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ABSTRACT

Assessing trust in online social networks (OSNs) is critical for many applications
such as online marketing and network security. It is a challenging problem, however,
due to the difficulties of handling complex social network topologies and conducting
accurate assessment in these topologies. To address these challenges, we model trust
by proposing the three-valued subjective logic (3VSL) model. 3VSL properly models
the uncertainties that exist in trust, thus is able to compute trust in arbitrary graphs.
We theoretically prove the capability of 3VSL based on the Dirichlet-Categorical (DC)
distribution and its correctness in arbitrary OSN topologies. Based on the 3VSL
model, we further design the AssessTrust (AT) algorithm to accurately compute the
trust between any two users connected in an OSN.

AT is able to accurately conduct one-to-one trustworthiness, however, it is
inefficient in addressing the massive trust assessment (MTA) problem, i.e., computing
one-to-many trustworthiness in OSNs. MTA plays a vital role in OSNs, e.g.,
identifying trustworthy opinions in a crowdsourcing system. If the AssessTrust
algorithm is applied directly to solve the MTA problem, its time complexity is
exponential. To efficiently address MTA, we propose the OpinionWalk algorithm
that yields an polynomial-time complexity. OpinionWalk uses a matrix to represent
a social network’s topology and a vector to store the trustworthiness of all users in
the network. The vector is iteratively updated when the algorithm “walks” through
the entire network.

To validate the 3VSL model, we first conduct a numerical analysis. An online
survey system is then implemented to validate the correctness and accuracy of 3VSL
in the real world. Finally, we validate 3VSL against two real-world OSN datasets:
Advogato and Pretty Good Privacy (PGP). Experimental results indicate that 3VSL
can accurately model the trust between any pair of indirectly connected users in the
Advogato and PGP. To evaluate the performance of the AssessTrust and OpinionWalk
algorithms, we use the same datasets. Compared to the state-of-art solutions, e.g.,
EigenTrust and MoleTrust, OpinionWalk yields the same order of time complexity
and a higher accuracy in trust assessment.
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INTRODUCTION

Online social networks (OSNs) are among the most frequently visited places

on the Internet. OSNs help people not only to strengthen their social connections

with known friends but also to expand their social circles to friends of friends who

they may not know previously. Trust is the enabling factor behind user interactions in

OSNs and is crucial to almost all OSN applications. For example, in recommendation

and crowdsourcing systems, trust helps to identify trustworthy opinions [9, 108]. In

Twitter, spam undermines the trust among users by distributing false links [101], and

thus seriously impacts the user experience. In online marketing applications [81], trust

is used to identify trustworthy sellers. In a proactive friendship construction system

[98], trust enables the discovery of potential friendships. In the networking security

domain, trust is considered an important metric to detect malicious users [60,85,99,

100]. In social influence analysis, trust is a key factor in evaluating the impacts of

influential users [65,105]. Given the above-mentioned applications, one confounding

issue is to what degree can a user trust another user in an OSN. This dissertation

studies the fundamental issue of trust assessment in OSNs: given an OSN, how to

model and compute trust among users?

Trust is traditionally defined as either a rating-based reputation or the

probability that a user is benign. In an online marketing system, e.g. Ebay, users rate

each other based on their previous interactions, so the trust of a given user is derived

from aggregated ratings. In the network security domain, however, trust of a given

user is defined as the probability that this user will behave normally in the future.

Based on results from previous studies [23,26,73,84], we define trust as the probability
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that a trustee will behave as expected, from the perspective of a trustor. Here, both

trustor and trustee are regular users in an OSN where the trustor is interested in

knowing the trustworthiness of the trustee. This general definition of trust makes it

applicable for a wide range of applications. We also assume that trust in OSNs is

determined by objective evidence, i.e., cognition based trust [4, 21, 41, 43] formed in

the absence of interaction experiences, is not considered in the dissertation.

Problem Statements

This dissertation aims at addressing the fundamental issue of accurately

modeling and computing trust in OSNs, which requires us to solve the following

three technical problems.

• P1: How to model direct trust in online social networks?

• P2: How to compute indirect trust in online social networks?

• P3: How to conduct massive trust assessment in online social networks?

In the first problem, because the trustor and trustee have direct interactions

between each other, we call the trust relation between them direct trust. Based on

the assumption that trust is determined by objective evidences, this problem can be

formulated as follows.

P1: Given the interactions between a trustor and trustee, how does one model the

trustworthiness of the trustee, from the perspective of the trustor?

Solving the second problem will provide a method to calculate the trust between

two users who have no previous interactions. As the two users did not interact with

each other previously, their trust relation is called indirect trust. Here, we model a

trust social network as a directed graph G = (V,E) where a vertex u ∈ V represents
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a user, and an edge e(u, v) ∈ E denotes the trust relation from u to v. The weight

of an edge w(u, v) denotes how much u trusts v, which is usually referred to as the

direct trust from u to v. As such, the second problem is formulated as follows.

P2: Given a trust social network G = (V,E), ∀ u and v, s.t. e(u, v) 6∈ E and ∃ at

least one path from u to v, how does one compute u’s trustworthiness on v, i.e., how

should u trust a stranger v?

Massive trust assessment (MTA) allows a user to compute the direct/indirect

trustworthiness of all other users in an OSN. MTA is important in many applications.

For example, the LendingClub, Inc. [2] leverages the trust relations among users

in Facebook.com [3] to improve its online peer-to-peer lending service. It offers

a mechanism to evaluate the trustworthiness of all potential borrowers, from the

perspective of a lender. Clearly, the hinge of this application is to efficiently and

accurately compute the trustworthiness of all trustees, from the point of view of the

trustor. Therefore, the third problem can be formulated as follows.

P3: Given a trust social network G = (V,E), ∀ i and j, s.t. i, j ∈ V , ∃ at least

one path from i to j, how does one efficiently compute the trustworthiness of users

{j ∈ V, j 6= i}, from the perspective of user i?

Limitations of Prior Art

Existing trust models can be categorized as topology (or graph) based models

[13, 29, 69, 95, 99, 100], PageRank based models [7, 36, 58], probability based models

[20, 68, 90], and subjective logic based models [57]. None of them, however, are able

to accurately model and compute trust in OSNs.

Topology based models [13, 95, 99, 100] treat trust assessment as a community

detection problem and employ a random-walk method to identify users within the

same community. These users are considered as trustworthy to each other. The key
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limitation of these models is that the trustworthiness of users within a community

is indistinguishable [67], which limits the application of the models. Graph based

models [29, 47, 62, 69] assign a real number, ranging from 0 to 1, on each edge in

the trust social network, and employ graph searching algorithms to evaluate the

trustworthiness between any two users. The major limitation of these models is that

trust is represented as a single value, which omits the uncertainty existing in trust

and thus is inaccurate in assessing trust.

In addition to traditional graph searching algorithms, PageRank based models,

e.g., TrustRank and EigenTrust [36,58,59], apply the idea of PageRank to rank users

based on their trustworthiness. The trustworthiness of users is obtained by calculating

how likely a user can be reached from the trustor within the network. In these models,

the probability of reaching a user (from the trustor) is determined by the trust value

of the edge connecting to the user. The key limitation of these models is that they

mistakenly treat trust propagation in a social network as a random walk process,

which is not correct.

Probability based models [20, 68, 90] model trust as a probability distribution,

i.e., a trustor uses previous interactions with a trustee to construct a probabilistic

model to approximate the trustee’s future behavior. The major limitation of these

models is that they only focus on direct trust and cannot be applied to compute

indirect trust. Although the subjective logic [53, 57] model takes advantage of both

graph and probability based models, it can only handle simple network topology. Its

performance degrades drastically in a complex network topology that is common in

real-world online social networks.
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Proposed Approaches

To address problem P1, we propose the three-valued subjective logic (3VSL)

model that is able to accurately model trust based on users’ interactions within

an OSN. 3VSL is based on the subjective logic (SL) model [57]. However, it is

significantly different from SL. Instead of defining trust as a binary value in SL, 3VSL

treats it as a ternary value (i.e., belief, distrust, and uncertainty). In other words, a

user in an OSN could be trustworthy, not trustworthy, or uncertain. Therefore, the

probability of a user being trustworthy can be modeled by the Dirichlet-Categorical

(DC) distribution that is characterized by three parameters α, β and γ. Here, α

represents the number of positive interactions/evidence that supports the user is

trustworthy. For example, we observed that the user behaved as expected α times

in the past. β denotes the amount of negative evidence indicating the user is not

trustworthy. γ is the amount of neutral evidence that neither supports nor opposes

the user is trustworthy. The reason of introducing the uncertain state in 3VSL is

that it can accurately model the trust propagation process in an OSN. During trust

propagation, certain evidence measured by α+β is “distorted” and becomes uncertain

evidence, measured by γ. Distorted evidence is usual in trust assessment, however,

they are totally omitted in SL.

To address problem P2, we propose a trust computation algorithm, called

AssessTrust (AT), based on 3VSL model. AT decomposes the sub-graph between

the trustor and trustee as a parsing tree, which provides the correct order of applying

trust propagation and fusion to compute the indirect trust between the trustor and

trustee. Here, trust propagation and fusion are modeled by two basic operations:

discounting and combining operations. Leveraging the properties of 3VSL, AT is

proven to be able to accurately compute the trustworthiness between any two users
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connected within an OSN. Because 3VSL uses a probability distribution to describe

whether a user is trustworthy, AT offers more accurate trust assessment, compared

to the topology and graph based solutions. On the other hand, while AT makes use

of the social connections between the trustor and trustee to compute their trust, it

outperforms the probability based models that are only applicable for direct trust.

Experiment results indicate that AT achieves the best accuracy of trust assessment

in OSNs. Specifically, AT achieves the F1 scores of 0.7 and 0.75, in trust assessment,

using the Advogato and Pretty Good Privacy (PGP) datasets, respectively. AT can

also be used to rank users, based on their trustworthiness. We measure the accuracy

of the ranking results using the Kendall’s tau coefficients, compared to the ground

truth ranking. Experiment results show that AT offers 0.73 and 0.77 kendall’s tau

coefficients on average in Advogato and PGP, respectively.

Although AT is able to conduct accurate trust assessment between any two users

in an arbitrary social network, it is too slow to solve the problem P3. If AT is applied

to solve the MTA problem in OSNs, it needs to be executed O(n) times, if the network

contains n users. That will yield an O(nk+1) time complexity where k is the network’s

diameter that is usually a function of n. Therefore, it is critical to design an algorithm

to efficiently compute the trustworthiness of all users in the network, for any given

user. Based on the 3VSL and AT algorithm, we propose a polynomial-time algorithm,

called OpinionWalk, to efficiently address the MTA problem. In OpinionWalk, we use

an opinion matrix to represent a social network’s topology. Elements in the opinion

matrix are opinions that indicate the direct trust between users in an OSN. We design

a set of matrix operations, called opinion walk, to capture the trust propagation and

fusion with the network. Traditional multiplication and summation operations are

replaced by the discounting and combining operations defined in 3VSL [66]. We

prove the correctness of OpinionWalk and analyze its time complexity. We find
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that OpinionWalk perfectly implements the 3VSL model and offers a better time

complexity, O(n3), in addressing the MTA problem. Experiment results using the

Advogato and PGP datasets validate the correctness of OpinionWalk.

Key Contributions

In this dissertation, we make the following key contributions. First, we propose

3VSL to model the direct and/or indirect trust between two users connected within

an OSN. 3VSL differs from prior trust models in that it considers both trust relations

and network topologies, and thus is applicable in large-scale OSNs. Second, 3VSL

extends SL by introducing a neutral state, distinguishing distorting opinions from

original opinions, and redesigning the discounting and combining operations. Third,

based on 3VSL, we propose a trust assessment algorithm AT to accurately compute

the trust between any two users in an OSN. Fourth, we propose another algorithm,

called OpinionWalk, to address the massive trust assessment problem. Fifth, the

correctness of OpinionWalk is proven and its time complexity is analyzed. Sixth, to

validate the 3VSL model and associated algorithms, we conduct intensive experiments

including numerical analysis, online surveys and validation against two real-world

datasets, Advogato and PGP [72].

The rest of this dissertation is organized as follows. In chapter 2, the related

work is introduced. In chapter 3, we introduce the 3VSL model and define the trust

propagation and fusion operations. In chapter 4, we differentiate discounting opinions

from original opinions and prove that 3VSL can handle arbitrary network topologies.

Based on the model, we further propose the AssessTrust algorithm. In chapter 5,

we introduce the OpinionWalk algorithm and prove its correctness and analyze its

time complexity. In chapter 6, we validate 3VSL through numerical and experimental

evaluations. Furthermore, we evaluate the performance of AT and OpinionWalk using
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two real-world datasets. In chapter 7, we conclude the dissertation and present a plan

for future work.
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RELATED WORK

Definitions of Trust

Trust has been widely studied in psychology, sociology and management

domains. A widely accepted definition of trust was summarized by Rousseau in [84],

based on a cross-disciplinary literature review: “Trust is a psychological state

comprising the intention to accept vulnerability based upon positive expectations

of the intentions or behaviors of another.” Despite the various definitions of

trust [23, 26, 73], they are similar to Rousseau’s, i.e., it can be concluded that trust

is composed of two parts: expectation and vulnerability. While the former indicates

the probability that the trustee will behave as expected, the latter shows the trustor’s

willingness of relying on the trustee. Specifically, the word vulnerability emphasizes

the trustor’s concerns about the uncertainty [17,76] of the trustee’s future behaviors.

The definition of trust in this dissertation is inspired by the above studies, and we

define trust as the probability that the trustee will behave as expected, from the

perspective of the trustor.

Although trust is commonly confused with reputation, they are two different

concepts. Previous works [17,24,46] have identified the positive correlations between

reputation and trust. However, reputation is not equivalent to trust. According

to the definition from Merriam-Webster dictionary and Wikipedia, reputation is the

common opinion that people have about someone or something, i.e., the overall quality

or character as seen or judged by people in general. In essence, reputation comes from

the public and general opinion. However, trust comes from individual opinions, i.e.,

from a trustor to a trustee with emphasis on personal interactions. On the other hand,

reputation is a summary of past events while trust is the intention and expectation

of the future.
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Trust Models in OSNs

Trust is built on the social ties between users and how to model trust in online

social networks has attracted more attention in recent OSN studies. Several works

exist regarding to modeling trust in social networks. In this section, we briefly

introduce these works.

Topology based Trust Model

Topology based trust models treat a trust social network as a graph, where an

edge represents the trust relationship between two neighboring nodes. The advantage

of these methods is that they leverage random walk to evaluate trust, and thus can

be easily applied in large-scale OSNs.

By analyzing network topologies, the works in [13,95,99,100] are able to identify

untrustworthy nodes in an OSN. Their fundamental idea is to identify untrustworthy

nodes by distinguishing untrustworthy regions from trustworthy regions in the

network. Specifically, they play random walk from a trustor and evaluate the

probability of reaching a trustee. A low probability indicates that the trustee is

not in the trustworthy region, and vice versa. Later on, people began to model

indirect trust by considering the trust values between users. In [19], a trust relation

between two users is treated as a probabilistic value. All users and their associated

trust relations compose a graph. Then, the indirect trust inference problem becomes

a network reachability problem. In [109], a trust network is considered a resistor

network where the resistance of each edge is derived from the trustworthiness of the

edge. In [31, 103], given a trust network, a depth-first search algorithm is employed

to compute the trust between any two users.
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PageRank based Trust Model

PageRank based trust models employ the PageRank algorithm [78] to compute

the relative trustworthiness of interested users. For example, the EigenTrust

algorithm, proposed in a peer-to-peer system [58], starts from a peer and searches

for trustworthy peers based on several rules. It moves from peer to peer with a

probability that is proportional to the other peer’s trust score, i.e., higher the trust

score, higher the moving probability. In this way, EigenTrust will more likely reach

trustworthy peers. Later on, the relative trust of web pages is investigated in [36] to

identify spam pages. The TrustRank algorithm proposed in [36] again employs the

PageRank algorithm on the network to rank the trustworthiness of web pages. Both

EigenTrust and TrustRank can be viewed as a variant of the PageRank algorithm

that is a well known solution to assigning importance scores to pages on the Internet.

These algorithms, however, only generate trust rankings, instead of absolute trust

values of peers/pages.

