

Because the subjective logic model cannot handle the bridge topology, as shown

in Fig. 4.5(a), an approximation solution is proposed by removing some edges from
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the network, e.g., wpp. If wgp is removed, the bridge topology becomes a parallel
topology where A connects to C' via two parallel paths A -+ B — Cand A —» D — C.
We define wgp as the bridge edge (or bridge opinion) and discover that the bridge
edge could be very important in trust assessment and cannot be simply removed.

In the experiments, we set the opinions wag, wap, wpc and wep as (25,5, 0),
(18,12,0), (18,12,0), and (18,12, 0), respectively. We consider the cases where wgp
contains a small amount of evidence, e.g., Agp = 5, and a large amount of evidence,

e.g., Agp = 20. By changing the value of agp/App from 0 to 1, we obtain Fig. 6.5.
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When Agp = 5, the expected belief of wysc computed from 3VSL is similar
to that computed by removing wgp. When Agp = 20, however, 3VSL yields a
different result. Moreover, we note that a more trustworthy bridge opinion, e.g.,
agp/Agp > 0.7, tends to yield a more trustworthy wac.

Furthermore, we vary Agp from 3 to 300, and set app/App as 0.7 and agp/App
as 0.3, respectively. As shown in Fig. 6.6, when Agp is large, the impact of the bridge
opinion cannot be ignored. When Agp is small, a similar result can be obtained if the

bridge opinion is removed, i.e., the approximation solution only works in this case.

Survey Experiments

In addition to numerical analysis, we designed an online system to collect
trust data. We use the collected dataset to validate the discounting and combining

operations defined in 3VSL.

Setup of the Survey Experiments

More than 100 participates were invited to evaluate the trustworthiness of
their 1-hop and 2-hop friends by answering a questionnaire proposed in [48]. The
questionnaire consisted of 12 questions, and the answers of these questions were
used to construct a participant’s opinions of his/her friends. The answer X for each
question is scaled in 9 levels, where 8 represents “strongly trust” and 0 as “strongly
distrust”. In addition, we add another question to let a participant indicate how
certain they believe their answers are. The uncertainty score Y is scaled in 5 levels,
where 0 represents “not sure at all” and 4 represents “very confident”.

After a participant logs into the online system, she will be asked to identify and
evaluate the trustworthiness of her two direct friends B and D. A is then told that

her friend B trusts C' with an opinion wpgc, and she is asked to evaluate her opinion
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on C'. Finally, A is told that D also trusts C, with an opinion wp¢, and she is asked
to evaluate C’s trustworthiness again, considering both the opinions from B and D.
More details about the online system can be found at [33].

From the collected data, we construct trust opinions as follows. The average
score of X, denoted as T, reflects the value of positive evidence. The uncertainty
score Y is used to compute the total number of evidence A, i.e. the higher the value
of Y, the smaller the amount of evidence. It’s difficult to obtain the accurate value of
A because participants may not recall the exact amount of evidence they used to make
their judgments. Here, we assume 30 recent evidence indicators are good enough for
a person to form an opinion, i.e., A of an opinion is 3 if ¥ = 0 and 30, otherwise.

Given the values of T" and A, an opinion vector is formed, according to the following

equation.
<CY,5,")/>:<T')\Ax,<1—T)'>\Ax,O>, (61)
where
dAX
T=—.
Aax

Notice that we assume the initial amount of neutral evidence is 0. This is because
when a person makes decisions, neutral evidence is usually ignored, i.e., only positive
and negative evidence are considered. In 3VSL, uncertainty only occurs when trust

propagates within the network.
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Errors in Discounting and Combining Operations

We compute the errors in the discounting and combining operations as follows.

Erra

Errg

'EA(wAB,wBC) - EWA—)B—»C
)

E

WA—B—C

'E@(A(wAB,ch),A(wAD,WDC» — Bosippsc

E

WA—B,D—C

where ws_,p_,c denotes A’s opinion on C' based on B’s opinion, and wa_p p_c

denotes A’s opinion on C' based upon both B’s and D’s opinions. The errors Erra

and Errg generated by the discounting and combining operations are shown in Fig 6.7

and 6.8, respectively.
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Figure 6.7: Absolute errors in expected belief of the discounting operation.

In these figures, we also plot the expected beliefs computed by the subjective

logic. The average error of 3VSL is less than that of subjective logic i.e. 3VSL is a

more accurate model in modeling trust in social networks.

We further plot the corresponding CDF's of the errors in Fig 6.9 and 6.10. For

the combining operation, we can see around 90% of the results have errors less than

20%. For the discounting operation, 82% of the results have errors less than 20%.

We also note that the number of accurate results, with an error < 20%, computed
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Figure 6.9: CDF's of errors in expected belief of the discounting operation.

by subjective logic is smaller. This indicates that 3VSL provides higher accuracy in

trust assessments in OSNs.

Experimental Evaluations

In this section, we will validate the 3VSL model and evaluate the performance
of the AssessTrust and OpinionWalk algorithms using two real-world datasets:
Advogato and PGP. To understand how accurate various models are in assessing

trust within OSNs, we adopt F1 score [1] as the evaluating metric. The F1 score is
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Figure 6.10: CDFs of errors in expected belief of the combining operation.

chosen because it is a comprehensive measure for different models in predicting or
inferring trust [1].

After evaluating the accuracy of different trust models, we evaluate the
performance of the AT algorithm and compare it to these benchmark solutions:
TrustRank and EigenTrust. In the end, we implement the OpinionWalk algorithm

and compare its execution time to the benchmark algorithms.

Dataset

The first dataset, Advogato, is obtained from an online software development
community where an edge from user A to B represents A’s trust on B, regarding B’s
ability in software development. The trust value between two users is divided into
four levels, indicating different trust levels. The second dataset, Pretty Good Privacy
(PGP), is collected from a public key certification network where an edge from user A
to B indicates that A issues a certificate to B, i.e., A trusts B. Similar to Advogato,
the trust value is also divided into four levels.

According to the document provided by Advogato, a user determines the trust

level of another user, based on only certain evidence. Therefore, a low-trust edge in
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Advogato indicates an opinion that contains negative evidence. On the other hand, in
PGP, a user tends to give a low trust certification if he is not sure whether the other
user is trustworthy or not. A user in PGP will never give a certification to anyone who
has malicious behavior. Therefore, a low trust level in PGP indicates an opinion that
contains uncertain evidence. We select these two datasets because they are obtained
from real world OSNs where trust relations between users are quantified as non-binary
values. In addition, the different definitions of trust in these two datasets allow us
to evaluate the performance of 3VSL in different trust social networks. Statistics of

these datasets are summarized in Table 6.1.

Table 6.1: Statistics of the Advogato and PGP datasets.

Dataset | # Vertices | # Edges | Avg Deg | Diameter
Advogato 6,541 51,127 19.2 4.82
PGP 38,546 31,7979 16.5 7.7

Dataset Preparation

In Advogato, trust is classified into four ordinal levels: observer, apprentice,
journeyer and master. Similarly, in PGP, trust is classified into four levels: 0, 1,
2 and 3. Both Advogato and PGP provide directed graphs where users are nodes
and edges are the trust relations among users. Because the trust levels are in ordinal
scales, a transformation is needed to convert a trust level into a trust value, ranging
from 0 to 1.

In the experiments, we set the total evidence values A as 10, 20, 30, 40, and 50.
ab
AT
meanings of trust in Advogato and PGP are different, so we use different methods to

Given a certain A\, we can represent an opinion as < > As aforementioned, the

construct opinions in Advogato and PGP. We assume the opinions in Advogato only

contain positive and negative evidence, i.e., v = 0. Therefore, an opinion of 3VSL in
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Advogato can be expressed as

(o (1-5) 1)

Given the total number of evidence value A\, an opinion in Advogato is in fact
determined by %, i.e., the proportion of positive evidence. To properly set the value
of %, we use the normal score transformation technique [80] to convert ordinal trust
values into real numbers, ranging from 0 to 1. Specifically, trust levels are first
converted into z-scores by the normal score transformation method, based on their
distributions in the datasets. Then, we map the z-scores to different %’s, according to
the differences among the z-scores. For example, the master level trust is converted
into (%)3 = 0.9. For the observer level trust, we use different values of (%)0 as 0.1,
0.2, 0.3, 0.4 and 0.5 to indicate the possible lowest trust levels. With the highest
and lowest values of %, we interpolate the values of (%)1 and (%)2 for apprentice
and journeyer level trusts, based on the intervals between the corresponding z-scores.
Because there are five different \’s and five different (%)o’s, we have a total of 25
combinations of parameters.

For the PGP dataset, we assume there is only positive and uncertain evidence,

so we set 3 = 0. Therefore, an opinion of 3VSL in PGP can be expressed as

<a,0,)\(1 — %)>

Similar to Advogato, an opinion in PGP is determined by A and %. We use the same

transformation method to convert the trust relations in PGP into opinions.



91

N
1

HsL
09 L H3vsL
0.8 -
0.7 -

F1 Scores
o o
(6)] »

T T

o
~
T

03 r

0.2
Various Parameters

Figure 6.11: F1 scores of 3VSL and SL using the Advogato dataset. Parameters
are the combinations between base trust levels (0.1, 0.2, 0.3, 0.4 and 0.5) and total
evidence values (10, 20, 30, 40, and 50).

Accuracy of 3VSL Model

With the above-mentioned two datasets, we evaluate the accuracy of the 3VSL
model. We also compare the accuracy of the 3VSL model to the SL model. As we
know, SL does not model the trust propagation process correctly and its performance
will degrade drastically in real-world OSNs. Due to this issue, SL cannot handle social
networks with complex network topologies. Although some approximation solutions
are proposed, e.g., removing edges in a social network to reduce it into a simplified
graph, there is no existing algorithm that implements any of these solutions. To make
a fair comparison, we design an algorithm called SL*, based on the AT algorithm. The
structure of the SL* algorithm is exactly the same as AT’s, however, the discounting
and combining operations used in the AT algorithm are replaced with those defined
in SL. As such, SL* implements the SL model and is able to work on OSNs with
arbitrary topologies.

The experiments are conducted as follows. First, we randomly select a trustor

u from the datasets and find one of its 1-hop neighbors v. We take the opinion from
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Figure 6.12: F1 scores of 3VSL and SL using the PGP dataset. Parameters are the
combinations between base trust levels (0.1, 0.2, 0.3, 0.4 and 0.5) and total evidence
values (10, 20, 30, 40, and 50).

u to v as the ground truth, i.e., how u trusts v. Then, we remove the edge (u,v) from
the datasets, if there is a path from u to v. We run the above-mentioned algorithms
to compute u’s opinion of v’s trustworthiness. Finally, we compare the computed
results to the ground truth. We select 200 pairs of v and v to get statistically
significant results. To compare the computed results to the ground truth, we first
use the expected beliefs of computed opinions as the trust values in 3VSL and SL.
Then, we round the expected beliefs to the closest trust levels based on the ground
truths. Finally, we use F1 score to evaluate the accuracy of different models. Because
we do not know the correct parameter settings, we test the above-mentioned 25
combinations of parameters to conduct a comprehensive evaluation.

As shown in Fig. 6.11 and 6.12, 3VSL achieves higher F1 scores than SL, with all
different parameter settings, in both datasets. Specifically, 3VSL achieves F1 scores
ranging from 0.6 to 0.7 in Advogato, and 0.55 to 0.75 in PGP. On the other hand,
the F1 scores of SL range from 0.35 to 0.6 in Advogato and 0.55 to 0.67 in PGP.
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Considering F1 score is within the range of [0, 1], we conclude that 3VSL significantly
outperforms SL.

More importantly, we observe that the F1 scores of 3VSL are relatively stable,
with different parameter settings. However, the F1 scores of SL fluctuate, indicating
SL is significantly affected by the parameter settings. Overall, we conclude that
3VSL is not only more accurate than SL but also more robust to different parameter
settings.