Probability based Trust Model

Probability based trust models treat direct trust as probability distributions,

where a trustor uses past interactions and observations of a trustee to construct a

probabilistic model approximating the trustee’s future behavior. The advantage of

these models is that trust can be accurately computed based on a wide variety of

statistical and probability techniques, including Hidden Markov Chain, Maximum

Likelihood Estimation, etc.

Many previous efforts were devoted to the study of modeling direct trust

between OSN users in a computational way [14,20,68,88,90]. For example, direct trust

is modeled as a discrete multinomial distribution in [22]. Therefore, trust assessment

becomes a problem of likelihood estimation, regarding to the distribution parameters
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based on given evidence. If trust is modeled as a discrete binomial distribution (i.e., a

user is either trustworthy or not), the likelihood estimation can be performed on the

Beta distribution [57]. If trust is modeled as a continuous random variable, Gaussian

distribution can be used [14,88] to model non-discrete cases where a possible outcome

is a continuous value.

The binomial distribution can be further extended to a multinomial distribution

to handle the case of multiple discrete random variables [22]. Based on the multi-

nomial distribution (including the binomial distribution), Bayesian analysis [14, 88]

and Hidden Markov Model (HMM) [20, 68, 90] can be applied in trust assessment.

While the former integrates evidence from various sources, e.g., reputation scores and

preference similarity, the latter handles the dynamic in trust.

Subjective Logic based Trust Model

To understand trust in online social networks, Jøsang proposed the subjective

logic model in [52,56,57]. Considering a binary trust value, subjective logic assumes

the probability of a user being trustworthy follows the Beta distribution. The

Beta distribution here can be computed from the numbers of positive and negative

evidence, respectively. The advantage of using subjective logic is that trust can be

more realistically modeled by considering the uncertainty in a person’s judgment

about trust. Such uncertainty exists because it is difficult for a person to determine

with absolute certainty whether a person is trustworthy or not. In [37,38,63,91,92,94],

the subjective logic model is further refined to improve its accuracy in trust

assessment.

Subjective logic treats trust as opinions and introduces an algebra for opinion

operations, e.g., discounting and consensus operations for trust propagation and

fusion, respectively. The consensus operation provides a method for combining
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possibly conflicting beliefs/opinions to generate a consensus opinion [49]. The

consensus opinion reflects all opinions being combined in a fair and equal way. The

discounting operation is the operation by which a new trust relationship can be

derived from pre-existing trust relationships [54]. For example, if Alice trusts Bob,

and Bob trusts Claire, then by trust propagation, Alice will also trust Claire. With

the discounting and consensus operations, it is possible to compute the indirect trust

between two connected users in OSNs.

Besides the two basic discounting and consensus operations, Jøsang further

defined the multiplication, co-multiplication, division, and co-division of opinions

[55]. Although these operations are irrelevant in modeling trust propagation and

fusion, they allow an opinion to be multiplied or divided by another opinion. Later

on, subjective logic is extended to support conditional inference [51]. A conditional

inference is usually in the form of “IF x THEN y” where x denotes the antecedent

and y the consequent proposition. Here, the antecedent x is modeled by subjective

logic so that it is not a binary value, true or false. Instead, it is a vector representing

the probability that this antecedent is true. Overall, subjective logic was proven

to be compatible with binary logic, probability calculus, and classical probabilistic

logic [50].

Applications of Trust in Online Systems

Along with the rapid development of the Internet and online services, trust

has been used in many applications for either improving users’ quality of experience

(QoE) or preventing the disturbance of malicious users. In this section, we briefly

introduce these applications.
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Trust in Cloud Computing

Recently, trust was introduced in the concept of social cloud. In [75], Mohaisen

et al. employ trust as a metric to identify good workers for an outsourcer through

her social network. In [77], Moyano et al. proposed a framework to employ trust and

reputation for cloud provider selection. In [79], Pietro et al. proposed a multi-round

approach, called AntiCheetah, to dynamically assign tasks to cloud nodes, accounting

for their trustworthiness.

Trust in P2P Network and Semantic Web

Trust analysis was first implemented in peer-to-peer (P2P) networks [58,96,104].

In P2P networks, trust is used to evaluate the trustworthiness of a particular resource

owner, and thereby identify malicious sources. Trust analysis was also applied to

semantic webs [8, 30, 82]. The purpose of analyzing trust in semantic webs is to

study the trustworthiness of data with efficient knowledge processing mechanisms.

For example, the trustworthiness of web hyperlinks are studied in [36, 61, 71]. Trust

analysis is then applied to filter untrustworthy contents in [10,12,15,16,18,28]. Finally,

trust was used to evaluate the quality of contents on semantic webs in [27,32, 71, 83,

86,106].

Trust in Cyber-Physical Systems

Trust analysis is also introduced in cyber-physical systems (CPS), e.g., wireless

sensor networks and vehicular networks [40]. For example, a trust based framework is

proposed to secure data aggregation in wireless sensor networks [102], which evaluates

the trustworthiness of each sensor node by the Kullback-Leibler (KL) distance to

identify the compromised nodes through an unsupervised learning technique. In [64],

trust analysis is employed to identify malicious and selfish nodes in a mobile ad
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hoc network. In addition, Xiaoyan et al. propose a new trust architecture, called

situation-aware trust (SAT), to address several important trust issues in vehicular

networks, which are essential to overcome the weaknesses of current vehicular network

security and trust models [40].

Trust in Spam Detection and Sybil Defense

Another important domain in which trust analysis is widely applied is Sybil

defense and spam detection [5,25,42,74,87,95]. The goal of these works is to identify

forged multiple identities and spam information in OSNs. The basic idea of [5, 95] is

to employ random walk to rank the neighbors in a given OSN from a seed node, and

extract a trust community composed of high ranking nodes. Then, the users outside

the trust community will be considered as not trustworthy, i.e., potential Sybil nodes.

In [87], Tan et al. integrated traditional Sybil defense techniques with the analysis of

user-link graphs. In [74], Mohaisen et al. proposed a derivation of the random walk

algorithm, which employs biased random mechanism, to account for trust and other

social ties. In [97], besides graph based features, Yang et al. introduced some other

features to identify spammers. In addition, in [25, 42], spam detection approaches

based on user similarity and content analysis are studied.

Trust in Recommendation and Crowdsourcing Systems

In addition to Sybil defense in OSNs, trust analysis is also useful in recom-

mendation systems [6, 9, 37, 45, 70, 108]. For example, in [108], Zou et al. proposed a

belief propagation algorithm to identify untrustworthy recommendations generated by

spam users. In [9], Basu et al. proposed a privacy preserving trusted social feedback

scheme to help users obtain opinions from friends and experts whom they trust.

In [6], Andersen et al. proposed a trust-based recommendation system that generates
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personalized recommendations by aggregating the opinions from other users. In

addition, five axioms about trust in a recommendation system are studied in [6].
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THREE-VALUED SUBJECTIVE LOGIC

In this chapter, we propose the three-valued subjective logic (3VSL) model to

model the trust between users in OSNs. Designing this model is a challenging task

because trust propagation in OSNs is not well understood, although it is widely used

in many applications. We address this challenge by modeling trust as a probabilistic

distribution over three different states, i.e., belief, distrust, and uncertainty. By

looking at how the states of trust change during trust propagation, we redesign

the trust discounting operation in subjective logic [57]. In 3VSL, the parameters

controlling the probabilistic distribution are determined by the amount of evidence

that support each state. The evidence is collected from the interactions between the

trustor and trustee. To model trust fusion, we further design the combining operation.

Together with the discounting operation, we are able to model and compute the trust

between two users that are directly or indirectly connected to each other.

Preliminaries

To better understand 3VSL, we first briefly introduce the subjective logic [57].

Considering two users A and X, A’s opinion about the trustworthiness of X can be

described by an opinion vector :

ωAX = 〈αAX , βAX , 2〉 |aAX ,

where αAX , βAX , 2 denotes the amount of evidence that supports user X is

trustworthy, not trustworthy, and uncertain, respectively. Note that the amount

of uncertain evidence in an opinion in SL is always 2. aAX is called base rate and

formed from an existing impression without solid evidence, e.g. prejudice, preference,
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or general opinion obtained from hearsay. For example, if A always distrusts/trusts

the persons from a certain group where X belongs to, then aAX will be smaller/greater

than 0.5.

Based on the Beta distribution, two opinions ω1 = 〈α1, β1, 2〉 |a1 and ω2 =

〈α2, β2, 2〉 |a2 can be combined to form a new opinion ω12 = 〈α12, β12, 2〉 |a12 , where

α12, β12 and a12 are calculated as follows.


α12 = α1 + α2

β12 = β1 + β2

a12 =
a1 + a2

2

.

Let A and B denote two persons where ω1 = 〈α1, β1, 2〉 |a1 is A’s opinion about

B’s trustworthiness. Assume C is another person where ω2 = 〈α2, β2, 2〉 |a2 is B’s

opinion about C. Then, subjective logic applies the discounting operation to compute

A’s opinion about C’s trustworthiness ωAC = 〈α12, β12, 2〉 |a12 , where α12, β12 and a12

is calculated as follows. 
α12 =

α1α2

β2 + α2 + 2
· 2

κ

β12 =
α1β2

β2 + α2 + 2
· 2

κ

a12 = a2

,

where

κ = 1− α1α2

β2 + α2 + 2
− α1β2

β2 + α2 + 2
.

A Probabilistic Interpretation of Trust

Trust in 3VSL is defined as the probability that a user will behave as expected

in the future. 3VSL models a user’s future behavior as a random variable x that takes
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on one of three possible outcomes {1, 2, 3}, i.e., x = 1, x = 2 and x = 3 indicate the

user will behave as expected, not as expected, or in an uncertain way, respectively.

The third state, uncertain state, is introduced in 3VSL to capture the uncertainty

that exists in trust assessment. Therefore, the probability density function (pdf) of

x follows the categorical distribution:

f(x|p) =
3∏
i=1

p
[x=i]
i ,

where p = (p1, p2, p3) and p1 + p2 + p3 = 1, pi represents the probability of seeing

event i. The Iverson bracket [x = i] evaluates to 1 if x = i, and 0 otherwise.

If the value tuple p is available, the pdf of x will be known and the probability

of x = i can be computed. Unfortunately, p is an unknown parameter and needs

to be estimated based on the observations of x. We treat p as a group of random

variables that follows the Dirichlet distribution:

p ∼ Dir(α, β, γ),

where α, β, γ are hyper-parameters that control the shape of the Dirichlet distribution.

We assume p follows Dirichlet distribution mainly because it is a conjugate prior

of categorical distribution. In addition, because Dirichlet distribution belongs to a

family of continuous multivariate probability distributions, we can have various pdfs

of f(p) by changing the values of α, β, γ:

f(p) = Cp1
α−1p2

β−1p3
γ−1, (3.1)

where C is a normalizing factor ensuring p1 + p2 + p3 = 1. In this way, we assume

p ∼ Dir(α, β, γ) to model the uncertainty in estimating p.
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With the mathematical model in place, parameter p can be estimated based on

the observations of x, according to the Bayesian inference. Given a set of independent

observations of x, denoted by D = {x1, x2, · · · , xn} where xj ∈ {1, 2, 3} and j =

1, 2, · · · , n, we want to know how likely D is observed. This probability can be

computed as

P (D|p) =
n∏
j=1

p
[xj=1]
1 p

[xj=2]
2 p

[xj=3]
3 .

Let ci denote the number of observations where x = i, we know
∑
ci = n. Then, the

above equation becomes pc11 p
c2
2 p

c3
3 . Based on Bayesian inference, given observed data

D, the posterior pdf of p can be estimated from

f(p|D) =
P (D|p)f(p)

P (D)
,

where P (D|p) is the likelihood function pc11 p
c2
2 p

c3
3 , and f(p) the prior pdf of p. P (D)

is the probability that D occurs, which is independent of p. So we have

f(p|D) ∝ pc11 p
c2
2 p

c3
3 × pα−1

1 pβ−1
2 pγ−1

3 .

That means the posterior pdf f(p|D) can be modeld by another Dirichlet distribution

Dir(α+c1, β+c2, γ+c3). With the posterior pdf of p, we have the following predicative

model for x:

f(x|D) =

∫
f(x|p)f(p|D)dp. (3.2)

This function is in fact a composition of Categorical (f(x|p)) and Dirichlet (f(p|D))

distributions, so it is called Dirichlet-Categorical (DC) distribution [89].
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Opinion

In the previous section, we introduce how to model trust as a DC distribution.

Because the shape of a DC distribution is determined by three parameters, we can

instead use these parameters to form a vector to represent trust. This vector is called

an opinion that expresses a trustor’s opinion about a trustee’s trustworthiness.

For a given DC distribution, the only undetermined parameters are α, β, γ. We

set α = β = γ = 1 in default, if there is no prior knowledge about D. In this case,

the Dirichlet distribution becomes an uniform distribution, i.e., p1 = p2 = p3 = 1/3.

Assuming p initially follows the uniform distribution is reasonable because we make

no observation of x, and the best choice is to believe that x could be 1, 2, 3 with equal

probability. As more observations of x are made, the pdf of p approaches to the true

one.

From Eq. 3.2, we can predict the probability of x = i where i = 1, 2, 3, i.e.,

whether a user will behave as expected, not as expected, or in an uncertain way.

In other words, we can use Eq. 3.2 to compute the trustworthiness of a user. From

Eq. 3.2, we can obtain the expectation of the probability that a user will behave as

expected:

P (x = 1|D)

=

∫
P (x = 1|p1, p2, p3)P (p1, p2, p3|c1, c2, c3)d(p1, p2, p3)

=
Γ(c1 + c2 + c3)

Γ(c1)Γ(c2)Γ(c3)

∫
pc1−1

1 pc2−1
2 pc3−1

3

=
Γ(c1 + c2 + c3)Γ(c1 + 1)Γ(c2)Γ(c3)

Γ(c1)Γ(c2)Γ(c3)Γ(c1 + c2 + c3 + 1)

=
c1

c1 + c2 + c3

, (3.3)
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where Γ(n) = (n − 1)! is the Gamma function. Similarly, the probabilities that the

user will behave not as expected or uncertain are

P (x = 2|D) =
c2

c1 + c2 + c3

and

P (x = 3|D) =
c3

c1 + c2 + c3

.

If the hyper-parameters α, β, γ equal to 1, the trustworthiness of a user is

only determined by c1, c2, c3, i.e., the numbers of observations that support the

user will behave as expected, not as expected, and uncertain. We call these

observations positive, negative, and uncertain evidence. In other words, a trustee

X’s trustworthiness to trustor A can be modeled by the interaction evidence between

them:

ωAX = 〈αAX , βAX , γAX〉 |aAX .

Here, ωAX denotes A’s opinion on X’s trustworthiness, and αAX , βAX , γAX refers

to the amount of observed positive, negative and uncertain evidence, based on

A’s interactions with X. We further name them belief, distrust and uncertainty

parameters in the rest of this dissertation. The subscripts of αAX , βAX , γAX

differentiate them from the prior α, β, γ, i.e., the former represents observed evidence

while the latter is set as 1.

Discounting Operation

Because trust is modeled by DC distribution, in this section, we will model

the trust propagation by defining the operation between two DC distributions (or

opinions). Trust propagation in OSNs was intensively studied in the past decade. It
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Figure 3.1: Examples of series topologies

can be illustrated in a series topology, e.g., Fig. 3.1(a), where two edges are connected

in series if they are incident to a vertex of degree 2. In Fig. 3.1(a), the nodes are

users in a trust social network. The directed edges indicate the opinions between

them. Trust propagation means that if user Ai−1 trusts Ai and Ai trusts Ai+1, then

Ai−1 will trust Ai+1, even if Ai−1 did not interact with Ai+1 before.

Let’s take the example shown in Fig. 3.1(b) to define the discounting operation

in 3VSL. Based on existing research works about trust propagation [11, 34, 35, 107],

it is commonly agreed that the following assumptions hold:

• A1: If A trusts B, B trusts C, then A trusts C.

• A2: If A trusts B, B does not trust C, then A does not trust C.

• A3: If A trusts B, B is uncertain about the trustworthiness of C, then A is

uncertain about C’s trustworthiness.

• A4: If A does not trust B, or A is uncertain about the trustworthiness of B, A

is uncertain about the trustworthiness of C.