We further investigate the reason why 3VSL outperforms SL by looking at the
evidence values in the resulting opinions, computed by 3VSL and SL. We choose
the results from experiments with the parameter setting (0.3, 30), wherein 3VSL
performs the best. We are only interested in the cases where 3VSL obtains more
accurate results than SL. We measure the values of certain evidence (a + ) in the
resulting opinions computed by 3VSL and SL. The CDFs of the values of certain

evidence are then plotted in Fig. 6.13. As shown in Fig. 6.13, the values of (o + ) in
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Figure 6.13: CDF's of v+ 3 in opinions computed by 3VSL and subjective logic using
the Advogato dataset.

the opinions computed by SL are much lower than that of 3VSL. It results in an lack

of evidence in computing the expected beliefs of opinions by SL. This observation
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Advogato PGP
AT (0.3, 30) (0.1, 30)
SL* (0.3, 30) (0.1, 30)
TT (0.2,—) (0.1,—)

Table 6.2: Selected parameters (base trust level, total evidence value) for AT, SL*
and TT. Note that TT employs a number to represent trust, so its evidence value is
empty.

matches the example introduced in Fig. 4.3. Because 3VSL employs a third state to
store the uncertainty generated in trust propagation, it is more accurate in modeling

and computing trust in OSNs.

Performance of the AssessTrust Algorithm
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Figure 6.14: F1 scores of the trust assessment results generated by TT, SL* and AT
using the Advogato dataset.

After validating the 3VSL model, we study the performance of the AT algorithm
and compare it to other benchmark algorithms, including TidalTrust (TT) [32],
TrustRank (TR) [36] and EigenTrust (ET) [58]. TidalTrust is designed to compute

the absolute trust of any user in an OSN. However, TR and ET are used to rank
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Figure 6.15: F1 scores of the trust assessment results generated by TT, SL* and AT
using the PGP dataset.

users in an OSN based on their relative trustworthiness, i.e., it does not compute the
absolute trust.

Because different benchmark algorithms solve the trust assessment problem
differently, we conduct two groups of experiments. In the first group of experiments,
we compare the performance of AT, SL* and TT in computing the absolute
trustworthiness of users in an OSN. In the experiments, we randomly select a trustor
u from the datasets and choose one of its 1-hop neighbors v. We take the opinion
from u to v as the ground truth. Then, we remove the edge (u, v) from the datasets, if
there exist paths from u to v in the network. We run the AT, SL* and TT algorithms
to compute the trustworthiness of v, from u’s perspective. Finally, we compare the
computed trustworthiness to the ground truth.

Different parameters will affect the performance of various algorithms, so we
choose different parameters for AT and TT so that they can perform well in the
experiments. Because we already validated that 3VSL outperforms SL, regardless of

the parameter settings, we choose the same parameter setting used by AT for SL*.
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Figure 6.16: Histogram of the errors generated by TT, SL* and AT using the
Advogato dataset.
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Figure 6.17: Histogram of the errors generated by TT, SL* and AT using the PGP
dataset.
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The parameter settings for different algorithms in different datasets are shown in

Table 6.2.
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Figure 6.18: Fitted curves of the error distributions of TT, SL* and AT using the
Advogato dataset.
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Figure 6.19: Fitted curves of the error distributions of TT, SL* and AT using the
PGP dataset.

We first look at the F1 scores of the trust assessment results generated by the
three algorithms. The F1 scores are plotted in Figs. 6.14 and 6.15. As shown in
Figs. 6.14 and 6.15, AT outperforms TT in both datasets, i.e., TT achieves 0.617 and
0.605 F1 scores, and AT offers 0.7 and 0.75 F1 scores in Advogato and PGP. It is
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worth mentioning that SL* gives the worst F1 scores, indicating that the problem of
subjective logic in modeling uncertainty seriously impacts its performance.

Besides F'1 scores, we also study the distribution of errors in trust assessment
results. The error here is defined as the difference between the computed trust value
and the ground truth. The error distributions of different algorithms are shown in
Figs. 6.16, 6.18, 6.17 and 6.19.

From Fig. 6.16(a), we can see that the errors of TT algorithm is either very
small or very large when it is used to assess trust using the Advogato dataset. For
the SL* and AT algorithms, however, the errors are more concentrated around 0, as
shown in Figs. 6.16(b) and 6.16(c). If the PGP dataset is used, we observe the same

phenomena, as shown in Figs. 6.17(a), 6.17(b) and 6.17(c).
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Figure 6.20: The CDFs of Kendall’s tau ranking correlation coefficients of different
algorithms using the Advogato dataset.

We further fit this histogram data using the Normal Distribution. As shown in
Figs 6.18 and 6.19, the fitted curves of the error distributions of different algorithms
clearly indicate that AT gives the best trust assessment results. In these figures,
we can see the error distribution of TT has a close-to-zero mean, i.e., 0.005 for

both datasets, but a large variance. On the contrary, the fitted curves of the error
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Figure 6.21: The CDFs of Kendall’s tau ranking correlation coefficients of different
algorithms using the PGP dataset.

distributions of SL* show that SL* has a smaller variance but a large mean, i.e.,
0.067 in Advogato and 0.016 in PGP. The fitted curves of the error distributions of
AT give the best results, i.e., with a mean of 0.015 in Advogato and 0.016 in PGP,
and a smaller variance in both datasets.

In the second group of experiments, we evaluate the performance of AT, ET
and TR, in terms of ranking users based on their trustworthiness. We first randomly
select a seed node u, and find all its 1-hop neighbors, denoted as V. Then, we rank
the nodes in V' based on u’s direct opinions on these nodes, i.e., nodes with higher
trust values are ranked in higher positions than those with lower trust values. We
take this ranking as the ground truth.

For each node v € V', we remove edge (u, v) from the datasets if there exist paths
from u to v. We run the AT, ET and TR algorithms to compute the trustworthiness
of node v, from the perspective of u. Then, we rank the nodes in V' based on the
expected beliefs of w,,’s for all possible v’s. We compare the ranking results obtained
by the three algorithms to the ground truth. Here, ranking errors are measured by

Kendall’s tau ranking correlation coefficients between the computed ranking results
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Figure 6.22: Execution times of different algorithms (OW, MT, ET, AT, and TT)
using the Advogato dataset.

and the ground truth. We repeat each experiment 100 times in Advogato and PGP
to get statistically significant results.

In Figs. 6.20 and 6.21, AT gives more accurate ranking results, compared to
other algorithms. In Advogato, the Kendall’s tau correlation coefficients of AT are
always greater than 0. Nearly 20% of the ranking results are exactly the same (with
a coefficient of 1) as the ground truth. In PGP, AT generates > 0.1 Kendall’s tau
ranking correlation coefficients, and about 40% of the ranking results are the same
as the ground truth. On the other hand, for ET and TR algorithms, only 20%
(Advogato) and 10% (PGP) of their rankings are moderately correct, with coefficients
> 0.5. In other words, ET and TR do not work well in ranking users in an OSN,

based on their trustworthiness.

Performance of the OpinionWalk Algorithm

In this section, we evaluate the performance of the OpinionWalk (OW)
algorithm, when it is used to address the MTA problem. Because OpinionWalk is

designed based upon the 3VSL model, its accuracy in assessing trust does not need to
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Figure 6.23: Execution times of different algorithms (OW, MT, ET, AT, and TT)
using the PGP dataset.

be evaluated again. Therefore, we are only interested in its execution time. Here, we
compare OpinionWalk to other benchmark algorithms, including EigenTrust (ET)
(a = 0.85), TidalTrust (TT), MoleTrust (MT), and AssessTrust (AT). We do not
consider TrustRank here because its running time is almost the same as FigenTrust’s.

The experiments are conducted as follows. First, we randomly choose a trustor
and its neighbors (trustees) within various hops. We run the above-mentioned
algorithms on the sub-graph containing only the trustor and trustees. We plot the
execution times of various algorithms, with respect to the number of nodes in each
sub-graph. We group the node numbers into 3 categories. For Advogato, the node
number categories are < 1.3K, 1.3K —2.6K and > 2.6 K. For PGP, the node number
categories are < 7K, TK — 15K and > 15K.

As shown in Fig. 6.22 and Fig. 6.23, TT and AT run much slower than OW
when the numbers of nodes increase in both datasets. Particularly, when the number
of nodes is large, corresponding to a larger searching depth, T'T and AT are extremely
slow. The reason is that both TT and AT need to be executed n times to solve the

MTA problem where n is the number of nodes in networks. AT is the slowest algorithm
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because it is a recursive algorithm and it keeps re-solving the same sub-problems over
and over again. The execution times of OW, ET and MT are on the same order of
magnitude, i.e., O(n?). Because the discounting and combining operations in OW are
more complicated than the multiplication and summation operations in MT, it runs
slightly slower than MT. Considering both trust assessment accuracy and execution

time, we conclude that OW is a better solution to MTA in OSNs.
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CONCLUSION

In this dissertation, the three-valued subjective logic is proposed to model and
compute trust between any two users connected within OSNs. 3VSL introduces the
uncertainty space to store evidence distorted from certain spaces as trust propagates
through a social network, and keeps track of evidence as multiple trusts combine.
We discover that there are differences between distorting and original opinions, i.e.,
distorting opinions are so unique that they can be reused in trust computation while
original opinions are not. This property enables 3VSL to handle complex topologies,
which is not feasible in the subjective logic model.

Based on 3VSL, we design the AT algorithm to compute the trust between any
pair of users in a given OSN. By recursively decomposing an arbitrary topology into
a parsing tree, we prove AT is able to compute the tree and get the correct results.
AT is designed for one-to-one trust assessment and is inefficient in addressing the
MTA problem in OSNs. To solve the MTA problem, we design the OpinionWalk
algorithm based on the 3VSL model. We prove that OpinionWalk is an equivalent
implementation of the AT algorithm, yet offers a better time complexity of O(n?) in
addressing the MTA problem.

We validate 3VSL both in numerical and experimental evaluations. The
evaluation results indicate that 3VSL is accurate in modeling computing trust within
complex OSNs. We further compare the AT algorithm to other benchmark trust
assessment algorithms. Experiments in two real-world OSNs show that AT is a better
algorithm in both absolute trust computation and relative trust ranking. In the end,
experimental results show that OpinionWalk is an accurate, as well as fast, solution

to the MTA problem.



105

REFERENCES CITED

[1] f1 score. http://scikit-learn.org/stable/modules/generated/sklearn.
metrics.fl_score.

[2] facebook and lendingclub looks like its working. http://blog.lendingclub.
com/facebook-and-lending-club-looks-like-its-working/.

[3] facebooks patent may change your credit. http://www.techinsider.io/
facebooks-patent-may-change-your-credit-2015-8.

[4] T. Ahn and J. Esarey. A dynamic model of generalized social trust. Journal of
Theoretical Politics, 20(2):151-180, 2008.

[5] L. Alvisi, A. Clement, A. Epasto, S. Lattanzi, and A. Panconesi. Sok: The
evolution of sybil defense via social networks. In Security and Privacy (SP),
2013 IEEE Symposium on, pages 382-396, May 2013.

[6] R. Andersen, C. Borgs, J. Chayes, U. Feige, A. Flaxman, A. Kalai, V. Mirrokni,
and M. Tennenholtz. Trust-based recommendation systems: An axiomatic

approach. In Proceedings of the 17th International Conference on World Wide
Web, WWW 08, pages 199-208, New York, NY, USA, 2008. ACM.

[7] R. Andersen, F. Chung, and K. Lang. Local partitioning for directed graphs
using pagerank. In A. Bonato and F. Chung, editors, Algorithms and Models
for the Web-Graph, volume 4863 of Lecture Notes in Computer Science, pages
166-178. Springer Berlin Heidelberg, 2007.

[8] D. Artz and Y. Gil. A survey of trust in computer science and the semantic
web. Web Semantics: Science, Services and Agents on the World Wide Web,
5(2):58 — 71, 2007. Software Engineering and the Semantic Web.

[9] A. Basu, J. Vaidya, J. C. Corena, S. Kiyomoto, S. Marsh, G. Guo, J. Zhang,
and Y. Miyake. Opinions of people: Factoring in privacy and trust. SIGAPP
Appl. Comput. Rev., 14(3):7-21, Sept. 2014.

[10] C. Bizer, R. Cyganiak, T. Gauss, and O. Maresch. O.: The trigl.p browser:
Filtering information using context-, content- and rating-based trust policies.
In Proceedings of the Semantic Web and Policy Workshop, held in conjunction

with the 4th International Semantic Web Conference, 7 November, 2005, pages
12-20, 2005.