It is worth mentioning that trust propagation refers to an opinion being transferred

from a trustful user to another user. In other words, if A trusts B, then B’s opinion
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of C will be transferred and becomes A’s opinion of C. Otherwise, if A does not trust

or is uncertain about B, then A is uncertain about C as B’s opinion on C cannot be

trusted. According to the 3VSL model, we model A’s opinion of B as

ωAB = 〈αAB, βAB, γAB〉 ,

and B’s opinion on C as

ωBC = 〈αBC , βBC , γBC〉 ,

where {αAB, βAB, γAB} = DAB and {αBC , βBC , γBC} = DBC represent the obser-

vations made by A and B (on B and C), respectively. In this way, the expected

probability that C will behave as A’s expectation can be computed from

∫∫
(x = 1|pAB)f(pAB|DAB)×

f(x = 1|pBC)f(pBC |DBC)d(pAB)d(pBC).

(3.4)

The intuition behind Eq. 3.4 can be explained as follows. A trusts C if and

only if A trusts B and B trusts C, which is the assumption A1 we made based on the

findings from [11, 34, 107]. In other words, the probability that C will behave as A

expects is equal to the probability that C will behave as B’s expects, if A trusts B.

In the above equation, f(x = 1|pAB)f(pAB|DAB) gives the probability that A trusts

B, and f(x = 1|pBC)f(pBC |DBC)d(pAB) denotes the probability that B trusts C.
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Because the two events, i.e., A trusts B and B trusts C, are independent with

each other, Eq. 3.4 can be rewritten as

∫
f(x = 1|pAB)f(pAB|DAB)d(pAB)×∫
f(x = 1|pBC)f(pBC |DBC)d(pBC). (3.5)

The two integrations in the above equation are used to compute the expected

probabilities that A trusts B and B trusts C, respectively. According to Eq. 3.3,

we know the expected probabilities are

∫
f(x = 1|pAB)f(pAB|DAB)d(pAB)

=
αAB

αAB + βAB + γAB
,∫

f(x = 1|pBC)f(pBC |DBC)d(pBC)

=
αBC

αBC + βBC + γBC
. (3.6)

Inserting these two values into Eq. 3.5, we have the probability that C will behave as

A expects:

αABαBC
(αAB + βAB + γAB)(αBC + βBC + γBC)

. (3.7)

According to assumption A2, the probability that C will not behave as A

expects can be computed from

∫∫
f(x = 1|pAB)f(pAB|DAB)×

f(x = 2|pBC)f(pBC |DBC)d(pAB)d(pBC).

(3.8)
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This equation makes sense because A does not trust C if and only if he trusts B and

B does not trust C. Because the events that A trusts B and B does not trust C are

independent, we have the expected probability that A does not trust C as

αABβBC
(αAB + βAB + γAB)(αBC + βBC + γBC)

. (3.9)

Finally, the expected probability that A is uncertain about C’s trustworthiness

can be derived from assumptions A3 and A4:

∫∫
f(x = 1|pAB)f(pAB|DAB)×

f(x = 3|pBC)f(pBC |DBC)+

f(x = 2|pAB)f(pAB|DAB) + f(x = 3|pAB)f(pAB|DAB)

d(pAB)d(pBC).

The expected probability can then be computed as

αABγBC + (βAB + γAB)(αBC + βBC + γBC)

(αAB + βAB + γAB)(αBC + βBC + γBC)
. (3.10)

Note that the summation of Eqs. 3.4, 3.8 and 3.10 equals 1.

Because Eqs. 3.7, 3.9 and 3.10 give the current estimates of probabilities that

C will behave as expected, not as expected, or in a uncertain way, respectively, we

could use the following categorical distribution to model C’s future behavior (from

A’s perspective).

f(x|pAC) =
3∏
i=1

p
[x=i]
i , (3.11)
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where pAC = (p1, p2, p3) and

p1 =
αABαBC

(αAB + βAB + γAB)(αBC + βBC + γBC)
,

p2 =
αABβBC

(αAB + βAB + γAB)(αBC + βBC + γBC)
,

p3 =
(βAB + γAB)(αBC + βBC + γBC) + αABγBC

(αAB + βAB + γAB)(αBC + βBC + γBC)
.

(3.12)

Based on our calculation, we know the categorical distribution is derived from B’s

opinion on C. Let’s assume that B makes a set of observations x = {x1, x2, · · · , xn}

on C’s behavior. According to our definitions, we know αBC , βBC , γBC equal to

the number of observations where x = 1, x = 2, x = 3, respectively. Clearly, the

observations B made about C do not reflect A’s opinion on C because 〈αBC , βBC , γBC〉

represents only B’s opinion on C. Here, the question is if A were asked to make the

n observations, how many of them will be positive, negative, and uncertain. In other

words, A needs to re-categorize B’s observations on C such that the updated evidence

supports A’s current opinion on C.

For each xj ∈ x where j = 1, 2, · · · , n, we know xj is observed given the

underlying categorical distribution in Eq. 3.11. Therefore, we know x follows

the multinomial distribution with parameters (n,pAC). From the multinomial

distribution, we can compute the probability of any means of re-categorizing the

observation set x. The maximum probability corresponds to the most-likely way of

re-categorizing x. Therefore, we know the following re-categorization occurs with the
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highest probability.

αAC = p1(αBC + βBC + γBC)

=
αABαBC

(αAB + βAB + γAB)
,

βAC = p2(αBC + βBC + γBC)

=
αABβBC

(αAB + βAB + γAB)
,

γAC = p3(αBC + βBC + γBC),

=
(βAB + γAB)(αBC + βBC + γBC) + αABγBC

(αAB + βAB + γAB)
.

(3.13)

Therefore, we use ωAC = 〈αAC , βAC , γAC〉 to represent A’s opinion about C’s

trustworthiness. It is worth mentioning that opinion ωAC is generated from distorting

the positive/negative evidence in ωBC and saving them as uncertain evidence, i.e.,

αAC + βAC + γAC = αBC + βBC + γBC . (3.14)

In other words, the total amount of evidence observed does not change during

the discounting process. Based on the previous analysis, we formally define the

discounting operation in 3VSL as follows.

Definition 1 (Discounting Operation). Given three users A, B and C, if ωAB =

〈αAB, βAB, γAB〉 is A’s opinion on B’s trustworthiness, and ωBC = 〈αBC , βBC , γBC〉 is

B’s opinion on C’s trustworthiness; the discounting operation ∆(ωAB, ωBC) computes

A’s opinion on C as

ωAC = ∆(ωAB, ωBC) = 〈αAC , βAC , γAC〉 ,
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where

αAC =
αABαBC

(αAB + βAB + γAB)
,

βAC =
αABβBC

(αAB + βAB + γAB)
,

γAC =
(βAB + γAB)(αBC + βBC + γBC) + αABγBC

(αAB + βAB + γAB)
.

(3.15)

Intuitively, the discounting operation can be understood as certain evidence

from ωBC is distorted by ωAB and transferred into the uncertainty space of ωBC .

Recall that the total amount of evidence of opinion ∆(ωAB, ωBC) is the same as ωBC ’s,

we conclude the resulting opinion of a discounting operation shares exactly the same

evidence space as the original opinion. It is worth mentioning that the discounting

operation yields two properties. The first one is called the decay property:

Corollary 3.0.1. Decay Property: Given two opinions ωAB and ωBC, ∆(ωAB, ωBC)

operation yields αAC ≤ αBC, βAC ≤ βBC and γAC > γBC.

Proof. Since
αAB

(αAB + βAB + γAB)
≤ 1, according to Eq 3.15, we have αAC ≤ αBC as

well as βAC ≤ βBC . Hence, −αAC − βAC ≥ −βAC − βAC . According to Eq. 3.14, so

we have γAC ≥ γBC .

In other words, by applying a discounting operation, the uncertainty parameter

of the resulting opinion increases while the belief and distrust parameters decrease.

This property implies that the more trust propagates, the more uncertain the resulting

opinion. The second one is called associative property:

Corollary 3.0.2. Associative Property: Given three opinions ωAB, ωBC and ωCD,

∆(∆(ωAB, ωBC), ωCD) ≡ ∆(ωAB,∆(ωBC , ωCD)).
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Figure 3.2: Examples of parallel topologies

Proof. Simply based on Eq 3.15.

Discounting operation is, however, not commutative, i.e., ∆(ωAB, ωBC) 6=

∆(ωBC , ωAB). Given a series topology where opinions are ordered as ωA1A2 , ωA2,A3 , · · · ,

ωAn−1An , the final opinion can be calculated as ∆(∆(∆(ωA1A2 , ωA2A3), · · · ), ωAn−1An).

As the discounting operation is associative, it is simplified as ∆(ωA1A2 , ωA2A3 , · · ·ωAn−1An).

Combining Operation

In this section, we will introduce the combining operation in 3VSL. According

to previous works [11,34,107], several trust opinions can be fused into a consensus one

by aggregating the opinions from different sources. Trust fusion can be illustrated by

a parallel topology, e.g., Fig. 3.2(a), where two edges are connected in parallel if they

join the same pair of distinct vertices. In Fig. 3.2(a), nodes A, B are users in a trust

social network. The edges from A to B denote A’s opinions about B’s trustworthiness

that are formed from different sources.

Let’s use the simplest parallel topology shown in Fig. 3.2(b) to explain the

combining operation. Let

ωA1B1 = 〈αA1B1 , βA1B1 , γA1B1〉
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and

ωA2B2 = 〈αA2B2 , βA2B2 , γA2B2〉

be A’s opinions of B from two different sources. Here, we use {αA1B1 , βA1B1 , γA1B1} =

DA1B1 and {αA2B2 , βA2B2 , γA2B2} = DA2B2 to represent the observations made by A

on B from two different sources.

According to the definition of an opinion, the expected probability that B will

behave as A expects is computed from the following DC distribution.

∫
f(x = 1|pAB)f(pAB|DA1B1 ,DA2B2)d(pAB), (3.16)

where DA1B1 and DA2B2 denote the aggregated observations from two sources.

The intuition of Eq. 3.16 can be explained as follows. A first infers the

parameters pAB by aggregating the observations DA1B1 and DA2B2 . Therefore, the

posterior pdf of pAB becomes

f(pAB|DA1B1 ,DA2B2). (3.17)

Based on the inferred parameters pAB, the probability that B will behave as A expects

can be computed from f(x = 1|pAB). By considering all possible values of pAB, we

can obtain Eq. 3.16.

We now derive the analytic form of Eq. 3.16. The intuition of trust fusion can be

explained as follows. A first forms his opinion on B’s trustworthiness from observation

DA1B1 . As such, the pdf of parameters pAB can be computed. Then, A adjusts its

estimate about pAB based on a new set of evidence DA2B2 . Therefore, Eq. 3.17 can

be regarded as the distribution of pAB based on (1) the posterior evidence in DA2B2

and (2) the prior parameters pA1B1 estimated from DA1B1 . According to Bayes’ rule,
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it can be expressed as follows.

f(pAB|DA1B1 ,DA2B2)

=
f(DA2B2|pA1B1)f(pA1B1)

f(DA2B2)

=
f(DA2B2|pA1B1)f(pA1B1)∫

f(DA2B2|pA1B1)f(pA1B1)dpA1B1

. (3.18)

In the above equation, parameters pA1B1 are derived from DA1B1 that follow the

Dirichlet distribution, so its pdf f(pA1B1) can be computed as follows.

f(pA1B1)

=
Γ(αA1B1 + βA1B1 + γA1B1)

Γ(αA1B1)Γ(βA1B1)Γ(γA1B1)
×

(p1)αA1B1
−1(p2)βA1B1

−1(p3)γA1B1
−1.

(3.19)

On the other hand, because DA2B2 follows the multinomial distribution derived

from pA1B1 , its pdf f(DA2B2|pA1B1) can be expressed as

f(DA2B2|pA1B1)

=
Γ(αA2B2 + βA2B2 + γA2B2 + 1)

Γ(αA2B2 + 1)Γ(βA2B2 + 1)Γ(γA2B2 + 1)
×

(p1)αA2B2 (p2)βA2B2 (p3)γA2B2 .

(3.20)
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Substituting f(pA1B1) and f(DA2B2|pA1B1) in Eq. 3.18 by Eq. 3.19 and Eq. 3.20, we

obtain the analytic form of Eq. 3.18.

f(pAB|DA1B1 ,DA2B2)

=
Γ(αAB + βAB + γAB)

Γ(αAB)Γ(βAB)Γ(γAB)
×

(p1)αAB−1(p2)βAB−1(p3)γAB−1,

(3.21)

where

αAB = αA1B1
+ αA2B2

,

βAB = βA1B1
+ βA2B2

,

γAB = γA1B1
+ γA2B2

.

Obviously, Eq. 3.21 can be considered the pdf of the following Dirichlet distribution.

Dir(αA1B1 + αA2B2 , βA1B1 + βA2B2 , γA1B1 + γA2B2).

Therefore, the following equation

∫
f(x|pAB)f(pAB|DA1B1 ,DA2B2)d(pAB)

can be regarded as a DC distribution upon observations {αA1B1 + αA2B2 , βA1B1 +

βA2B2 , γA1B1 + γA2B2}. According to the definition of an opinion, the analytic form of
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Eq. 3.16 can be expressed as follows.

∫
f(x = 1|pAB)f(pAB|DA1B1 ,DA2B2)d(pAB)

=
αA1B1 + αA2B2

αA1B1 + αA2B2 + βA1B1 + βA2B2 + γA1B1 + γA2B2

.

The probability that B will not behave as A expects and the probability that B will

behave in an uncertain way can be expressed as follows.

∫
f(x = 2|pAB)f(pAB|DA1B1 ,DA2B2)d(pAB)

=
βA1B1 + βA2B2

αA1B1 + αA2B2 + βA1B1 + βA2B2 + γA1B1 + γA2B2

,

and

∫
f(x = 3|pAB)f(pAB|DA1B1 ,DA2B2)d(pAB)

=
γA1B1 + γA2B2

αA1B1 + αA2B2 + βA1B1 + βA2B2 + γA1B1 + γA2B2

,

respectively. Now, we formally define the combining operation as follows.

Definition 2 (Combining Operation). Let ωA1B1 = 〈αA1B1 , βA1B1 , γA1B1〉 and ωA2B2 =

〈αA2B2 , βA2B2 , γA2B2〉 be the opinions on two parallel paths from users A to B, the

combining operation Θ(ωA1B1 , ωA1B1) is carried out as follows.

ωAB = Θ(ωA1B1 , ωA2B2) = 〈αAB, βAB, γAB〉 , (3.22)

where 
αAB = αA1B1 + αA2B2

βAB = βA1B1 + βA2B2

γAB = γA1B1 + γA2B2

. (3.23)
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It is worth mentioning that the combining operation yields two properties.

Corollary 3.0.3. Commutative Property: Given two independent opinions ωA1B1 and

ωA2B2, Θ(ωA1B1 , ωA2B2) ≡ Θ(ωA2B2 , ωA1B1).

Proof. Based on Eq. 3.23.

Corollary 3.0.4. Associative Property: Given three independent opinions ωA1B1,

ωA2B2 and ωA3B3, then Θ(ωA1B1 ,Θ(ωA2B2 , ωA3B3)) ≡ Θ(Θ(ωA1B1 , ωA2B2), ωA3B3).

Proof. Based on Eq. 3.23.

If there exist multiple parallel opinions ωA1B1 , ωA2B2 · · ·ωAnBn from A to B, the

overall opinion can be calculated as Θ(Θ(Θ(ωA1B1 , ωA2B2), · · · ), ωAnBn). As combining

operation is commutative and associative, it is simplified to Θ(ωA1B1 , ωA2B2 , · · ·ωAnBn).

Expected Belief of An Opinion

With the proposed discounting and combining operations, the trust between

two users in an OSN can be computed. which will be introduced in chapter 4. Many

times, it is desired to represent the trust by a single number, rather than a vector

composed of three numbers. Therefore, we introduce how to compute the expected

belief of an opinion.

Given an opinion ωAX = 〈αAX , βAX , γAX〉, it is interesting to know how likely

X will perform the desired actions requested by A. We call this probability as the

expected belief of ωAX . Although αAX denotes the belief of the opinion ωAX , other

components like βAX , γAX also need to be considered to compute the expected belief.



36

The expected belief of an opinion in the subjective logic is defined as

EωAX
=

αAX
αAX + βAX + 2

+
1× aAX

αAX + βAX + 2

=
αAX + aAX

αAX + βAX + 2
.