[11] C. Borgs, J. Chayes, A. T. Kalai, A. Malekian, and M. Tennenholtz. A Nowvel
Approach to Propagating Distrust, pages 87-105. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2010.


http://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score
http://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score
http://blog.lendingclub.com/facebook-and-lending-club-looks-like-its-working/
http://blog.lendingclub.com/facebook-and-lending-club-looks-like-its-working/
http://www.techinsider.io/facebooks-patent-may-change-your-credit-2015-8
http://www.techinsider.io/facebooks-patent-may-change-your-credit-2015-8

[12]

[13]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

106

C. L. A. Clarke, G. V. Cormack, and T. R. Lynam. Exploiting redundancy
in question answering. In Proceedings of the 24th Annual International ACM
SIGIR Conference on Research and Development in Information Retrieval,

SIGIR ’01, pages 358-365, New York, NY, USA, 2001. ACM.

G. Danezis and P. Mittal. Sybillnfer: Detecting sybil nodes using social
networks. In Proceedings of the Network and Distributed System Security
Symposium, NDSS 2009, San Diego, California, USA, 8th February - 11th
February 2009, 2009.

Z. Despotovic and K. Aberer. Probabilistic prediction of peers’ performance in
{P2P} networks. Engineering Applications of Artificial Intelligence, 18(7):771
— 780, 2005.

L. Ding, P. Kolari, T. Finin, A. Joshi, Y. Peng, and Y. Yesha. On homeland
security and the semantic web: A provenance and trust aware inference
framework. In In AAAI Spring Symposium on Al Technologies for Homeland
Security, pages 21-23. AAAI Press, 2005.

L. Ding, L. Zhou, and T. Finin. Trust based knowledge outsourcing for semantic
web agents. In Proceedings of the 2003 IEEE/WIC International Conference
on Web Intelligence, WI 03, pages 379—, Washington, DC, USA, 2003. IEEE
Computer Society.

P. M. Doney and J. P. Cannon. An examination of the nature of trust in
buyer-seller relationships. the Journal of Marketing, pages 35-51, 1997.

D. Downey, O. Etzioni, and S. Soderland. A probabilistic model of redundancy
in information extraction. In Proceedings of the 19th International Joint
Conference on Artificial Intelligence, IJCAT'05, pages 1034-1041, San Francisco,
CA, USA, 2005. Morgan Kaufmann Publishers Inc.

T. DuBois, J. Golbeck, and A. Srinivasan. Rigorous probabilistic trust-
inference with applications to clustering. In Web Intelligence and Intelligent
Agent Technologies, 2009. WI-IAT 09. IEEE/WIC/ACM International Joint
Conferences on, volume 1, pages 655658, Sept 2009.

E. ElSalamouny, V. Sassone, and M. Nielsen. HMM-based trust model. In
Formal Aspects in Security and Trust, pages 21-35. Springer, 2010.

R. Falcone and C. Castelfranchi. Social trust: A cognitive approach. In Trust
and deception in virtual societies, pages 55-90. Springer, 2001.

C. J. Fung, J. Zhang, I. Aib, and R. Boutaba. Dirichlet-based trust management
for effective collaborative intrusion detection networks. Network and Service
Management, IEEE Transactions on, 8(2):79-91, 2011.



[23]

[24]

[25]

[28]

[29]

[30]

107

D. Gambetta. Trust: Making and Breaking Cooperative Relations, volume 52.
Blackwell, 1988.

S. Ganesan. Determinants of long-term orientation in buyer-seller relationships.
the Journal of Marketing, pages 1-19, 1994.

H. Gao, Y. Yang, K. Bu, Y. Chen, D. Downey, K. Lee, and A. Choudhary. Spam
ain’t as diverse as it seems: Throttling osn spam with templates underneath.
In Proceedings of the 30th Annual Computer Security Applications Conference,
ACSAC ’14, pages 76-85, New York, NY, USA, 2014. ACM.

D. Gefen, E. Karahanna, and D. W. Straub. Trust and tam in online shopping:
An integrated model. MIS @Q., 27(1):51-90, Mar. 2003.

Y. Gil and V. Ratnakar. Trusting information sources one citizen at a time.
In Proceedings of the First International Semantic Web Conference on The
Semantic Web, ISWC ’02, pages 162-176, London, UK, UK, 2002. Springer-
Verlag.

J. Golbeck. Trust and nuanced profile similarity in online social networks. ACM
Trans. Web, 3(4):12:1-12:33, Sept. 2009.

J. Golbeck and J. Hendler. Filmtrust: Movie recommendations using trust in
web-based social networks. In Proceedings of the IEEE Consumer communica-
tions and networking conference, volume 96. Citeseer, 2006.

J. Golbeck, B. Parsia, and J. Hendler. Trust networks on the semantic web.
In M. Klusch, A. Omicini, S. Ossowski, and H. Laamanen, editors, Cooperative
Information Agents VII, volume 2782 of Lecture Notes in Computer Science,
pages 238-249. Springer Berlin Heidelberg, 2003.

J. A. Golbeck. Computing and applying trust in web-based social networks.
2005.

J. A. Golbeck. Computing and Applying Trust in Web-based Social Networks.
PhD thesis, College Park, MD, USA, 2005. AAI3178583.

X. L. Guangchi Liu. Online Trust Survey. http://www.cs.montana.edu/yang/
trust-us, 2013.

R. Guha, R. Kumar, P. Raghavan, and A. Tomkins. Propagation of trust and
distrust. In Proceedings of the 13th International Conference on World Wide
Web, WWW 04, pages 403-412, New York, NY, USA, 2004. ACM.

R. Guha, R. Kumar, P. Raghavan, and A. Tomkins. Propagation of trust and
distrust. In Proceedings of the 13th International Conference on World Wide
Web, WWW 04, pages 403-412, New York, NY, USA, 2004. ACM.


http://www.cs.montana.edu/yang/trust-us
http://www.cs.montana.edu/yang/trust-us

[36]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

108

7. Gyongyi, H. Garcia-Molina, and J. Pedersen. Combating web spam with
trustrank. In Proceedings of the Thirtieth International Conference on Very
Large Data Bases - Volume 30, VLDB 04, pages 576-587. VLDB Endowment,
2004.

C.-W. Hang and M. P. Singh. Trust-based recommendation based on graph
similarity. In Proceedings of the 13th International Workshop on Trust in Agent
Societies (TRUST). Toronto, Canada, 2010.

C.-W. Hang, Y. Wang, and M. P. Singh. Operators for propagating trust and
their evaluation in social networks. In Proceedings of The 8th International
Conference on Autonomous Agents and Multiagent Systems - Volume 2,
AAMAS 09, pages 1025-1032, Richland, SC, 2009. International Foundation
for Autonomous Agents and Multiagent Systems.

C.-W. Hang, Y. Wang, and M. P. Singh. Operators for propagating trust and
their evaluation in social networks. In Proceedings of The 8th International
Conference on Autonomous Agents and Multiagent Systems - Volume 2,
AAMAS 09, pages 1025-1032, Richland, SC, 2009. International Foundation

for Autonomous Agents and Multiagent Systems.

X. Hong, D. Huang, M. Gerla, and Z. Cao. Sat: Situation-aware trust
architecture for vehicular networks. In Proceedings of the 3rd International
Workshop on Mobility in the Ewvolving Internet Architecture, MobiArch 08,
pages 31-36, 2008.

L. T. Hosmer. Trust: The connecting link between organizational theory and
philosophical ethics. Academy of management Review, 20(2):379-403, 1995.

X. Hu, J. Tang, Y. Zhang, and H. Liu. Social spammer detection in microblog-
ging. In Proceedings of the Twenty-Third International Joint Conference on
Artificial Intelligence, IJCAI ’13, pages 2633-2639. AAAI Press, 2013.

J. F. Hiibner, E. Lorini, A. Herzig, and L. Vercouter. From cognitive trust
theories to computational trust. In Proceedings of the 12th International
Workshop on Trust in Agent Societies, Budapest, Hungary, volume 10, pages
2009-11. Citeseer, 2009.

A. Jakoby, M. Liskiewicz, and R. Reischuk. Space efficient algorithms for series-
parallel graphs. In STACS 2001, pages 339-352. Springer, 2001.

M. Jamali and M. Ester. A matrix factorization technique with trust
propagation for recommendation in social networks. In Proceedings of the Fourth
ACM Conference on Recommender Systems, RecSys "10, pages 135-142, New
York, NY, USA, 2010. ACM.



[46]

[47]

[48]

[51]

[52]

109

S. L. Jarvenpaa, N. Tractinsky, and L. Saarinen. Consumer trust in an
internet store: a cross-cultural validation. Journal of Computer-Mediated
Communication, 5(2):0-0, 1999.

W. Jiang, J. Wu, G. Wang, and H. Zheng. Fluidrating: A time-evolving
rating scheme in trust-based recommendation systems using fluid dynamics.
In INFOCOM, 2014 Proceedings IEEE, pages 17071715, April 2014.

C. Johnson-George and W. C. Swap. Measurement of specific interpersonal
trust: Construction and validation of a scale to assess trust in a specific other.
Journal of Personality and Social Psychology, 43(6):1306-1317, 1982.

A. Jgsang. The consensus operator for combining beliefs. Artificial Intelligence,
141(1):157-170, 2002.

A. Jgsang. Probabilistic logic under uncertainty. In Proceedings of the thirteenth
Australasian symposium on Theory of computing-Volume 65, pages 101-110.
Australian Computer Society, Inc., 2007.

A. Josang. Conditional reasoning with subjective logic. Journal of Multiple-
Valued Logic and Soft Computing, 15(1):5-38, 2008.

A. Josang and T. Bhuiyan. Optimal trust network analysis with subjective
logic. In Emerging Security Information, Systems and Technologies, 2008.
SECURWARE ’08. Second International Conference on, pages 179184, Aug
2008.

A. Jgsang, R. Hayward, and S. Pope. Trust network analysis with subjective
logic. In Proceedings of the 29th Australasian Computer Science Conference -
Volume 48, ACSC 06, pages 85-94, Darlinghurst, Australia, Australia, 2006.
Australian Computer Society, Inc.

A. Jgsang, S. Marsh, and S. Pope. Exploring different types of trust
propagation. In Trust management, pages 179-192. Springer, 2006.

A. Jgsang and D. McAnally. Multiplication and comultiplication of beliefs.
International Journal of Approzimate Reasoning, 38(1):19-51, 2005.

A. Jgsang and S. Pope. Semantic constraints for trust transitivity. In
Proceedings of the 2Nd Asia-Pacific Conference on Conceptual Modelling -
Volume 43, APCCM ’05, pages 59-68, Darlinghurst, Australia, Australia, 2005.
Australian Computer Society, Inc.

A. JOSANG. A logic for uncertain probabilities. International Journal of
Uncertainty, Fuzziness and Knowledge-Based Systems, 09(03):279-311, 2001.



[58]

[63]

[64]

[65]

[66]

110

S. D. Kamvar, M. T. Schlosser, and H. Garcia-Molina. The eigentrust algorithm
for reputation management in p2p networks. In Proceedings of the 12th
International Conference on World Wide Web, WWW 03, pages 640—651, New
York, NY, USA, 2003. ACM.

S. D. Kamvar, M. T. Schlosser, and H. Garcia-Molina. The eigentrust algorithm
for reputation management in p2p networks. In Proceedings of the 12th
international conference on World Wide Web, pages 640-651. ACM, 2003.

T. H.-J. Kim, P. Gupta, J. Han, E. Owusu, J. Hong, A. Perrig, and D. Gao.
Oto: Online trust oracle for user-centric trust establishment. In Proceedings of
the 2012 ACM Conference on Computer and Communications Security, CCS
"12, pages 391-403, New York, NY, USA, 2012. ACM.

J. M. Kleinberg. Authoritative sources in a hyperlinked environment. J. ACM,
46(5):604-632, Sept. 1999.

U. Kuter and J. Golbeck. Sunny: A new algorithm for trust inference in
social networks using probabilistic confidence models. In Proceedings of the
22Nd National Conference on Artificial Intelligence - Volume 2, AAAT'07, pages
1377-1382. AAAT Press, 2007.