According to this definition, the expected belief in 3VSL would become

EωAX
=

αAX + aAXγAX
αAX + βAX + γAX

.

The above definition, however, is incorrect and we will illustrate the problem using

an example shown in Fig. 3.3. In this figure, there exist two opinions ω1 and ω2.

1ω

2ω

�

�

3ω

Figure 3.3: Combining opinions with high and low uncertainties

We assume the total evidence values of ω1 and ω2 are equal, i.e., λ1 = λ2 where

λ1 = α1 + β1 + γ1 and λ2 = α2 + β2 + γ2. If these two opinions are combined,

the resulting opinion ω3 can be seen as a mixture of ω1 and ω2. According to the

combining operation (Eq. 3.23) in 3VSL, the evidence value for the neutral state γ3

of ω3 becomes γ1 + γ2. Assuming γ2 � γ1, we have γ3 � γ1. Combining more

opinions actually increases the evidence values, so the uncertainty of the resulting

opinion should decrease. However, based on Eq. 3.24, the resulting opinion ω3 is

more uncertain than ω1 (as γ3 � γ1), which is contradictory to the common sense. In
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other words, ω2 polluted the certainty of ω3 if uncertainty is considered in computing

expected belief.

We know that αAX and βAX are the numbers of (negative and positive) certain

evidence, so they must be used in computing the expected belief. γAX only records

the amount of neutral evidence, so it should be omitted in the expected belief

computation. Ignoring the uncertain evidence recorded as γAX , the DC distribution

of ωAX is collapsed into a Beta-Categorical (BC) distribution:

f(p1, p2 |αAX , βAX ) =
Γ(αAX + βAX)

Γ(αAX) · Γ(βAX)
(1− p1)αAX−1pβAX−1

2 .

Consequently, the original opinion is collapsed into

ωAX = 〈αAX , βAX〉 .

With the collapsed opinion, we apply the approach proposed in [93] to compute

the expected belief as follows.

EωAX
=

(
αAX

αAX + βAX
+

βAX
αAX + βAX

)
aAX · (1− cAX)

+
αAX

αAX + βAX
· cAX

=
αAX

αAX + βAX
· cAX + aAX · (1− cAX), (3.24)

where cAX is the certainty factor [93] of a Beta distribution, and aAX is the base rate.

The certainty factor cAX , ranging from 0 to 1, is determined by the total amount of

certain evidence and the ratio between positive and negative evidence. It is computed

from

cAX =
1

2

∫ 1

0

∣∣∣∣ 1

B(αAX , βAX)
xαAX (1− xβAX )− 1

∣∣∣∣dx. (3.25)
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Basically, cAX approaches 1 when the amount of certain evidence or the

disparity between positive and negative evidence becomes large.
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THE ASSESSTRUST ALGORITHM

In this chapter, we introduce the AssessTrust (AT) algorithm that implements

the 3VSL model and is able to conduct trust assessment in social networks with

arbitrary topologies. Here, we assume that social network graph does not contain

cycles, i.e., we are interested in the trust assessment in a directed acyclic graph

(DAG).

To ensure AT works in arbitrary DAGs topologies, we need to prove that AT can

handle non-series-parallel network topologies, e.g., the bridge topology in Fig. 4.5(a).

This is a challenge because the only operations available for trust computation are

the discounting and combining operations. The issue is that discounting/combining

operation requires the network topologies to be series/parallel. We address this

challenge by differentiating the distorting and original opinions in trust propagation.

For example, if A trusts B and B trusts C, then A’s opinion on B is called the

distorting opinion, and B’s opinion on C is the original opinion. We discover that, in

trust fusion, the original opinions can be used only once but the distorting opinions

can be used any number of times. This is because the distorting opinion only

depreciates certain evidence values into uncertain ones, it does not change the total

amount of evidence. That also implies the distorting opinion from A to B, shown in

the bridge topology in Fig. 4.5(a), can appear twice in both sub-graphs A→ B → C

and A→ B → D → C.

In addition, we have to further show that AT works in arbitrary DAGs. This is

a challenge because it is impossible to test AT in all possible network topologies. We

address this challenge by mathematically proving AT works in arbitrary networks.

By addressing these two challenges, we present the AT algorithm and will use an

example to illustrate how the AT algorithm works.
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Figure 4.1: Difference between distorting and original opinions.

Properties of Different Opinions

Before introducing the AT algorithm, we need to understand some important

features of the discounting operation defined in 3VSL. For a discounting operation,

there must be two opinions involved. However, the functionality of the two opinions

are different.

Definition 3 (Distorting and Original Opinions). Given a discounting operation

Δ(ωAB, ωBC), we define ωAB as the distorting opinion, and ωBC the original opinion.

To understand the difference between the distorting and original opinions, we

study two special cases shown in Fig. 4.1. By analyzing them, we discover a distorting

opinion can be used several times in trust computation but an original opinion can

be used only once.

Theorem 4.0.1. Let

ωB1C1 = 〈αB1C1 , βB1C1 , γB1C1〉

and

ωB2C2 = 〈αB2C2 , βB2C2 , γB2C2〉
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be the two opinions on two parallel paths from users B to C. Let ωAB =

(αAB, βAB, γAB) be the opinion from A to B, then the following equation will always

hold:

Θ(∆(ωAB, ωB1C1),∆(ωAB, ωB2C2))

≡ ∆(ωAB,Θ(ωB1C1 , ωB2C2)). (4.1)

Proof. Let’s take a look at the left side of Eq. 4.1:

Θ(∆(ωAB, ωB1C1),∆(ωAB, ωB2C2)).

According to the definition of the discounting operation, the result of ∆(ωAB, ωB1C1)

can be written as

ωAC1 = ∆(ωAB, ωB1C1)

= 〈αAC1 , βAC1 , γAC1〉 ,

where

αAC1 =
αABαB1C1

αAB + βAB + γAB
,

βAC1 =
αABβB1C1

αAB + βAB + γAB
,

γAC1 =
(βAB + γAB)(αB1C1 + βB1C1 + γB1C1)

αAB + βAB + γAB

+
αABγB1C1

αAB + βAB + γAB
.

(4.2)
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The result of ∆(ωAB, ωB2C2) can be written as

ωAC2 = ∆(ωAB, ωB2C2)

= 〈αAC2 , βAC2 , γAC2〉 ,

where

αAC2 =
αABαB2C2

αAB + βAB + γAB
,

βAC2 =
αABβB2C2

αAB + βAB + γAB
,

γAC2 =
(βAB + γAB)(αB2C2 + βB2C2 + γB2C2)

αAB + βAB + γAB

+
αABγB2C2

αAB + βAB + γAB
. (4.3)

If these two opinions are combined, we will have

ωAC = Θ(∆(ωA1B1 , ωBC),∆(ωA2B2 , ωBC))

= 〈αAC , βAC , γAC〉 ,

where

αAC =
αABαB1C1 + αABαB2C2

αAB + βAB + γAB
,

βAC =
αABβB1C1 + αABβB2C2

αAB + βAB + γAB
,
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γAC =
(βAB + γAB)(αB1C1 + βB1C1 + γB1C1)

αAB + βAB + γAB

+
αABγB1C1

αAB + βAB + γAB

+
(βAB + γAB)(αB2C2 + βB2C2 + γB2C2)

αAB + βAB + γAB

+
αABγB2C2

αAB + βAB + γAB
.

Now, we look at the right side of Eq. 4.1:

∆(ωAB,Θ(ωB1C1 , ωB2C2)). (4.4)

The term Θ(ωB1C1 , ωB2C2) in the above formula can be written as

ωBC = Θ(ωB1C1 , ωB2C2)

= 〈αBC , βBC , γBC〉 , (4.5)

where

αBC = αB1C1 + αB2C2 ,

βBC = βB1C1 + βB2C2 ,

γBC = γB1C1 + γB2C2 .

Putting Eq. 4.6 back into Eq. 4.4, we will have

ω′AC = ∆(ωAB,Θ(ωB1C1 , ωB2C2))

= 〈α′AC , β′AC , γ′AC〉 ,



44

where

α′AC =
αAB(αB1C1 + αB2C2)

αAB + βAB + γAB

=
αABαB1C1 + αABαB2C2

αAB + βAB + γAB
,

β′AC =
αAB(βB1C1 + βB2C2)

αAB + βAB + γAB

=
αABβB1C1 + αABβB2C2

αAB + βAB + γAB
,

γ′AC =
(βAB + γAB)(αB1C1 + βB1C1 + γB1C1)

αAB + βAB + γAB

+
αABγB1C1

αAB + βAB + γAB

+
(βAB + γAB)(αB2C2 + βB2C2 + γB2C2)

αAB + βAB + γAB

+
αABγB2C2

αAB + βAB + γAB
. (4.6)

Clearly, ω′AC is equivalent to ωAC .

Theorem 4.0.2. Let

ωA1B1 = (αA1B1 , βA1B1 , γA1B1)

and

ωA2B2 = (αA2B2 , βA2B2 , γA2B2)

be the opinions on two parallel paths between two users A and B; Let ωBC =

(αBC , βBC , γBC) be an opinion from users B to C, then the following equation does

not hold:

Θ(∆(ωA1B1 , ωBC),∆(ωA2B2 , ωBC))

≡ ∆(Θ(ωA1B1 , ωA2B2), ωBC). (4.7)
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Proof. In Chapter 3, we have shown that the combining operation applies on

Θ(ωA1B1 , ωA2B2) when the evidence of ωA1B1 and ωA2B2 are from different sources,

i.e., they are independent. In the left side of Eq. 4.7, opinions ∆(ωA1B1 , ωBC) and

∆(ωA2B2 , ωBC) share the same evidence from the opinion ωBC . As a result, the

combining operation does not apply to them. Therefore, ∆(Θ(ωA1B1 , ωA2B2), ωBC) is

the only correct solution, and is not equal to Θ(∆(ωA1B1 , ωBC),∆(ωA2B2 , ωBC)).

From Theorem 4.0.1 and 4.0.2, we note that reusing ωAB in case (a) is allowed

but reusing ωBC in case (b) is not. The difference between ωAB and ωBC is that ωAB

is a distorting opinion while ωBC is an original opinion. Therefore, we conclude that

in trust computation, original opinions can be combined only once, while distorting

opinions can be used any number of times because they do not change the total

amount of evidence of final opinions.

Arbitrary Network Topology

As the distorting and original opinions are distinguished, we will prove that

3VSL is capable of handling non-series-parallel network topologies.

Theorem 4.0.3. Given an arbitrary two-terminal directed graph G = (V,E) where

A, C are the first and second terminals. In the graph, a vertex u represents a user, the

edge e(u, v) denotes u’s opinion about v’s trustworthiness, denoted as ωuv. By applying

the discounting and combining operations, the resulting opinion ωAC is solvable and

unique.

Proof. We prove the theorem in a recursive manner, i.e., reducing the original problem

into sub-problem(s) and continuing to reduce the sub-problems until the base case is

solvable and yields a unique solution.
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Figure 4.2: Illustration of an arbitrary network topology.

As shown in Fig. 4.2, we assume there are m nodes (c1, c2, · · · , cm) connecting

to C, i.e., e(ci, C) ∈ E where i ∈ [1,m]. There are n nodes (a1, a2, · · · , an) being

connected from A, i.e., e(A, aj) ∈ E where j ∈ [1, n].

Reduction rules

Case 1 : If there is only one node connecting to C, i.e., m = 1, then ωAC =

∆(ωAc1 , ωc1C). In this case, we reduce the problem of computing ωAC to ωAc1 , and A

and c1 are connected by a smaller sub-graph.

Case 2 : If there is more than one node connected to C, i.e., m > 1, ωAC is equal to

Θ(∆(ωAc1 , ωc1C),∆(ωAc2 , ωc2C), · · · ,∆(ωAcm , ωcmC)) due to Theorem 4.0.1. Therefore,

ωAC is solvable and unique if and only if each ωAci is solvable and unique, where ωAci

corresponds to the sub-graph G′ = G − Σe(ci, C) − C. In this case, we reduce the

problem of computing ωAC to ωAci .

In each round of reduction, G is reduced into a smaller graph with such that

|E| = |E|−m and |V | = |V |− 1. After applying the reduction rules on sub-problems

recursively, the base case will finally be reached, i.e., |E| = 1 and |V | = 2.
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Base Case

The sub-graph of base case contains only one edge from A to aj where j ∈ [1, n]. As

ωAaj is known from the original graph G, the base case is solvable and its solution is

unique. Applying the equations in Case 1 and 2 repeatedly, we can obtain an unique

ωAC .

Differences between 3VSL and SL

In this section, we present the differences between 3VSL and SL by introducing

several examples. Compared to SL, 3VSL introduces the uncertainty state to keep

track of the uncertainty generated when trust propagates within an OSN. Particularly,

the uncertainty state is used to store the “distorted” positive and negative evidence

in trust propagation and fusion.

It is well-known that SL can only handle series-parallel network topologies. A

series-parallel graph can be decomposed into many series (see Fig. 3.1) or parallel (see

Fig. 3.2) sub-graphs so that every edge in the original graph will appear only once in

the sub-graphs [44]. In real-world social networks, however, the connection between

two users could be too complicated to be decomposed into series-parallel graphs. To

apply the SL model, a complex topology has to be simplified into a series-parallel

topology by removing or selecting edges [37–39]. The simplifications will result in

information loss and inaccurate trust assessment. This problem is also observed in

our numerical experiments, which will be presented in Chapter 6. Furthermore, it

is not clear which edges need to be removed in a large-scale OSN, i.e., there is no

algorithm for the solutions proposed in [37–39].

Due to the lack of the uncertainty state, SL results in inaccurate trust

assessments even if it processes a social network similarly to 3VSL. We take two
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examples to explain why the inaccuracy will occur.

Example 1

α

γ

β

�
ABω BCω

ACω

A B C

∆

(a) Illustration of the discounting operation

BCω

ACω

(b) Result of 3VSL

BCω

ACω

ACω′

2
α α

κ

′= ×

2
κ

κ

×

2
β

κ

′×

2

(c) Result of Subjective Logic

Figure 4.3: Difference between 3VSL and SL on the discounting operation.

Let’s consider a series topology composed of A, B and C, as shown in Fig 4.3(a).

We assume the evidence values for α, β and γ are non-zero in both ωAB and ωBC . A’s

opinion of C’s trustworthiness can be computed by applying the discounting operation

defined in 3VSL (or SL) on ωAB and ωBC , i.e., ωAC = ∆(ωAB, ωBC).

With the 3VSL model, the total number of evidence in the resulting opinion

ωAC is the same as ωBC , as shown in Fig 4.3(b). Part of αBC and βBC will be

transferred into γAC , indicating a “distortion” from positive and negative evidence

values to uncertain evidence values. On the other hand, with the SL model, the

distorted evidence values are merged into the prior uncertainty state, which is a fixed
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number and always equals to 2, as shown in Fig 4.3(c). As a result, the positive and

negative evidence values in ωAC shrink, leading to the missing of evidence.

Example 2
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(a) Two opinions are combined
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ω
(b) Result of 3VSL
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(c) Result of Subjective Logic

Figure 4.4: Difference between 3VSL and SL on the combining operation.

Let’s consider a parallel topology shown in Fig 4.4(a). A has two parallel

opinions ωA1B1 and ωA2B2 on B. We assume the evidence values α and γ are non-

zero and β is zero in both ωA1B1 and ωA2B2 . A’s opinion of B can be computed by

applying the combining operation defined in 3VSL (or SL) on ωA1B1 and ωA2B2 , i.e.,

ωAB = Θ(ωA1B1 , ωA2B2).
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As shown in Fig 4.4(b), according to 3VSL, the numbers of positive and

uncertain evidence in the resulting opinion ωAB are the sums of the positive and

uncertain evidence numbers in ωA1B1 and ωA2B2 . As shown in Fig 4.4(c), using SL,

the uncertain evidence value in the resulting opinion is always 2. According to the

combining operation defined in SL, either the uncertain evidence values in ωA1B1 or

those in ωA2B2 are ignored. As a result, the number of positive evidence values will

be more than the actual.

The problems identified in the above examples will impact the accuracy of SL.

On the other hand, 3VSL avoids these problems by treating uncertainty as a third

state. This conclusion will be validated in Chapter 6, by comparing 3VSL and SL

using two real OSN datasets.