U. Kuter and J. Golbeck. Using probabilistic confidence models for trust
inference in web-based social networks. ACM Trans. Internet Technol.,
10(2):8:1-8:23, June 2010.

J. Li, R. Li, and J. Kato. Future trust management framework for mobile ad
hoc networks. Communications Magazine, IEEE, 46(4):108-114, April 2008.

Y. Li, B. Q. Zhao, and J. Lui. On modeling product advertisement in large-
scale online social networks. IEEE/ACM Transactions on Networking (TON),
20(5):1412-1425, 2012.

G. Liu, Q. Yang, H. Wang, X. Lin, and M. Wittie. Assessment of multi-
hop interpersonal trust in social networks by three-valued subjective logic. In
INFOCOM, 2014 Proceedings IEEE, pages 1698-1706, April 2014.

G. Liu, Q. Yang, H. Wang, S. Wu, and M. P. Wittie. Uncovering the mystery of
trust in an online social network. In 2015 IEEE Conference on Communications
and Network Security (CNS), pages 488-496, Sept 2015.

X. Liu and A. Datta. Modeling context aware dynamic trust using hidden
markov model. In AAAIL 2012.

P. Massa and P. Avesani. Controversial users demand local trust metrics: An
experimental study on epinions.com community. In Proceedings of the National
Conference on artificial Intelligence, volume 20, page 121, 2005.



[70]

[71]

[72]

[30]

[31]

111

P. Massa and P. Avesani. Trust-aware recommender systems. In Proceedings of
the 2007 ACM Conference on Recommender Systems, pages 17-24, 2007.

P. Massa and C. Hayes. Page-rerank: using trusted links to re-rank authority. In
Web Intelligence, 2005. Proceedings. The 2005 IEEE/WIC/ACM International
Conference on, pages 614—617, Sept 2005.

P. Massa, M. Salvetti, and D. Tomasoni. Bowling alone and trust decline in
social network sites. In Dependable, Autonomic and Secure Computing, 2009.
DASC °09. Fighth IEEE International Conference on, pages 658-663, Dec 20009.

D. H. McKnight, V. Choudhury, and C. Kacmar. Developing and validating
trust measures for e-commerce: An integrative typology. Information systems
research, 13(3):334-359, 2002.

A. Mohaisen, N. Hopper, and Y. Kim. Keep your friends close: Incorporating
trust into social network-based sybil defenses. In INFOCOM, 2011 Proceedings
IEEFE, pages 1943-1951, April 2011.

A. Mohaisen, H. Tran, A. Chandra, and Y. Kim. Trustworthy distributed
computing on social networks. Services Computing, IEEE Transactions on,

7(3):333-345, July 2014.

C. Moorman, G. Zaltman, and R. Deshpande. Relationships between providers
and users of market research: The dynamics of trust. Journal of marketing
research, 29(3):314-328, 1992.

F. Moyano, C. Fernandez-Gago, and J. Lopez. A framework for enabling trust
requirements in social cloud applications. Requirements Engineering, 18:321—
341, Nov 2013 2013.

L. Page, S. Brin, R. Motwani, and T. Winograd. The pagerank citation ranking:
Bringing order to the web. Technical report, Stanford InfoLab, 1999.

R. D. Pietro, F. Lombardi, F. Martinelli, and D. Sgandurra. Anticheetah:
Trustworthy computing in an outsourced (cheating) environment. Future
Generation Computer Systems, 48(0):28 — 38, 2015. Special Section: Business
and Industry Specific Cloud.

D. A. Powers and Y. Xie. Statistical methods for categorical data analysis.
Emerald Group Publishing, 2008.

P. Resnick, K. Kuwabara, R. Zeckhauser, and E. Friedman. Reputation systems.
Communications of the ACM, 43(12):45-48, 2000.



[82]

[83]

[85]

[36]

[87]

3]

[39]

[90]

112

M. Richardson, R. Agrawal, and P. Domingos. Trust management for the
semantic web. In D. Fensel, K. Sycara, and J. Mylopoulos, editors, The
Semantic Web - ISWC 2003, volume 2870 of Lecture Notes in Computer
Science, pages 351-368. Springer Berlin Heidelberg, 2003.

E. Riloff, J. Wiebe, and W. Phillips. Exploiting subjectivity classification to
improve information extraction. In Proceedings of the 20th National Conference
on Artificial Intelligence - Volume 3, AAAT’05, pages 1106-1111. AAAT Press,
2005.

D. M. Rousseau, S. B. Sitkin, R. S. Burt, and C. Camerer. Not so different
after all: A cross-discipline view of trust. Academy of management review,
23(3):393-404, 1998.

L. Shi, S. Yu, W. Lou, and Y. Hou. SybilShield: An agent-aided social
network-based sybil defense among multiple communities. In INFOCOM, 2013
Proceedings IEEFE, pages 1034-1042, 2013.

V. Stoyanov, C. Cardie, and J. Wiebe. Multi-perspective question answering
using the opqa corpus. In Proceedings of the Conference on Human Language
Technology and Empirical Methods in Natural Language Processing, HLT 05,
pages 923-930, Stroudsburg, PA, USA, 2005. Association for Computational
Linguistics.

E. Tan, L. Guo, S. Chen, X. Zhang, and Y. Zhao. Unik: Unsupervised
social network spam detection. In Proceedings of the 22Nd ACM International
Conference on Conference on Information €#38; Knowledge Management,

CIKM 13, pages 479-488, New York, NY, USA, 2013. ACM.

W. Teacy, M. Luck, A. Rogers, and N. R. Jennings. An efficient and versatile
approach to trust and reputation using hierarchical Bayesian modelling.
Artificial Intelligence, 193(0):149 — 185, 2012.

S. Tu. The dirichlet-multinomial and dirichlet-categorical models for bayesian
inference. Computer Science Division, UC Berkeley, Tech. Rep.[Online]. Avail-
able: http://www. cs. berkeley. edu/ stephentu/writeups/dirichlet-conjugate-
prior. pdf, 2014.