AssessTrust Algorithm

Based on Theorem 4.0.3, we design the AssessTrust algorithm. The algorithm is

based on the 3VSL model and is able to work with arbitrary network topologies. The

inputs of this algorithm include the corresponding graph G, the trustor A, the trustee

C, and the maximum searching depth H, measured by number of hops. Specifically,

H determines the longest distance between the trustor and trustee. H controls the

searching depth on graph G, which is necessary because G could be potentially very

large. H is helpful in reducing the running time of AssessTrust without sacrificing

much trust assessment accuracy.

Illustration of the AssessTrust Algorithm

In this section, we will use the bridge topology shown in Fig. 4.5(a) to illustrate

how the AT algorithm computes A’s indirect opinion upon C, denoted as ΩAD.
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Algorithm 4.1: AssessTrust(G, A, C, H).

Require: G, A, C, and H.
Ensure: ωAC .
1: n← 0
2: if H > 0 then
3: for all incoming edges e(ci, C) ∈ G do
4: if ci = A then
5: ωi ← ωAci
6: else
7: G′ ← G− e(ci, C)
8: ωAci ← AssessTrust(G′, A, ci, H − 1)
9: ωi ← ∆(ωAci , ωciC)
10: end if
11: n← n+ 1
12: end for
13: if n > 1 then
14: ωAC = Θ(ω1 · · ·ωn)
15: else
16: ωAC = ωn
17: end if
18: else
19: ωAC = 〈0, 0, 0〉
20: end if

A D

B

C

ABΩ

ACΩ

ACω

ABω BDω

CDω

ADΩ

(a) Bridge topology

(?, )BDω∆

(? , ?)ADΩ = Θ

(?, )CDω∆

(?  , ?)Θ

(?, )BCω∆

ABω

ABω

ACω

(b) Decomposition parsing pars-
ing tree

Figure 4.5: An illustration of 3VSL based on the bridge topology.
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To differentiate from the direct opinion, we use Ω to denote the indirect opinion.

As shown in Fig. 4.5(a), to compute ΩAD, discounting and combining operations

are applied on opinions ωAB, ωAD, ωBD, ωCD, and ωBC . AT starts from the trustee

D in Fig. 4.5(a), searches the network backwards and recursively computes the

trustworthiness of every user during the search. As a result, we get a parsing tree,

shown in Fig. 4.5(b), to describe how discounting and combining operations are

applied in computing A’s opinion of D. Traversing the parsing tree in a bottom-

up manner, A’s indirect opinion of D, ΩAD, can be computed as

Θ (∆(ωAB, ωBD),∆(Θ(∆(ωAB, ωBC), ωAC), ωCD)) . (4.8)

To understand the time complexity of AT when it is applied on the bridge

topology, we use AT (k)(i, j) to denote that it is the kth time that AT is called to

compute the user i’s opinion on j. At the time when AT is first called, A’s opinion

on D is computed from

Θ (∆(ΩAB, ωBD),∆(ΩAC , ωCD)) ,

where ΩAB and ΩAC are A’s indirect opinions on B and C, respectively. These two

opinions will then be provided by AT (2)(A,B) and AT (3)(A,C), respectively. In

AT (3)(A,C), AT computes A’s opinion of C as

Θ (∆(ΩAB, ωBC), ωAC) ,

where ΩAB is computed by AT (4)(A,B). Finally, A’s opinion of D can be computed

from Eq. 4.8. With the bridge topology, AT is called four times in total: AT (1)(A,D),

AT (2)(A,B), AT (3)(A,C) and AT (4)(A,B). Note that the AT (A,B) is called twice
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in this example, i.e., in sub-graphs A → B → C and A → B → D → C, which is

allowed in 3VSL.

Time Complexity Analysis

Finally, we present the time complexity of AssessTrust in this section. Since

AT is a recursive algorithm, the recurrence equation of its time complexity is

T (n) = (n− 1) · (T (n− 1) + C1) + C2 +O(n− 1)

= (n− 1) · T (n− 1) +O(n− 1) + C,

where (n − 1) is the maximum number of branches from the trustee node (line 3),

assuming there are n nodes in the network. T (n − 1) is the time complexity of

recursively running AT on each branch (line 8), C1 is the time for lines 4, 5, 6, 7, 9,

10 and 11. O(n − 1) is the time for combining operations (line 14). C2 is the time

used outside the “for” loop (line 13− 20). Therefore, the time complexity of AT is

O

(
k∑
i=1

(n− 1)!

(n− 1− i)!

)
= O(nk),

where k is the searching depth, and n is the number of nodes in the network. Note that

the time complexity is for one-to-one trust assessment in OSNs. To solve the MTA

problem, AT needs to go through every trustee one by one, so its time complexity is

O(n·nk) = O(nk+1) in total. Clearly, this is unacceptable for most MTA applications.

This problem motivates us to propose a more efficient solution to MTA problem, which

will be shown in the next chapter.
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MASSIVE TRUST ASSESSMENT IN OSNS

One major limitation of AssessTrust is that it is inefficient in conducting massive

trust assessments (MTA). To efficiently address the MTA problem, we propose the

OpinionWalk algorithm that is based on AT and offers a better time complexity. To

design the OpinionWalk algorithm, we need to address the following three challenges.

The first challenge is how to address the MTA problem while keeping low time

complexity. This is a challenge because AT is designed for one-to-one trust assessment

but MTA focuses on one-to-many situations. To address this challenge, we use an

opinion matrix to represent the network’s topology and an individual opinion vector

to store the trustworthiness of all nodes. In this way, similar to matrix operations,

the individual opinion vector can be updated in a parallel manner. Based on this

novel design, the time complexity is reduced from O(nk+1) to O(n3), where k is the

longest distance in hops from the trustor to the trustee node.

The second challenge is to eliminate the recursive operations in the AT

algorithm. This is a challenge because AT needs to first transform a trust social

network into a recursion tree, and then processes its sub-trees before getting into

the upper-level of the tree. To address this challenge, we design the OpinionWalk

algorithm to implement this recursive procedure in an iterative way. This is non-

trivial because OpinionWalk has to use the operations defined in 3VSL. As recursive

operations are slower and take up more memory/stack, OpinionWalk offers a faster

running time, especially in large-scale networks.

The third challenge is to show OpinionWalk is equivalent to AT, in addressing

MTA. This is a challenge because these two algorithms are different and we need

to prove they output the same results in arbitrary network topologies. To address

this challenge, we first prove the opinion walk operations equivalently implement
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the discounting and combination operations in 3VSL. Then, we extend the proof

into arbitrary network topologies and recursively show that each case encountered

in AT can be equivalently solved by OpinionWalk. In other words, OpinionWalk is

an equivalent implementation of AT. Additionally, we analyze OpinionWalk’s time

complexity and show that it offers a better time complexity. At the end of this

chapter, we also use an example to illustrate how OpinionWalk works.

Design of OpinionWalk

OpinionWalk is essentially a matrix-based algorithm that implements 3VSL in

a more efficient way to address the MTA problem. Given a trust social network

G = (V,E,w), OpinionWalk represents this graph by an opinion matrix M . The

elements in M are edges/opinions between nodes in the graph G = (V,E,w). The

trustworthiness of all nodes are stored in the individual opinion vector Y . The

procedure of OpinionWalk can be expressed as an iteration equation:

Y (k) = MT � Y (k−1),

where k is the current searching depth in the graph from the trustor to the trustee.

The operation rules of � will be introduced later. The trustworthiness of a given

trustee can be obtained from Y . OpinionWalk is more efficient than AT because it

uses an iterative method rather than a recursive one to address the MTA problem.

Based on 3VSL, we define two special opinions that will be used to initialize

the OpinionWalk algorithm.

Definition 4 (Uncertain Opinion). An uncertain opinion O is defined as

O ∆
= 〈0, 0, 0〉 ,
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that indicates the trustor is totally uncertain about the trustee’s trustworthiness.

Definition 5 (Absolute Opinion). An absolute opinion I is defined as

I ∆
= 〈∞, 0, 0〉 ,

that indicates the trustor has infinite positive evidence, hence absolutely trusts the

trustee.

Based on the uncertain opinion and 3VSL, we can have the following corollaries.

Corollary 5.0.1. Applying the discounting operation on O and an opinion ω, we

have ∆(ω,O) = O and ∆(O, ω) = O.

Corollary 5.0.2. Applying the combining operation on O and an opinion ω, we have

Θ(ω,O) = Θ(ω,O) = ω.

Based on the absolute opinion and 3VSL, we can have the following corollaries.

Corollary 5.0.3. Applying the discounting operation on I and an opinion ω, we have

∆(ω, I) = ω and ∆(I, ω) = ω.

Corollary 5.0.4. Applying the combining operation on I and an opinion ω, we have

Θ(ω, I) = Θ(ω, I) = I.

Opinion Matrix

Definition 6. Given a trust social network containing n nodes, an opinion matrix

M is an n× n matrix:

Mn×n
∆
=



ω11 ω12 ... ω1n

ω21 ω22 · · · · · ·

· · · · · · · · · · · ·

ωn1 · · · · · · ωnn


,
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where each element ωij (i, j ≤ n) denotes the direct opinion from node i to j.

Unlike the traditional representation of a graph, e.g., adjacency or Laplace

matrix, the entries in M are the direct opinions between nodes in G. If i does not

have a direct opinion on j, we use the uncertain opinion to represent the corresponding

entry, i.e., ωij
∆
= O (i, j ∈ n, i 6= j) if eij /∈ E.

Individual Opinion Vector

Definition 7. An individual opinion vector Y
(k)
i is an n× 1 column vector composed

of n opinions:

Y
(k)
i

∆
=
[
Ω

(k)
i1 ,Ω

(k)
i2 , · · · ,Ω

(k)
ij , · · · ,Ω

(k)
in

]T

,

where Ω
(k)
ij denotes user i’s individual opinion on j. The head note k indicates the

current iteration step in the OpinionWalk algorithm.

Opinion Walk Operation

Definition 8. An opinion walk operation � “multiplies” matrix M and vector Y
(k−1)
i

to yield a new vector Y
(k)
i as follows.

Y
(k)
i = MT � Y (k−1)

i

∆
=



Θ(∆(Ω
(k−1)
i1 , ω11), · · · ,∆(Ω

(k−1)
in , ωn1)),

Θ(∆(Ω
(k−1)
i1 , ω12), · · · ,∆(Ω

(k−1)
in , ωn2)),

· · ·

Θ(∆(Ω
(k−1)
i1 , ω1n), · · · ,∆(Ω

(k−1)
in , ωnn))


∆
=
[
Ω

(k)
i1 ,Ω

(k)
i2 , · · · ,Ω

(k)
ij , · · · ,Ω

(k)
in

]T

,

where k denotes the iteration step. The Θ and ∆ implement the combining and

discounting operations in 3VSL.
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Figure 5.1: A detailed illustration of OpinionWalk.

When the OpinionWalk algorithm is initialized, Y (0) is set as

Y (0)
i

=
[
Ω

(0)
i1 ,Ω

(0)
i2 , · · · ,Ω

(0)
ii , · · ·Ω

(0)
in

]T

= [O,O,O, · · · , I, · · · ,O]T,

This vector indicates node i does not trust other nodes except for itself. In the

following steps, the OpinionWalk either updates Ω
(k−1)
ij or keeps it unchanged.

A detailed explanation of the opinion walk operation can be seen in Fig. 5.1.

As shown in Fig. 5.1(a), at the (k−1)-th iteration, node i’s individual opinions on all

other nodes (∀ j ∈ V \i ) are stored in the individual opinion vector, which is denoted

as Y (k−1). Then, at the k-th iteration, as shown in Fig. 5.1(b), i’s individual opinion
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on j (∀ j ∈ V \i ) is updated by applying the discounting and combining operations,

respectively. The discounting operation is applied to Ω
(k−1)
is and ωsj. Ω

(k−1)
is is i’s

individual opinion on s ∈ S for the (k − 1)-th iteration, where S is the set of j’s in-

neighbors. ωsj is s’s direct opinion on j, which does not change in all iterations. As

shown in Fig. 5.1(c), the logic behind the discounting operation is using i’s individual

opinion on s (in the (k − 1)-th iteration) and s’s direct opinion on j to form i’s

“partial” opinion Ωis|sj on j (in the k-th iteration). In other words, the“partial”

opinion is made through i’s individual opinion on s (Ωis) and s’s direct opinion on

j (ωsj). The combining operation is then applied on the results of the discounting

operations from above. The logic behind the combining operation is aggregating all of

the “partial” opinions Ωis|sj (from j’s in-neighbor nodes) together to form i’s overall

individual opinion on j, which is shown in Fig. 5.1(c).

As shown in Fig. 5.2, the OpinionWalk operation is similar to the multiplication

between a matrix and a vector. The difference is that the summation and production

operations are replaced by the combining and discounting operations. Notice that

mathematically k denotes the iteration number of the opinion walk operation, as

shown in Fig. 5.2. On the other hand, as shown in Fig. 5.1(a) and Fig. 5.1(b), the

physical meaning of k is the searching depth of the OpinionWalk algorithm that

originates from the trustor. Most importantly, the trustor’s individual opinion on

any trustee within k hops can be found from Y (k).

OpinionWalk Algorithm

The pseudo-code of the OpinionWalk algorithm is shown in Algorithm 5.2.

In the algorithm, line 3 controls how many levels OpinionWalk will search on the

network. Lines 5-14 update the indirect opinion Ωij iteratively. Line 5 considers all

users, other than i, as the trustees. Lines 7-12 combines all opinions derived from
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Figure 5.2: A general view of the “opinion walk” operation.

Algorithm 5.2: OpinionWalk(G, i, H).

Require: A directed graph G with a trustor i and the maximum searching level H.
Ensure: i’s opinion j where j �= i.
1: Initialize M and Y

(1)
i based on G

2: k ← 1
3: while k < H do
4: k ← k + 1
5: for all columns cj ∈ M s.t. j �= i do

6: Ω
(k)
ij ← O

7: for all direct opinions ωsj ∈ cj s.t. ωsj �= O do

8: Ω
(k−1)
is ← Y

(k−1)
i [s]

9: if Ω
(k−1)
is �= O then

10: Ω
(k)
ij ← Θ(Ω

(k)
ij ,Δ(Ω

(k−1)
is , ωsj))

11: end if
12: end for
13: Y

(k)
i [j] ← Ω

(k)
ij

14: end for
15: end while
16: return Y

(k)
i

ωsj �= O. Line 8 obtains i’s indirect opinion on one of the predecessors of j, e.g.,

s. If this opinion already exists, i discounts s’s opinion on j to update Ω
(k)
ij at line
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9. Otherwise, it checks another predecessor. Line 10 combines all opinions that are

currently computed from ωsj 6= O. Note that line 10 essentially combines opinions

one by one, so Ω
(k)
ij equals to

Θ(∆(Ω
(k−1)
i1 , ω1j), · · · ,Θ(∆(Ω

(k−1)
in−1 , ωn−1j),∆(Ω

(k−1)
in , ωnj))).

Because the combining operation is associative (see corollary 5.0.2), the above

equation is the same as the following form:

Θ
(

∆(Ω
(k−1)
i1 , ω1j), · · · ,∆(Ω

(k−1)
in , ωnj)

)
.

After processing all users connecting to j, at line 13, the newly computed Ωij is

used to update the corresponding element in the individual opinion vector. When i’s

opinions on all possible j’s are updated, at line 14, OpinionWalk searches the next

level. Finally, the vector Y
(k)
i will contain i’s opinions about the trustworthiness of

all other users.

Illustration of the OpinionWalk Algorithm

In this section, we use the example shown in Fig. 4.5(a) to illustrate how

OpinionWalk is used to compute the trustworthiness of all users (B, C and D),

from the perspective of A.

The opinion matrix of the corresponding graph in Fig. 4.5(a) can be expressed

as
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MT =



O O O O

ωAB O O O

ωAC ωBC O O

O ωBD ωCD O


.

Because we want to evaluate A’s opinions on other users, the algorithm starts from

A and ends at D. Hence, we set the initial individual opinion vector as

Y (0)
A

=
[
Ω

(0)
AA,Ω

(0)
AB,Ω

(0)
AC ,Ω

(0)
AD

]T

= [I,O,O,O]T.

After the initialization, the algorithm will go through several iterations that

can be expressed as

Y (k)
A

= MT � Y (k−1)
A

=



Θ(∆(Ω
(k−1)
AA , ωAA)),

Θ(∆(Ω
(k−1)
AA , ωAB)),

Θ(∆(Ω
(k−1)
AA , ωAC),∆(Ω

(k−1)
AB , ωBC)),

Θ(∆(Ω
(k−1)
AB , ωBD),∆(Ω

(k−1)
AC , ωCD))


,

where k is the number of iterations.
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Figure 5.3: Illustration of how OpinionWalk processes the bridge topology. The
dashed box shows how the combining operation in OpinionWalk works.

The first iteration is shown Fig. 5.3(a) and can be expressed as

Y (1)
A

= MT � Y (0)
A

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Θ(Δ(I, I)),

Θ(Δ(I, ωAB)),

Θ(Δ(I, ωAC),Δ(O, ωBC)),

Θ(Δ(O, ωBD),Δ(O, ωCD))

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

= [I,Θ(O,Δ(I, ωAB)),Θ(O,Δ(I, ωAC)),O]T

= [I, ωAB, ωAC ,O]T.
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In this iteration, because both Ω
(0)
AB and Ω

(0)
AC are still O, we have

Ω
(1)
AD = Θ(∆(Ω

(0)
AB, ωBD),∆(Ω

(0)
AC , ωCD))

= Ω
(0)
AD.

The result of the second iteration is shown in Fig. 5.3(b) and can be expressed as

Y (2)
A

= MT � Y (1)
A

=
[
Ω

(2)
AA,Ω

(2)
AB,Ω

(2)
AC ,Ω

(2)
AD

]T

=



Θ(∆(I, I)),

Θ(∆(I, ωAB)),

Θ(∆(I, ωAC),∆(ωAB, ωBC)),

Θ(∆(ωAB, ωBD),∆(ωAC , ωCD))


= [I, ωAB,Θ(ωAC ,∆(ωAB, ωBC)),

Θ(∆(ωAB, ωBD),∆(ωAC , ωCD))]T.

In this iteration, as both Ω
(1)
AB and Ω

(1)
AC hchanged (compared to Ω

(0)
AB and Ω

(0)
AC), we

have

Ω
(2)
AD = Θ(∆(Ω

(1)
AB, ωBD),∆(Ω

(1)
AC , ωCD))

= Θ(∆(Ω
(1)
AB, ωBD),∆(Ω

(1)
AC , ωCD)).

The result of the third iteration shown in Fig. 5.3(c) reflects the following computa-

tion.
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Y (3)
A

= MT � Y (2)
A

=
[
Ω

(3)
AA,Ω

(3)
AB,Ω

(3)
AC ,Ω

(3)
AD

]T

=



Θ(∆(I,O)),

Θ(∆(I, ωAB)),

Θ(∆(I, ωAC),∆(ωAB, ωBC)),

Θ(∆(ωAB, ωBD),∆(Θ(ωAC ,∆(ωAB, ωBC)), ωCD))


= [I, ωAB,Θ(ωAC ,∆(ωAB, ωBC)) ,

Θ(∆(ωAB, ωBD),∆(Θ(ωAC ,∆(ωAB, ωBC)), ωCD))]T.

It is worth mentioning that Ω
(2)
AB did not change, but Ω

(2)
AC has changed, so we update

ΩAD by substituting Ω
(1)
AC with Ω

(2)
AC as follows.

Ω
(3)
AD = Θ(∆(Ω

(2)
AB, ωBD),∆(Ω

(2)
AC , ωCD))

= Θ(∆(Ω
(1)
AB, ωBD),∆(Ω

(2)
AC , ωCD)).

In the end, the fourth iteration (see Fig. 5.3(d)) can be expressed as

Y (4)
A

= MT � Y (3)
A

=
[
Ω

(4)
AA,Ω

(4)
AB,Ω

(4)
AC ,Ω

(4)
AD

]T

=



Θ(∆(I,O)),

Θ(∆(I, ωAB)),

Θ(∆(I, ωAC),∆(ωAB, ωBC)),

Θ(Θ(ωAC ,∆(ωAB, ωBC),∆(ωAB, ωBC))


= [I, ωAB,Θ(ωAC ,∆(ωAB, ωBC)) ,

Θ(∆(ωAB, ωBD),∆(Θ(ωAC ,∆(ωAB, ωBC)), ωCD))]T.
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In this iteration, neither Ω
(3)
AB nor Ω

(3)
AC changed, so we have

Ω
(4)
AD = Θ(∆(Ω

(3)
AB, ωBD),∆(Ω

(3)
AC , ωCD))

= Ω
(3)
AD.

The components in the final individual opinion vector are

Ω
(4)
AA = I,

Ω
(4)
AB = ωAB,

Ω
(4)
AC = Θ(∆(ωAB, ωBC), ωAC),

Ω
(4)
AD = Θ(∆(ωAB, ωBD),∆(Θ(ωAC ,∆(ωAB, ωBC)), ωCD)).

which are exactly the same as those obtained by the AT algorithm.

Correctness of OpinionWalk

To prove OpinionWalk equivalently implements the AT algorithm, we first show

both AT and OpinionWalk generate the same result if network topology is either series

or parallel. Then, we show this is true for arbitrary network topologies.

If we zoom into a trust social network, two edges can be connected in series if

they are incident to a vertex of degree 2, or in parallel if they join the same pair of

distinct vertices. Therefore, two users can be connected in a series topology shown

in Fig. 5.4(a), or a parallel topology shown in Fig. 5.4(b). Note that the paths from

i to s1, s2, · · · , sm in Fig. 5.4(b) are disjoint, i.e., no sharing edges along the paths.
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Figure 5.4: Illustration of two fundamental topologies in an OSN.

Series Network Topology

Lemma 5.0.1. Given two users i and j who are connected by m users in a series

topology, the opinion Ωij computed from AT and OpinionWalk will be the same.

Proof. We use s1, s2, · · · , sm to denote the users that connects i to j, as shown in

Fig. 5.4(a). According to the AT algorithm, i’s trustworthiness of j is

Ωij = ∆
(
ωis1 ,∆(ωs1s2 , · · ·∆(ωsm−1sm , ωsmj))

)
. (5.1)

According to the OpinionWalk algorithm, in the opinion matrix, except for

opinions ωis1 , ωs1s2 , · · · , ωsmj, all other opinions are uncertain opinions O. The initial

individual opinion vector is

Y
(1)
i = [O, · · · , ωis1 , · · · ,O]T.

If OpinionWalk searches the 2nd level of the network, the individual opinion

vector is updated to

Y
(2)
i = [O, · · · , ωis1 , · · · ,∆(ωis1 , ωs1s2), · · · ,O]T.
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where Ω
(2)
is1

= ωis1 and Ω
(2)
is2

= ∆(ωis1 , ωs1s2) are i’s current opinions on users s1 and

s2, respectively.

When OpinionWalk searches the (m+1)-th level, it will reach user j, and Y
(m+1)
i

becomes

Y
(m+1)
i = MT � Y (m)

i

=
[
O, · · · ,Ω(m)

ism
, · · · ,∆(Ω

(m)
ism
, ωsmj), · · · ,O

]T

=
[
O, · · · ,Ω(m+1)

ism
, · · · ,Ω(m+1)

ij , · · · ,O
]T

.

If we expend Ω
(m+1)
ij in the above equation, we will get

Ω
(m+1)
ij = ∆(Ω

(m)
ism
, ωsmj)

= ∆(∆(Ω
(m−1)
ism−1

, ωsm−1sm), ωsmj)

= ∆(∆(∆(ωis1 , ωs1s2), · · · , ωsm−1sm), ωsmj)

(5.2)

Because the discount operation is associative [66], Eqs. 5.1 and 5.2 give the same

result. Therefore, given a series topology, OpinionWalk equivalently implements AT.

Parallel Network Topology

Lemma 5.0.2. Given two users i and j who are connected by m users in a parallel

topology, the opinion Ωij computed from AT and OpinionWalk will be the same.

Proof. We use s1, s2, · · · , sm to denote the m users based on their distances to i, i.e.,

sm is the farthest away from i. As shown in Fig. 5.4(b), because the paths from i to
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s1, s2, · · · , sm are disjointed, the AT algorithm computes i’s opinion on j as

Θ (∆(Ωis1 , ωs1j),∆(Ωis2 , ωs2j), · · · ,∆(Ωism , ωsmj)) . (5.3)

According to the OpinionWalk algorithm, the opinion matrix will be

M =



· · · · · · · · · · · ·

· · · · · · ωs1j · · ·

· · · · · · · · · · · ·

· · · · · · ωs2j · · ·

· · · · · · · · · · · ·

· · · · · · ωsmj · · ·

· · · · · · · · · · · ·



.

Let’s assume after k1, k2, · · · , km searches, the OpinionWalk algorithm reaches users

s1, s2, · · · , sm, respectively. After k1 searches, OpinionWalk obtains i’s opinion on s1

as Ω
(k1)
is1

. Here, Ω
(k1)
is1

is equal to Ωis1 computed from AT in Eq. 5.3, due to Lemma 5.0.1.

During the (k1 + 1)-th search, OpinionWalk reaches user j, and it updates i’s

opinion on j to

Ω
(k1+1)
ij = ∆(Ωis1 , ωs1j).

After k2 searches, OpinionWalk gets i’s opinion on s2 as Ωis2 . At the (k2 +1)-th

search, OpinionWalk hits user j and updates i’s opinion on j to

Ω
(k2+1)
ij = Θ

(
Ω

(k2)
ij ,∆(Ωis2 , ωs2j)

)
.
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From (k1 + 1)-th to k2-th searches, opinion Ωij is not updated, so we have Ω
(k2)
ij =

Ω
(k1+1)
ij . Therefore, we have

Ω
(k2+1)
ij = Θ (∆(Ωis1 , ωs1j),∆(Ωis2 , ωs2j)) .

Similarly, after km + 1 searches, i’s opinion on j is updated to

Θ
(

∆(Ω
(km)
is1

, ωs1j),∆(Ω
(km)
is2

, ωs2j), · · · ,∆(Ω
(km)
ism

, ωsmj)
)
.

For every l = 1, 2, · · · ,m, we have Ω
(kl)
isl

= Ω
(km)
isl

as it does not change after the kl-th

search. Therefore, the above equation becomes

Θ
(

∆(Ω
(k1)
is1

, ωs1j),∆(Ω
(k2)
is2

, ωs2j), · · · ,∆(Ω
(km)
ism

, ωsmj)
)
.

For any l = 1, 2, · · · ,m, we know that Ω
(kl)
isl

is equal to Ωisl computed by AT, due to

Lemma 5.0.1. Therefore, OpinionWalk computes i’s opinion on j as

Θ (∆(Ωis1 , ωs1j),∆(Ωis2 , ωs2j), · · · ,∆(Ωism , ωsmj)) . (5.4)

Because Eqs. 5.3 and 5.4 give the same result, we conclude that OpinionWalk

equivalently implements AT on a parallel topology.

Arbitrary Topology

Given an arbitrary network topology shown in Fig. 5.5, we assume m > 1 nodes

{s1, s2, · · · , sm} directly connect to j. We use k1, k2, · · · , km to denote the last times

when users s1, s2, · · · , sm are visited by the OpinionWalk algorithm, respectively. Let

{t1, t2, · · · , tr} denote the users who are connected from i, via either series or parallel

topologies.
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i j

t1 s1

… …
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Topology
s2

sm

t2

tr

Figure 5.5: Illustration of a network with an arbitrary topology.

Theorem 5.0.1. OpinionWalk equivalently implements the AT algorithm in an

arbitrary network topology.

Proof. We prove the theorem in a recursive manner, i.e., reducing the original network

into sub-network(s) and keep reducing the sub-network(s) until the base case is

reached, i.e., two users are connected via either a series or parallel topology.

Reduction rules

Case 1 : There is only one user connecting to j, i.e., m = 1. In this case, according to

the AT algorithm, Ωij is computed as ∆(Ωis1 , ωs1j), where Ωis1 denotes i’s opinion on

s1, and it can be computed by recursively calling the AT algorithm. For OpinionWalk,

at the (k1 + 1)-th search, it reaches j and updates i’s opinion on j as

∆(Ω
(k1)
is1

, ωs1j).
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Case 2 : There are more than one user connecting to j, i.e., m > 1. In this case, AT

computes Ωij as

Θ(∆(Ωis1 , ωs1j),∆(Ωis2 , ωs2j), · · · ,∆(Ωism , ωsmj)).

After k̂+1 searches where k̂ = max(k1, k2, · · · , km), OpinionWalk updates i’s opinion

on j to

Θ(∆(Ω
(k̂)
is1
, ωs1j),∆(Ω

(k̂)
is2
, ωs2j), · · · ,∆(Ω

(k̂)
ism
, ωsmj)).

For any user sl, where l = 1, 2, · · · ,m, because kl is the last time that sl was visited

by OpinionWalk, Ωisl was not updated after the kl-th search. Therefore, the above

equation can be rewritten as

Θ(∆(Ω
(k1)
is1

, ωs1j),∆(Ω
(k2)
is2

, ωs2j), · · · ,∆(Ω
(km)
ism

, ωsmj)).

Summarizing the above two cases, we know that if Ωisl = Ω
(kl)
isl

for every

l = 1, 2, · · · ,m, then OpinionWalk and AT yield the same result of Ωij. For

any user sl, Ωisl and Ω
(kl)
isl

actually denote i’s opinion on sl computed by AT and

OpinionWalk, respectively. Both AT and OpinionWalk will work on the same sub-

network G′ = G − e(sl, j) that connects i to sl. The sub-network G′ can be further

reduced by removing the edge connecting to sl. Continuing this process, the original

network G will eventually be reduced to the following base case.

Base Case

In the base case, user i connects to users t1, t2, · · · , tr via either series or parallel

topologies. Based on Lemmas 5.0.1 and 5.0.2, AT and OpinionWalk give the same
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values of Ωit1 ,Ωit2 , · · · ,Ωitr . Overall, we prove that AT and OpinionWalk give the

same result.

Time Complexity Analysis

Let’s further investigate the time complexity of OpinionWalk in DAG. For

OpinionWalk shown in Algorithm 5.2, the time complexity of the “for” loop from

line 7 to line 12 is n · C1. Lines 5 − 14 take n · (n · C1 + C2), and lines 3 − 15 take

k ·n · (n ·C1 +C2). For the first iteration, there is only one node (the starting node) to

process. After the first iteration, the trustworthiness of all trustees within k hops from

a trustor can be obtained from Y (k) after OpinionWalk runs k iterations. Therefore,

the time complexity of OpinionWalk is

 O(k(n+ n)) = O(n) (k = 1)

O(k(n2 + n)) = O(n3) (k > 1)
, (5.5)

where k is the searching depth or number of iterations.

In addition, the time complexity of the “for” loop from line 7 to line 12 is

actually determined by the in-degree of node j. The in-degree of a node ranges from

0 to n, where n is the total node number of G. For example, in a series topology where

the in-degree of each intermediate node is 1, the time complexity of OpinionWalk will

be k · n · (C1 + C2) = O(n). Since the average degree of a real social network graph

is often far less than n, the execution time of OpinionWalk in real social networks

increases slowly as the trustee set size n becomes larger. This finding will be validated

in Chapter 6. Note that OpinionWalk is a polynomial-time solution in DAG. If the

given graph contains loop(s), then the convergence of OpinionWalk is unknown. As

a result, the time complexity of OpinionWalk in graphs containing loop is an open
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issue, which is considered our future work. Since there are always loops in real social

networks, the searching depth of OpinionWalk is empirically set. Our experiments

in Chapter 6 show that even though OpinionWalk cannot get exact results in social

networks containing loops, the trust assessment results are still promising.

Lower time complexity is not the only advantage of OpinionWalk. Since an

iterative procedure is used in OpinionWalk, it offers faster running time compared to

AT that involves large numbers of stack operations and consumes much more system

memory. Faster execution time is especially useful when the network size is large and

complex, which is common in OSNs. Moreover, during each iteration in OpinionWalk,

a node’s trustworthiness is updated only based on its value in the previous iteration,

meaning OpinionWalk can be implemented in a distributed manner.

Differences between AssessTrust and OpinionWalk Algorithms

The AT algorithm’s time complexity is O(nk) where k is the number of hops on

the longest path between the trustor and trustee, and n is the number of nodes in a

DAG. The basic idea of AT algorithm is finding all possible paths between the trustor

and trustee. From these paths, opinions will be discounted and combined to generate

the final opinion between the trustor and trustee. However, finding all possible paths

between two nodes is an NP-hard problem. In fact, we can conduct trust assessment

between two nodes without tracking all possible paths between them. This is why we

propose the OpinionWalk algorithm to solve the problem. OpinionWalk is designed

to replace the AT algorithm in solving the trust assessment problem.