G. Vogiatzis, 1. MacGillivray, and M. Chli. A probabilistic model for
trust and reputation. In Proceedings of the 9th International Conference on
Autonomous Agents and Multiagent Systems: volume 1-Volume 1, pages 225—
232. International Foundation for Autonomous Agents and Multiagent Systems,
2010.



[91]

[92]

[95]

[96]

[99]

[100]

[101]

113

Y. Wang, C.-W. Hang, and M. P. Singh. A probabilistic approach for
maintaining trust based on evidence. J. Artif. Int. Res., 40(1):221-267, Jan.
2011.

Y. Wang and M. P. Singh. Trust representation and aggregation in a distributed
agent system. In Proceedings of the 21st National Conference on Artificial
Intelligence - Volume 2, AAAT 06, pages 1425-1430. AAAT Press, 2006.

Y. Wang and M. P. Singh. Formal trust model for multiagent systems. In
Proceedings of the 20th International Joint Conference on Artifical Intelligence,
IJCAT 07, pages 1551-1556, San Francisco, CA, USA, 2007. Morgan Kaufmann
Publishers Inc.

Y. Wang and M. P. Singh. Evidence-based trust: A mathematical model geared
for multiagent systems. ACM Trans. Auton. Adapt. Syst., 5(4):14:1-14:28, Nov.
2010.

W. Wei, F. Xu, C. Tan, and Q. Li. Sybildefender: Defend against sybil attacks
in large social networks. In INFOCOM, 2012 Proceedings IEEFE, pages 1951
1959, March 2012.

L. Xiong and L. Liu. Peertrust: supporting reputation-based trust for peer-
to-peer electronic communities. Knowledge and Data Engineering, IEEFE
Transactions on, 16(7):843-857, July 2004.

C. Yang, R. Harkreader, and G. Gu. Empirical evaluation and new design for
fighting evolving twitter spammers. Information Forensics and Security, IEEE
Transactions on, 8(8):1280-1293, Aug 2013.

D.-N. Yang, H.-J. Hung, W.-C. Lee, and W. Chen. Maximizing acceptance
probability for active friending in online social networks. In Proceedings of
the 19th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, KDD ’13, pages 713-721, New York, NY, USA, 2013. ACM.

H. Yu, P. Gibbons, M. Kaminsky, and F. Xiao. SybilLimit: A near-
optimal social network defense against sybil attacks. Networking, IEEE/ACM
Transactions on, 18(3):885-898, June 2010.

H. Yu, M. Kaminsky, P. B. Gibbons, and A. D. Flaxman. Sybilguard: Defending
against sybil attacks via social networks. IEEE/ACM Trans. Netw., 16(3):576—
589, June 2008.

J. Zhang, R. Zhang, Y. Zhang, and G. Yan. On the impact of social botnets for
spam distribution and digital-influence manipulation. In Communications and
Network Security (CNS), 2013 IEEE Conference on, pages 46-54, Oct 2013.



[102]

[103]

[104]

[105]

[106]

[107]

[108]

109]

114

W. Zhang, S. Das, and Y. Liu. A trust based framework for secure data
aggregation in wireless sensor networks. In Sensor and Ad Hoc Communications
and Networks, 2006. SECON °06. 2006 3rd Annual IEEE Communications
Society on, volume 1, pages 60—69, Sept 2006.

Y. Zhang, H. Chen, and Z. Wu. A social network-based trust model for the
semantic web. In L. Yang, H. Jin, J. Ma, and T. Ungerer, editors, Autonomic

and Trusted Computing, volume 4158 of Lecture Notes in Computer Science,
pages 183-192. Springer Berlin Heidelberg, 2006.

R. Zhou and K. Hwang. Powertrust: A robust and scalable reputation system
for trusted peer-to-peer computing. Parallel and Distributed Systems, IEEE
Transactions on, 18(4):460-473, April 2007.

Y. Zhou and L. Liu. Social influence based clustering of heterogeneous
information networks. In Proceedings of the 19th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD 13, pages 338—
346, 2013.

X. Zhu and S. Gauch. Incorporating quality metrics in centralized /distributed
information retrieval on the world wide web. In Proceedings of the 23rd
Annual International ACM SIGIR Conference on Research and Development in
Information Retrieval, SIGIR 00, pages 288-295, New York, NY, USA, 2000.
ACM.

C.-N. Ziegler and G. Lausen. Propagation models for trust and distrust in social
networks. Information Systems Frontiers, 7(4):337-358, 2005.

J. Zou and F. Fekri. A belief propagation approach for detecting shilling
attacks in collaborative filtering. In Proceedings of the 22Nd ACM International
Conference on Conference on Information €#38; Knowledge Management,
CIKM 13, pages 1837-1840, New York, NY, USA, 2013. ACM.

Y. Zuo, W.-c. Hu, and T. O’Keefe. Trust computing for social networking. In
Information Technology: New Generations, 2009. ITNG’09. Sixth International
Conference on, pages 1534-1539. IEEE, 2009.



	Titlepage
	Copyright

	Table of Contents
	List of Tables
	List of Figures
	List of Algorithms
	Abstract
	Chapter 1 — Introduction
	Problem Statements
	Limitations of Prior Art
	Proposed Approaches
	Key Contributions

	Chapter 2 — Related Work
	Definitions of Trust
	Trust Models in OSNs
	Applications of Trust in Online Systems

	Chapter 3 — Three-Valued Subjective Logic
	Preliminaries
	A Probabilistic Interpretation of Trust
	Opinion
	Discounting Operation
	Combining Operation
	Expected Belief of An Opinion

	Chapter 4 — The AssessTrust Algorithm
	Properties of Different Opinions
	Arbitrary Network Topology
	Differences between 3VSL and SL
	AssessTrust Algorithm
	Illustration of the AssessTrust Algorithm
	Time Complexity Analysis

	Chapter 5 — Massive Trust Assessment in OSNs
	Design of OpinionWalk
	Illustration of the OpinionWalk Algorithm
	Correctness of OpinionWalk
	Time Complexity Analysis
	Differences between AssessTrust and OpinionWalk Algorithms
	Distributed OpinionWalk Algorithm

	Chapter 6 — Evaluations
	Numerical Analysis
	Survey Experiments
	Experimental Evaluations

	Chapter 7 — Conclusion
	References Cited