OpinionWalk algorithm is a breath first search (BFS) based algorithm that

takes O(kn2) time complexity to solve the trust assessment problem between any

two nodes in a DAG network, where k is the number of hops of the longest distance

between the trustor and trustee nodes. Analogous to BFS, OW searches the graph
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level by level. On a certain level, every node on this level needs to search all of its

children. After k rounds of searches, the algorithm will stop because it will never hit

the trustee in future searches. OpinionWalk has a lower time complexity because it

does not have to repeatedly consider some edges in the graph, which is inevitable in

the problem of finding all possible paths.

When OpinionWalk searches the graph, we note that the trustworthiness of

every other node can be computed as well. Therefore, OpinionWalk can be used

to solve the MTA problem. Its time complexity in addressing MTA in a DAG is

O(k∗n2), where k∗ is the number of hops of the longest distance between the trustor

and any other node in the graph. The reason why OpinionWalk has a lower time

complexity in addressing MTA is that the trustor can use its opinions about nodes on

a certain level to compute its opinions of nodes on the next level. As a result, when

the OpinionWalk algorithm finishes searching the longest path(s), the opinions of all

other nodes can be computed. In a DAG, we know k ≤ n − 1. Therefore, the time

complexity of OpinionWalk in a DAG can also be expressed as O(n3).

Note that neither AT nor OW can give exact results in a graph containing

loops. The computed results will oscillate and the convergence is not well understood.

Therefore, the complexity of trust assessment in the general case is currently unknown,

which is considered our future work.

Distributed OpinionWalk Algorithm

OpinionWalk can be implemented in a distributed manner, making it applicable

to a distributed system. Suppose a user wants to know the trustworthiness of the

users around him and these users are directly or indirectly connected to the user. If

the OpinionWalk algorithm is executed, the opinions between any two connected users

must be known. As the trust information between users is private and sensitive, some
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users may not want to provide it. Even though some users are willing to share the

data, they don’t want the information to be stored on a central server. To mitigate

users’ concerns about their privacy, we design the distributed OpinionWalk, called

D-OpinionWalk, as shown in Algorithm 5.3.

Algorithm 5.3: D-OpinionWalk Algorithm that is executed on user j.

Require: Message {∆(Ωis, ωsj), k}, where s ∈ Sj .
Ensure: Message {∆(Ωij, ωjo), k + 1}, where o ∈ Oj .
1: for all received messages {∆(Ωis, ωsj), k} on user j do
2: if s ∈ Sj and k < H then
3: Yj[s] ← ∆(Ωis, ωsj)
4: end if
5: end for
6: for all y ∈ Yj[:] and y 6= j do

7: if Ωij
∆
= O then

8: Ωij ← y
9: else
10: Ωij ← Θ(Ωij, y)
11: end if
12: end for
13: for all o ∈ Oj do
14: send a message {∆(Ωij, ωjo), k + 1} to user o
15: end for

Suppose that the D-OpinionWalk algorithm is running on a user j that receives

a set of messages from users in Sj. After j executes the D-OpinionWalk algorithm, it

will send another set of messages to users in Oj. For any user s ∈ Sj, there must be

an edge/opinion from s to j in the corresponding social network. Similarly, for any

user o ∈ Oj, there must be an edge from j to o in the social network. We call Sj and

Oj user j’s in-neighbor and out-neighbor lists, respectively. In a received message,

e.g., sent from user s, the following two pieces of information will be provided: i’s

opinion about j’s trustworthiness ∆(Ωis, ωsj) and the number of hops k. User j also
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maintains the individual opinion vector Yj to store Δ(Ωis, ωsj) received from s. Here,

Δ(Ωis, ωsj) can also be expressed as Ωis|sj.

The details of Algorithm 5.3 can be explained as follows. For lines 1-5, user j

receives messages from users in Sj and initializes its individual opinion vector Yj. In

the messages, k denotes how far the trustor i is away from user j, measured by the

number of hops. For each received message, j first checks if it is sent from any node

in S and whether k is less than H. If so, it saves the information of Δ(Ωis, ωsj) into

Yj, in line 3. If there is already a record of Δ(Ωis, ωsj) in Yj, j will update it.

After j receives messages from all users in Sj, it applies the combining operation

on all opinions saved in Yj, as shown in lines 6-12. In the end, for each node o ∈ Oj,

j applies the discounting operation on the resulting opinion and j’s direct opinions

to get Δ(Ωij, ωjo). Finally, it sends message (Δ(Ωij, ωjo), k + 1) to user o, in line 14.

ωΔ Ω ωΔ Ω

ω ωΩ Θ Δ Ω Δ Ω

ω ω

Figure 5.6: A general view of the D-OpinionWalk algorithm.

In Algorithm 5.3, there is an important feature that needs to be emphasized

here. User j is unable to know his neighbor’s direct opinion about himself, which

protects the privacy of users in Sj. As shown in Fig. 5.6, what j received from

his in-neighbors are Δ(Ωis, ωsj) and k, from which he cannot infer ωsj. Second,

D-OpinionWalk requires each user to provide her/his direct opinion on the given out-

neighbors and push the computed individual opinions to them, respectively. Similarly,
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because j does not provide his opinion on any user o ∈ Oj, its privacy is protected as

well.
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EVALUATIONS

In this chapter, we evaluate the properties and performance of the 3VSL model,

AT algorithm and OpinionWalk algorithm. For 3VSL, we conduct a numerical

analysis to show the properties of discounting and combining operations. Then,

we present the results of applying 3VSL to compute trustworthiness in the bridge

topology. We also evaluate the accuracy of 3VSL using a dataset collected from

an online survey system. In the end, we conduct comprehensive experiments to

evaluate its accuracy and compare its performance to subjective logic, in two real-

world datasets: Advogato and PGP.

For the AT algorithm, we evaluate its accuracy and compare its performance

to another trust assessment algorithm, called TidalTrust, in Advogato and PGP.

We investigate the reasons why AT outperforms TidalTrust by analyzing the results

obtained from these experiments. For OpinionWalk, we evaluate its accuracy and

execution time in solving the MTA problem using the same two datasets.

Numerical Analysis

To understand whether 3VSL accurately models trust in OSNs, we first conduct

a numerical analysis on the discounting and combining operations defined in 3VSL.

After that, we investigate whether 3VSL can be used to compute trust in the bridge

topology. For the sake of simplicity, we denote the total evidence value in an opinion

as λ, i.e., λ = α + β + γ.

Discounting Operation

We first look at the discounting operation defined in 3VSL, i.e., an opinion ωAB

discounts another opinion ωBC . As a result, opinion ωAC is derived from ∆(ωAB, ωBC).
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We assume the initial evidence in an opinion is 30, i.e., λAB = λBC = 30. We also

assume there is no neutral evidence in λAB and λBC . In the experiment, we change

the numbers of positive evidence, αAB and αBC , from 0 to 27. We investigate the

accuracy of 3VSL by observing the expected belief of ωAC .

As shown in Fig. 6.1, when αAB increases, the expected belief of ωAC , denoted

by EωAC
, increases as well. Similar results are observed when αBC increases. It implies

that A tends to believe B’s opinion on C if A highly trusts B. When αAB is low,

however, EωAC
approaches 0.5, indicating A holds a neutral opinion on C because A

does not trust B at all.
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Figure 6.1: Influence of belief on discounting operation.

To further understand the impact of the evidence values, we vary αAB/λAB

from 0 to 1, and change λAB from 0 to 300. In the experiment, we keep the original

opinion ωBC unchanged, i.e., ωBC = 〈25, 5, 0〉.

As we can see in Fig. 6.2, when λAB is large, EωAC
increases as αAB/λAB

increases. When λAB is small, EωAC
is very close to 0.5. This phenomena indicates

that when A is more certain about her opinion on B, i.e., larger λAB, she relies more

on B to form her own opinion on C. Otherwise, A’s opinion on C tends to be neutral.
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Figure 6.2: Influence of belief and uncertainty on the discounting operation.

Combining Operation

Here, we assume two opinions ωA1C1 and ωA2C2 are combined to yield another

opinion ωAC = Θ(ωA1C1 , ωA2C2). We vary λA1C1 of opinion ωA1C1 from 0 to 300,

and keep the value of αA1C1/βA1C1 = 1/7. As such, we can denote opinion ωA1C1

as 〈0.125× λA1C1 , 0.875× λA1C1 , 0〉 (low trust). We set the second opinion ωA2C2 as

〈25, 5, 0〉 (high trust).

As shown in Fig. 6.3, when λA1C1 is very large, the expected belief of the

combined opinion ωAC approaches EωA1C1
. When λA1C1 is smaller, EωAC

gets close

to EωA2C2
. It implies that a combining opinion yields a result similar to the opinion

with a larger λ.

We further evaluate the combining operation by setting ωA2C2 as 〈25, 5, 0〉, λA1C1

as 30, and varying αA2C2 from 0 to 27. As shown in Fig. 6.4, when αA2C2 and αA1C1

are similar, the expected belief of the resulted ωAC is close to but higher than either

EωA1C1
or EωA2C2

. When αA2C2 and αA1C1 are different, EωAC
is close to the average

of EωA1C1
and EωA2C2

.
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Figure 6.3: Influence of total evidence value λ on combining operation.
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Figure 6.4: Influence of positive evidence value α on combining operation.

We conclude that combining two opinions with similar positive evidence values

will enhance the original opinion, due to the increased amount of positive evidence.

On the other hand, combing opinions with the different amounts of positive evidence

yields a neutralized result.

Bridge Topology

Because the subjective logic model cannot handle the bridge topology, as shown

in Fig. 4.5(a), an approximation solution is proposed by removing some edges from
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Figure 6.5: Influence of bridge opinion’s positive/total evidence ratio (αBD/λBD).
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Figure 6.6: Influence of bridge opinion’s total evidence value (λBD).

the network, e.g., ωBD. If ωBD is removed, the bridge topology becomes a parallel

topology where A connects to C via two parallel paths A→ B → C and A→ D → C.

We define ωBD as the bridge edge (or bridge opinion) and discover that the bridge

edge could be very important in trust assessment and cannot be simply removed.

In the experiments, we set the opinions ωAB, ωAD, ωBC and ωCD as 〈25, 5, 0〉,

〈18, 12, 0〉, 〈18, 12, 0〉, and 〈18, 12, 0〉, respectively. We consider the cases where ωBD

contains a small amount of evidence, e.g., λBD = 5, and a large amount of evidence,

e.g., λBD = 20. By changing the value of αBD/λBD from 0 to 1, we obtain Fig. 6.5.
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When λBD = 5, the expected belief of ωAC computed from 3VSL is similar

to that computed by removing ωBD. When λBD = 20, however, 3VSL yields a

different result. Moreover, we note that a more trustworthy bridge opinion, e.g.,

αBD/λBD > 0.7, tends to yield a more trustworthy ωAC .

Furthermore, we vary λBD from 3 to 300, and set αBD/λBD as 0.7 and αBD/λBD

as 0.3, respectively. As shown in Fig. 6.6, when λBD is large, the impact of the bridge

opinion cannot be ignored. When λBD is small, a similar result can be obtained if the

bridge opinion is removed, i.e., the approximation solution only works in this case.

Survey Experiments

In addition to numerical analysis, we designed an online system to collect

trust data. We use the collected dataset to validate the discounting and combining

operations defined in 3VSL.

Setup of the Survey Experiments

More than 100 participates were invited to evaluate the trustworthiness of

their 1-hop and 2-hop friends by answering a questionnaire proposed in [48]. The

questionnaire consisted of 12 questions, and the answers of these questions were

used to construct a participant’s opinions of his/her friends. The answer X for each

question is scaled in 9 levels, where 8 represents “strongly trust” and 0 as “strongly

distrust”. In addition, we add another question to let a participant indicate how

certain they believe their answers are. The uncertainty score Y is scaled in 5 levels,

where 0 represents “not sure at all” and 4 represents “very confident”.

After a participant logs into the online system, she will be asked to identify and

evaluate the trustworthiness of her two direct friends B and D. A is then told that

her friend B trusts C with an opinion ωBC , and she is asked to evaluate her opinion
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on C. Finally, A is told that D also trusts C, with an opinion ωDC , and she is asked

to evaluate C’s trustworthiness again, considering both the opinions from B and D.

More details about the online system can be found at [33].

From the collected data, we construct trust opinions as follows. The average

score of X, denoted as T , reflects the value of positive evidence. The uncertainty

score Y is used to compute the total number of evidence λ, i.e. the higher the value

of Y , the smaller the amount of evidence. It’s difficult to obtain the accurate value of

λ because participants may not recall the exact amount of evidence they used to make

their judgments. Here, we assume 30 recent evidence indicators are good enough for

a person to form an opinion, i.e., λ of an opinion is 3 if Y = 0 and 30, otherwise.

Given the values of T and λ, an opinion vector is formed, according to the following

equation.

〈α, β, γ〉 = 〈T · λAX , (1− T ) · λAX , 0〉 , (6.1)

where

T =
αAX
λAX

.

Notice that we assume the initial amount of neutral evidence is 0. This is because

when a person makes decisions, neutral evidence is usually ignored, i.e., only positive

and negative evidence are considered. In 3VSL, uncertainty only occurs when trust

propagates within the network.
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Errors in Discounting and Combining Operations

We compute the errors in the discounting and combining operations as follows.

Err∆ =

∣∣∣∣E∆(ωAB ,ωBC) − EωA→B→C

EωA→B→C

∣∣∣∣ ,
ErrΘ =

∣∣∣∣EΘ(∆(ωAB ,ωBC),∆(ωAD,ωDC)) − EωA→B,D→C

EωA→B,D→C

∣∣∣∣ .
where ωA→B→C denotes A’s opinion on C based on B’s opinion, and ωA→B,D→C

denotes A’s opinion on C based upon both B’s and D’s opinions. The errors Err∆

and ErrΘ generated by the discounting and combining operations are shown in Fig 6.7

and 6.8, respectively.
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Figure 6.7: Absolute errors in expected belief of the discounting operation.

In these figures, we also plot the expected beliefs computed by the subjective

logic. The average error of 3VSL is less than that of subjective logic i.e. 3VSL is a

more accurate model in modeling trust in social networks.

We further plot the corresponding CDFs of the errors in Fig 6.9 and 6.10. For

the combining operation, we can see around 90% of the results have errors less than

20%. For the discounting operation, 82% of the results have errors less than 20%.

We also note that the number of accurate results, with an error < 20%, computed
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Figure 6.8: Absolute errors in expected belief of the combining operation.
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Figure 6.9: CDFs of errors in expected belief of the discounting operation.

by subjective logic is smaller. This indicates that 3VSL provides higher accuracy in

trust assessments in OSNs.

Experimental Evaluations

In this section, we will validate the 3VSL model and evaluate the performance

of the AssessTrust and OpinionWalk algorithms using two real-world datasets:

Advogato and PGP. To understand how accurate various models are in assessing

trust within OSNs, we adopt F1 score [1] as the evaluating metric. The F1 score is



88

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Error

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

C
D

F

3VSL
Subjective Logic

Figure 6.10: CDFs of errors in expected belief of the combining operation.

chosen because it is a comprehensive measure for different models in predicting or

inferring trust [1].

After evaluating the accuracy of different trust models, we evaluate the

performance of the AT algorithm and compare it to these benchmark solutions:

TrustRank and EigenTrust. In the end, we implement the OpinionWalk algorithm

and compare its execution time to the benchmark algorithms.

Dataset

The first dataset, Advogato, is obtained from an online software development

community where an edge from user A to B represents A’s trust on B, regarding B’s

ability in software development. The trust value between two users is divided into

four levels, indicating different trust levels. The second dataset, Pretty Good Privacy

(PGP), is collected from a public key certification network where an edge from user A

to B indicates that A issues a certificate to B, i.e., A trusts B. Similar to Advogato,

the trust value is also divided into four levels.

According to the document provided by Advogato, a user determines the trust

level of another user, based on only certain evidence. Therefore, a low-trust edge in
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Advogato indicates an opinion that contains negative evidence. On the other hand, in

PGP, a user tends to give a low trust certification if he is not sure whether the other

user is trustworthy or not. A user in PGP will never give a certification to anyone who

has malicious behavior. Therefore, a low trust level in PGP indicates an opinion that

contains uncertain evidence. We select these two datasets because they are obtained

from real world OSNs where trust relations between users are quantified as non-binary

values. In addition, the different definitions of trust in these two datasets allow us

to evaluate the performance of 3VSL in different trust social networks. Statistics of

these datasets are summarized in Table 6.1.

Table 6.1: Statistics of the Advogato and PGP datasets.

Dataset # Vertices # Edges Avg Deg Diameter
Advogato 6,541 51,127 19.2 4.82

PGP 38,546 31,7979 16.5 7.7

Dataset Preparation

In Advogato, trust is classified into four ordinal levels: observer, apprentice,

journeyer and master. Similarly, in PGP, trust is classified into four levels: 0, 1,

2 and 3. Both Advogato and PGP provide directed graphs where users are nodes

and edges are the trust relations among users. Because the trust levels are in ordinal

scales, a transformation is needed to convert a trust level into a trust value, ranging

from 0 to 1.

In the experiments, we set the total evidence values λ as 10, 20, 30, 40, and 50.

Given a certain λ, we can represent an opinion as

〈
α

λ
,
β

λ
,
γ

λ

〉
. As aforementioned, the

meanings of trust in Advogato and PGP are different, so we use different methods to

construct opinions in Advogato and PGP. We assume the opinions in Advogato only

contain positive and negative evidence, i.e., γ = 0. Therefore, an opinion of 3VSL in



90

Advogato can be expressed as

〈
α, λ

(
1− α

λ

)
, 0
〉
.

Given the total number of evidence value λ, an opinion in Advogato is in fact

determined by
α

λ
, i.e., the proportion of positive evidence. To properly set the value

of
α

λ
, we use the normal score transformation technique [80] to convert ordinal trust

values into real numbers, ranging from 0 to 1. Specifically, trust levels are first

converted into z-scores by the normal score transformation method, based on their

distributions in the datasets. Then, we map the z-scores to different
α

λ
’s, according to

the differences among the z-scores. For example, the master level trust is converted

into (
α

λ
)3 = 0.9. For the observer level trust, we use different values of (

α

λ
)0 as 0.1,

0.2, 0.3, 0.4 and 0.5 to indicate the possible lowest trust levels. With the highest

and lowest values of
α

λ
, we interpolate the values of (

α

λ
)1 and (

α

λ
)2 for apprentice

and journeyer level trusts, based on the intervals between the corresponding z-scores.

Because there are five different λ’s and five different (
α

λ
)0’s, we have a total of 25

combinations of parameters.

For the PGP dataset, we assume there is only positive and uncertain evidence,

so we set β = 0. Therefore, an opinion of 3VSL in PGP can be expressed as

〈
α, 0, λ(1− α

λ
)
〉
.

Similar to Advogato, an opinion in PGP is determined by λ and
α

λ
. We use the same

transformation method to convert the trust relations in PGP into opinions.
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Figure 6.11: F1 scores of 3VSL and SL using the Advogato dataset. Parameters
are the combinations between base trust levels (0.1, 0.2, 0.3, 0.4 and 0.5) and total
evidence values (10, 20, 30, 40, and 50).

Accuracy of 3VSL Model

With the above-mentioned two datasets, we evaluate the accuracy of the 3VSL

model. We also compare the accuracy of the 3VSL model to the SL model. As we

know, SL does not model the trust propagation process correctly and its performance

will degrade drastically in real-world OSNs. Due to this issue, SL cannot handle social

networks with complex network topologies. Although some approximation solutions

are proposed, e.g., removing edges in a social network to reduce it into a simplified

graph, there is no existing algorithm that implements any of these solutions. To make

a fair comparison, we design an algorithm called SL*, based on the AT algorithm. The

structure of the SL* algorithm is exactly the same as AT’s, however, the discounting

and combining operations used in the AT algorithm are replaced with those defined

in SL. As such, SL* implements the SL model and is able to work on OSNs with

arbitrary topologies.

The experiments are conducted as follows. First, we randomly select a trustor

u from the datasets and find one of its 1-hop neighbors v. We take the opinion from
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Figure 6.12: F1 scores of 3VSL and SL using the PGP dataset. Parameters are the
combinations between base trust levels (0.1, 0.2, 0.3, 0.4 and 0.5) and total evidence
values (10, 20, 30, 40, and 50).

u to v as the ground truth, i.e., how u trusts v. Then, we remove the edge (u, v) from

the datasets, if there is a path from u to v. We run the above-mentioned algorithms

to compute u’s opinion of v’s trustworthiness. Finally, we compare the computed

results to the ground truth. We select 200 pairs of u and v to get statistically

significant results. To compare the computed results to the ground truth, we first

use the expected beliefs of computed opinions as the trust values in 3VSL and SL.

Then, we round the expected beliefs to the closest trust levels based on the ground

truths. Finally, we use F1 score to evaluate the accuracy of different models. Because

we do not know the correct parameter settings, we test the above-mentioned 25

combinations of parameters to conduct a comprehensive evaluation.

As shown in Fig. 6.11 and 6.12, 3VSL achieves higher F1 scores than SL, with all

different parameter settings, in both datasets. Specifically, 3VSL achieves F1 scores

ranging from 0.6 to 0.7 in Advogato, and 0.55 to 0.75 in PGP. On the other hand,

the F1 scores of SL range from 0.35 to 0.6 in Advogato and 0.55 to 0.67 in PGP.
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Considering F1 score is within the range of [0, 1], we conclude that 3VSL significantly

outperforms SL.

More importantly, we observe that the F1 scores of 3VSL are relatively stable,

with different parameter settings. However, the F1 scores of SL fluctuate, indicating

SL is significantly affected by the parameter settings. Overall, we conclude that

3VSL is not only more accurate than SL but also more robust to different parameter

settings.

We further investigate the reason why 3VSL outperforms SL by looking at the

evidence values in the resulting opinions, computed by 3VSL and SL. We choose

the results from experiments with the parameter setting (0.3, 30), wherein 3VSL

performs the best. We are only interested in the cases where 3VSL obtains more

accurate results than SL. We measure the values of certain evidence (α + β) in the

resulting opinions computed by 3VSL and SL. The CDFs of the values of certain

evidence are then plotted in Fig. 6.13. As shown in Fig. 6.13, the values of (α+β) in
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Figure 6.13: CDFs of α+β in opinions computed by 3VSL and subjective logic using
the Advogato dataset.

the opinions computed by SL are much lower than that of 3VSL. It results in an lack

of evidence in computing the expected beliefs of opinions by SL. This observation
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Advogato PGP
AT (0.3, 30) (0.1, 30)
SL* (0.3, 30) (0.1, 30)
TT (0.2,−) (0.1,−)

Table 6.2: Selected parameters (base trust level, total evidence value) for AT, SL*
and TT. Note that TT employs a number to represent trust, so its evidence value is
empty.

matches the example introduced in Fig. 4.3. Because 3VSL employs a third state to

store the uncertainty generated in trust propagation, it is more accurate in modeling

and computing trust in OSNs.

Performance of the AssessTrust Algorithm
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Figure 6.14: F1 scores of the trust assessment results generated by TT, SL* and AT
using the Advogato dataset.

After validating the 3VSL model, we study the performance of the AT algorithm

and compare it to other benchmark algorithms, including TidalTrust (TT) [32],

TrustRank (TR) [36] and EigenTrust (ET) [58]. TidalTrust is designed to compute

the absolute trust of any user in an OSN. However, TR and ET are used to rank
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Figure 6.15: F1 scores of the trust assessment results generated by TT, SL* and AT
using the PGP dataset.

users in an OSN based on their relative trustworthiness, i.e., it does not compute the

absolute trust.

Because different benchmark algorithms solve the trust assessment problem

differently, we conduct two groups of experiments. In the first group of experiments,

we compare the performance of AT, SL* and TT in computing the absolute

trustworthiness of users in an OSN. In the experiments, we randomly select a trustor

u from the datasets and choose one of its 1-hop neighbors v. We take the opinion

from u to v as the ground truth. Then, we remove the edge (u, v) from the datasets, if

there exist paths from u to v in the network. We run the AT, SL* and TT algorithms

to compute the trustworthiness of v, from u’s perspective. Finally, we compare the

computed trustworthiness to the ground truth.

Different parameters will affect the performance of various algorithms, so we

choose different parameters for AT and TT so that they can perform well in the

experiments. Because we already validated that 3VSL outperforms SL, regardless of

the parameter settings, we choose the same parameter setting used by AT for SL*.
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(a) Error histogram of TT using the Advogato dataset

(b) Error histogram of SL* using the Advogato dataset

(c) Error histogram of AT using the Advogato dataset

Figure 6.16: Histogram of the errors generated by TT, SL* and AT using the
Advogato dataset.
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(a) Error histogram of TT using the PGP dataset

(b) Error histogram of SL* using the PGP dataset

(c) Error histogram of AT using the PGP dataset

Figure 6.17: Histogram of the errors generated by TT, SL* and AT using the PGP
dataset.
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The parameter settings for different algorithms in different datasets are shown in

Table 6.2.
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TT:  =-0.005,  =0.177

Figure 6.18: Fitted curves of the error distributions of TT, SL* and AT using the
Advogato dataset.
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Figure 6.19: Fitted curves of the error distributions of TT, SL* and AT using the
PGP dataset.

We first look at the F1 scores of the trust assessment results generated by the

three algorithms. The F1 scores are plotted in Figs. 6.14 and 6.15. As shown in

Figs. 6.14 and 6.15, AT outperforms TT in both datasets, i.e., TT achieves 0.617 and

0.605 F1 scores, and AT offers 0.7 and 0.75 F1 scores in Advogato and PGP. It is
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worth mentioning that SL* gives the worst F1 scores, indicating that the problem of

subjective logic in modeling uncertainty seriously impacts its performance.

Besides F1 scores, we also study the distribution of errors in trust assessment

results. The error here is defined as the difference between the computed trust value

and the ground truth. The error distributions of different algorithms are shown in

Figs. 6.16, 6.18, 6.17 and 6.19.

From Fig. 6.16(a), we can see that the errors of TT algorithm is either very

small or very large when it is used to assess trust using the Advogato dataset. For

the SL* and AT algorithms, however, the errors are more concentrated around 0, as

shown in Figs. 6.16(b) and 6.16(c). If the PGP dataset is used, we observe the same

phenomena, as shown in Figs. 6.17(a), 6.17(b) and 6.17(c).
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Figure 6.20: The CDFs of Kendall’s tau ranking correlation coefficients of different
algorithms using the Advogato dataset.

We further fit this histogram data using the Normal Distribution. As shown in

Figs 6.18 and 6.19, the fitted curves of the error distributions of different algorithms

clearly indicate that AT gives the best trust assessment results. In these figures,

we can see the error distribution of TT has a close-to-zero mean, i.e., 0.005 for

both datasets, but a large variance. On the contrary, the fitted curves of the error
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Figure 6.21: The CDFs of Kendall’s tau ranking correlation coefficients of different
algorithms using the PGP dataset.

distributions of SL* show that SL* has a smaller variance but a large mean, i.e.,

0.067 in Advogato and 0.016 in PGP. The fitted curves of the error distributions of

AT give the best results, i.e., with a mean of 0.015 in Advogato and 0.016 in PGP,

and a smaller variance in both datasets.

In the second group of experiments, we evaluate the performance of AT, ET

and TR, in terms of ranking users based on their trustworthiness. We first randomly

select a seed node u, and find all its 1-hop neighbors, denoted as V . Then, we rank

the nodes in V based on u’s direct opinions on these nodes, i.e., nodes with higher

trust values are ranked in higher positions than those with lower trust values. We

take this ranking as the ground truth.

For each node v ∈ V , we remove edge (u, v) from the datasets if there exist paths

from u to v. We run the AT, ET and TR algorithms to compute the trustworthiness

of node v, from the perspective of u. Then, we rank the nodes in V based on the

expected beliefs of ωuv’s for all possible v’s. We compare the ranking results obtained

by the three algorithms to the ground truth. Here, ranking errors are measured by

Kendall’s tau ranking correlation coefficients between the computed ranking results
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Figure 6.22: Execution times of different algorithms (OW, MT, ET, AT, and TT)
using the Advogato dataset.

and the ground truth. We repeat each experiment 100 times in Advogato and PGP

to get statistically significant results.

In Figs. 6.20 and 6.21, AT gives more accurate ranking results, compared to

other algorithms. In Advogato, the Kendall’s tau correlation coefficients of AT are

always greater than 0. Nearly 20% of the ranking results are exactly the same (with

a coefficient of 1) as the ground truth. In PGP, AT generates > 0.1 Kendall’s tau

ranking correlation coefficients, and about 40% of the ranking results are the same

as the ground truth. On the other hand, for ET and TR algorithms, only 20%

(Advogato) and 10% (PGP) of their rankings are moderately correct, with coefficients

> 0.5. In other words, ET and TR do not work well in ranking users in an OSN,

based on their trustworthiness.

Performance of the OpinionWalk Algorithm

In this section, we evaluate the performance of the OpinionWalk (OW)

algorithm, when it is used to address the MTA problem. Because OpinionWalk is

designed based upon the 3VSL model, its accuracy in assessing trust does not need to
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Figure 6.23: Execution times of different algorithms (OW, MT, ET, AT, and TT)
using the PGP dataset.

be evaluated again. Therefore, we are only interested in its execution time. Here, we

compare OpinionWalk to other benchmark algorithms, including EigenTrust (ET)

(α = 0.85), TidalTrust (TT), MoleTrust (MT), and AssessTrust (AT). We do not

consider TrustRank here because its running time is almost the same as EigenTrust’s.

The experiments are conducted as follows. First, we randomly choose a trustor

and its neighbors (trustees) within various hops. We run the above-mentioned

algorithms on the sub-graph containing only the trustor and trustees. We plot the

execution times of various algorithms, with respect to the number of nodes in each

sub-graph. We group the node numbers into 3 categories. For Advogato, the node

number categories are < 1.3K, 1.3K−2.6K and > 2.6K. For PGP, the node number

categories are < 7K, 7K − 15K and > 15K.

As shown in Fig. 6.22 and Fig. 6.23, TT and AT run much slower than OW

when the numbers of nodes increase in both datasets. Particularly, when the number

of nodes is large, corresponding to a larger searching depth, TT and AT are extremely

slow. The reason is that both TT and AT need to be executed n times to solve the

MTA problem where n is the number of nodes in networks. AT is the slowest algorithm
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because it is a recursive algorithm and it keeps re-solving the same sub-problems over

and over again. The execution times of OW, ET and MT are on the same order of

magnitude, i.e., O(n3). Because the discounting and combining operations in OW are

more complicated than the multiplication and summation operations in MT, it runs

slightly slower than MT. Considering both trust assessment accuracy and execution

time, we conclude that OW is a better solution to MTA in OSNs.
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CONCLUSION

In this dissertation, the three-valued subjective logic is proposed to model and

compute trust between any two users connected within OSNs. 3VSL introduces the

uncertainty space to store evidence distorted from certain spaces as trust propagates

through a social network, and keeps track of evidence as multiple trusts combine.

We discover that there are differences between distorting and original opinions, i.e.,

distorting opinions are so unique that they can be reused in trust computation while

original opinions are not. This property enables 3VSL to handle complex topologies,

which is not feasible in the subjective logic model.

Based on 3VSL, we design the AT algorithm to compute the trust between any

pair of users in a given OSN. By recursively decomposing an arbitrary topology into

a parsing tree, we prove AT is able to compute the tree and get the correct results.

AT is designed for one-to-one trust assessment and is inefficient in addressing the

MTA problem in OSNs. To solve the MTA problem, we design the OpinionWalk

algorithm based on the 3VSL model. We prove that OpinionWalk is an equivalent

implementation of the AT algorithm, yet offers a better time complexity of O(n3) in

addressing the MTA problem.

We validate 3VSL both in numerical and experimental evaluations. The

evaluation results indicate that 3VSL is accurate in modeling computing trust within

complex OSNs. We further compare the AT algorithm to other benchmark trust

assessment algorithms. Experiments in two real-world OSNs show that AT is a better

algorithm in both absolute trust computation and relative trust ranking. In the end,

experimental results show that OpinionWalk is an accurate, as well as fast, solution

to the MTA problem.
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